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In Parkinson’s disease, intracellular α-synuclein (α-syn) inclusions form in neurons and

are referred to as Lewy bodies. These aggregates spread through the brain following

a specific pattern leading to the hypothesis that neuron-to-neuron transfer is critical

for the propagation of Lewy body pathology. Here we review recent studies employing

pre-formed fibrils generated from recombinant α-syn to evaluate the uptake, trafficking,

and release of α-syn fibrils. We outline methods of internalization as well as cell surface

receptors that have been described in the literature as regulating α-syn fibril uptake.

Pharmacological and genetic studies indicate endocytosis is the primary method of

α-syn internalization. Once α-syn fibrils have crossed the plasma membrane they are

typically trafficked through the endo-lysosomal system with autophagy acting as the

dominant method of α-syn clearance. Interestingly, both chaperone-mediated autophagy

and macroautophagy have been implicated in the degradation of α-syn, although it

remains unclear which system is chiefly responsible for the removal of α-syn fibrils. The

major hallmark of α-syn spreading is the templating of misfolded properties onto healthy

protein resulting in a conformational change; we summarize the evidence indicating

misfolded α-syn can seed endogenous α-syn to form new aggregates. Finally, recent

studies demonstrate that cells release misfolded and aggregated α-syn and that these

processes may involve different chaperones. Nonetheless, the exact mechanism for the

release of fibrillar α-syn remains unclear. This review highlights what is known, and what

requires further clarification, regarding each step of α-syn transmission.

Keywords: synucleinopathy, Parkinson disease, protein misfolding, proteostasis, protein spreading, endocytosis,

fibrils, oligomers

CELL SURFACE BINDING AND INTERNALIZATION OF
α-SYNUCLEIN FIBRILS

The hypothesis that α-synuclein (α-syn) pathology is propagated along neuronal pathways and
by intercellular exchange implies at least three physiological processes: membrane binding and
internalization by recipient cells, interaction with intracellular α-syn, and eventual secretion or
transport into adjacent cells. There is now significant experimental evidence using in vitro-
generated α-syn assemblies indicating that each of these steps can be observed in cell and
animal models. For example, fibrils are efficiently internalized by cultured neuroblastoma
cells and primary neurons without the need of transfection reagents (Lee et al., 2008a,b;
Volpicelli-Daley et al., 2011). Similarly, α-syn monomers, oligomers, and fibrils injected into the
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murine olfactory bulb (OB) are rapidly internalized by neurons
and glia that project to central olfactory structures in the brain
(Rey et al., 2013, 2016). Uptake efficiency may also be cell-
type dependent, as astrocytes appear to be more competent at
internalizing α-syn fibrils compared to primary neurons (Loria
et al., 2017). Moreover, microfluidic chambers have been used
to characterize α-syn uptake in axons, dendrites, and the soma
of neurons indicating that α-syn can be internalized through
the plasma membrane in all cell compartments (Volpicelli-Daley
et al., 2011; Freundt et al., 2012; Brahic et al., 2016).

Different mechanisms for internalization have been proposed
including endocytosis, micropinocytosis, and cell surface
protein-mediated uptake (Figure 1). Of these, endocytosis
has been the most studied (see Table 1 for a summary of
relevant studies on endocytosis). Briefly, dynamin facilitates
the budding of endocytic vesicles from the plasma membrane,
which merge with early endosomes. Cargo within the endosomal
structures can recycle back to the plasma membrane, be released
through exosomes, or fuse with lysosomes for degradation
(Huotari and Helenius, 2011). Inhibiting endocytosis, either
by maintaining cells at a lower, non-permissive temperature
or with a dominant negative dynamin-1 mutant, substantially
reduces fibrils uptake in all cell lines tested, including primary
neurons (Lee et al., 2008a; Abounit et al., 2016). The same
effect is evident in the presence of dynamin inhibitors such
as Dynasore (Samuel et al., 2016; Sacino et al., 2017). Also, in
accord with the capture of misfolded α-syn oligomers/fibrils by
endocytic vesicles, an upper limit of ∼50 nm was observed for
α-syn fragments, presumably defined by vesicle lumen capacity
(Tarutani et al., 2016). Moreover, fibril entry appears to saturate
at high fibril concentrations indicating an upper limit to the
uptake pathway (Karpowicz et al., 2017). These features are all
consistent with endocytosis as the primary mechanism of α-syn
internalization. In addition, internalized fibrils co-localize with
markers of the endocytic pathway (EEA1, Rab5) and are rapidly
acidified within hours of treatment before finally co-localizing
with markers of late endosomal and lysosomal compartments
(Lamp-1) (Lee et al., 2008a; Konno et al., 2012; Karpowicz et al.,
2017).

On the other hand, heparan sulfate proteoglycan (HSPGs)
mediated-uptake of α-syn fibrils by micropinocytosis has also
been shown. In non-neuronal cell lines, α-syn fibrils bind
to heparan sulfate chains in the plasma membrane prior to
internalization (Holmes et al., 2013). The interaction between
the sulfated glycosaminoglycan (GAG) chains and α-syn
fibrils likely occurs through contact between the negatively
charged groups in the GAG chains and positively charged
amino acids in the amyloid protein. Soluble heparin in culture
media can competitively inhibit cell surface binding and
uptake of α-syn fibrils into primary neurons (Karpowicz
et al., 2017). Internalization through this mechanism seems
to be dependent on the degree of α-syn aggregation as well
as cell type. HSPG-mediated uptake is more common in
non-immune cells of the brain such as oligodendrocytes and
neurons, while astrocytes and microglia seem to employ
additional mechanisms for internalization (Ihse et al.,
2017).

In conjunction with HSPGs, other cell surface receptors for
α-syn fibrils have been identified. Lymphocyte activation gene-
3 (LAG-3), a member of the immunoglobulin superfamily of
receptors, binds to α-syn fibrils and triggers endocytosis into
neurons (Mao et al., 2016). Blockade or knockdown of LAG-3
in neuronal cultures or animals diminished the transmission of
α-synuclein between neurons and reduced the accumulation of
fibrils. However, the inhibition was incomplete, and the same
study also found neurexin 1b, and Aβ precursor-like protein 1
(APLP1) act as putative receptors, suggesting that multiple cell
surface molecules may contribute to the entry of α-syn fibrils
into cells. Another study used a proteomic screen to identify
several membrane interactors of α-syn oligomers and fibrils;
in addition to neurexin 1b, the α3-subunit of Na+/K+-ATPase
(NKA) was also detected as a potential cell surface interactor with
α-syn fibrils (Shrivastava et al., 2015). Clustering of α-syn at the
membrane induced the redistribution of α3-NKA, and although
the role of α3-NKA in α-syn endocytosis was not investigated, the
interaction reduced its ability to pump out Na+ from neurons.
Whilemany cell-surface receptors have been proposed, it remains
unclear whether different α-syn assemblies, namely oligomers,
fibrils, or exosome-packed, are internalized via distinct receptors
or endocytic mechanisms in neurons.

α-SYNUCLEIN TRAFFICKING AND
PROTEOSTASIS

Following internalization, α-syn fibrils are trafficked to late
endosomal compartments and lysosomes (Lee et al., 2008a;
Abounit et al., 2016; Karpowicz et al., 2017). Differences in
uptake kinetics and fibril degradation between studies may
be related to differences in culture conditions and the types
of α-syn assemblies used (Loria et al., 2017; Sacino et al.,
2017). Once internalized, the movement of endocytosed α-
syn fibrils by primary neurons matches the kinetics of slow
component b of axonal transport, and although bidirectional,
retrograde transport predominates over the anterograde (Brahic
et al., 2016). Whether internalized fibrils are transported as
naked assemblies or in endocytic compartments remains to be
determined; however, the latter seems most likely.

Lysosomal inhibition has been shown to cause an
accumulation of α-syn, suggesting the autophagy/lysosomal
pathway is involved in the clearance of oligomeric and fibrillar
species of α-syn (Lee et al., 2004; Vogiatzi et al., 2008; Sacino
et al., 2017). Macroautophagy, chaperone-mediated autophagy
(CMA), and microautophagy direct intracellular constituents
to the lysosome, and all of these processes could be involved
in α-syn degradation. The delivery of α-syn to the lysosome
is mediated by both chaperone-mediated autophagy (CMA)
and macroautophagy. CMA depends on the recognition of
CMA-targeting motifs by Hsc70, co-chaperone complexes,
and Lamp-2A; while macroautophagy is regulated by multiple
autophagy-related gene (Atg) products that mediate a multistep
process to envelope cytosolic components and organelles into
double-membrane vesicles that merge with lysosomes (Cuervo
et al., 2004; Lamb et al., 2013; Jackson and Hewitt, 2016).
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FIGURE 1 | α-syn is believed to enter the cell through endocytosis and three potential receptors, HSPG, LAG3, and α3-NKA, have been implicated in the

internalization of α-syn. Once inside the cell, the protein may undertake multiple pathways. Endocytic vesicles are directed to the autophagic system for degradation.

In some circumstances, endocytic vesicles may fuse with autophagosomes to create hybrid structures, referred to as amphisomes. Both endosomes and

amphisomes merge with lysosomes where their internal contents are degraded by hydrolases. Alternatively, it has been proposed α-syn is capable of inducing vesicle

rupture in endosomes and lysosomes resulting in the release of internalized protein into the cytoplasm. This provides a unique opportunity for intracellular protein and

internalized exogenous fibrils to interact. Whether the interaction occurs within merged vesicles or in the cytoplasm following expulsion from endocytic organelles,

these rupture events likely allow for the seeding and propagation of misfolding protein in a disease model.

Monomeric and dimeric α-syn species are degraded by CMA
in isolated lysosomes in vivo, and familial α-syn mutants (A30P
and A53T) have been shown to inhibit CMA (Cuervo et al.,
2004; Mak et al., 2010). In cultured cells and primary neurons,
downregulation of Lamp-2A led to an increase in insoluble
α-syn, suggesting degradation through CMA does not merely
pertain to monomeric species of α-syn (Vogiatzi et al., 2008).
Furthermore, in vitro and α-syn transgenic animal models of
aggregation showed α-syn was found in Lamp-2A- positive
inclusions (Klucken et al., 2012). In vivo, overexpression of
Lamp-2A led to a decrease in α-syn turnover and selective
dampening of α-syn neurotoxicity, highlighting the importance
of CMA in α-syn degradation (Xilouri et al., 2013).

Other studies suggest macroautophagy also contributes to
the degradation of α-syn aggregates, in large part because α-
syn has been shown to interact with autophagic markers in
cell models (Crews et al., 2010; Tanik et al., 2013). α-Syn

aggregates are predominantly co-localized with LC3 and p62
in neurons, suggesting an accumulation at the autophagosome
stage of autophagy (Tanik et al., 2013). Similarly, acute lentiviral-
mediated α-syn overexpression in rat neuroblastoma cells causes
a build-up of autophagic vesicles containing α-syn. The addition
of Beclin-1 ameliorated the toxic effects by enhancing autophagy,
reducing the build-up of α-syn in a transgenic mouse model, and
improving the neuronal deficits induced by α-syn overexpression
(Spencer et al., 2009).

In addition, inhibition of macroautophagy by 3-
methyladenine (3-MA) increases both soluble and insoluble
α-syn levels in non-neuronal cells, and elevates the levels
of endogenous α-syn in rat cortical and ventral midbrain
dopaminergic neurons (Vogiatzi et al., 2008). Similarly,
pharmacological or molecular inhibition of macroautophagy
promotes the accumulation of A53T α-syn oligomers in
neuroblastoma cells (Yu et al., 2009). However, one study
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TABLE 1 | α-Syn aggregates and endocytosis in vitro.

α-Syn Species Cell Type Treatment References

Monomers H19-7 Cells Sung et al., 2001

Fibrils Microglia Zhang et al., 2005

Fibrils Microglia Liu et al., 2007

Fibrils SH-SY5Y, Primary Neurons DN-Dynamin Lee et al., 2008a

Monomers, Fibrils BV-2 Cells Park et al., 2008

Fibrils Neurons, Astrocytes, and Microglia DN-Dynamin Lee et al., 2008b

Monomers BV-2 cells Lipid Raft Inhibitor Park et al., 2009

Oligomers, Conditioned Media MCNSC, Primary Neurons DN-Dynamin Desplats et al., 2009

Conditioned Media SH-SY5Y, Primary Neurons, Astrocytes DN-Dynamin Lee et al., 2010

Fibrils Primary Neurons 4C Wheat Germ Agglutinin (WGA) Volpicelli-Daley et al.,

2011

Oligomers, Exosomes H4 Neuroglioma, Primary Neurons Danzer et al., 2012

Monomers, Oligomers SH-SY5Y, KG1C Oligodendroglial Cells,

Primary Neurons

WGA, Sertraline (Dynamin Inhibitor), DN-Dynamin,

siRNA

Konno et al., 2012

Monomers, Oligomers SH-SY5Y Nedd4 Sugeno et al., 2014

Fibrils SH-SY5Y Aulić et al., 2014

Fibrils Primary Neurons Immunotherapy Tran et al., 2014

Fibrils Primary Neurons α-Syn KO Neurons
Volpicelli-daley et al.,

2014

Monomers, Oligomers, Fibrils Oligodendrocytes Dynasore Reyes et al., 2014

Fibrils MSCs, SH-SY5Y Dynasore, Pitstop Oh et al., 2016

Fibrils Primary Neurons Brahic et al., 2016

Fibrils CAD Cells, Primary Neurons DN-Dynamin Abounit et al., 2016

Fibrils SH-SY5Y, Dopaminergic Neurons Dynasore Samuel et al., 2016

Oligomers, Exosomes

Associated Oligomers

Mixed Glial Cultures Bliederhaeuser et al.,

2016

Fibrils Primary Neuron-Glia Culture Dynasore Sacino et al., 2017

Monomers, Fibrils Primary Neurons Mao et al., 2016

Aggregates from PD brains Primary Neuron-Glia culture Cavaliere et al., 2017

Oligomers, Exosomes

Associated Oligomers

H4 Neuroglioma Cell, CHO Chlorpromazine (Clathrin Inhibitor) Nystatin

(Caveolin Inhibitor) Cytocholasin D

(Macropinocytosis Inhibitor), HSPG-KO Cells

Delenclos et al., 2017

Oligomers, Fibrils Embryonic Cortical Stem Cells, Astrocytes

(75%), Neurons (20%) and Oligodendrocytes

(5%)

Lindström et al., 2017

Fibrils, Oligomers SH-SY5Y, iPSC Flavin et al., 2017

Fibrils Primary Neurons, Astrocytes Loria et al., 2017

Fibrils Primary Neurons Trypan Blue, Heparin Karpowicz et al., 2017

Monomers, Oligomers, Fibrils B103 Cells, Oligodendrocytic MO3.13 Cells

and Murine Microglial BV-2 Cells, Rat Glioma

C6 Cells

Heparin, Chondroitin Sulfate Ihse et al., 2017

examined the relationship between α-syn overexpression and
lysosomal inhibition and found bafilomycin A1, but not 3-
MA, resulted in an accumulation of insoluble α-syn with a
concomitant increase in α-syn puncta over aggregates. This was
modeled in both neuronal cultures and transgenic mice and
the authors concluded that a lysosomal pathway independent
of macroautophagy is likely responsible for the degradation
of insoluble α-syn (Klucken et al., 2012). It has also been
shown that induction of non-neuronal and neuronal cells
with preformed fibrils leads to intracellular α-syn aggregates,

which are poorly degraded by macroautophagy (Tanik et al.,
2013).

Hence, macroautophagic degradation of α-syn may
be dependent on its conformation and post-translational
modifications, although it is still not completely understood
which pathway is preferred by neurons for degrading
oligomeric and fibrillar α-syn species. Oligomeric intermediate
species seem to be susceptible to clearance by CMA and
macroautophagy, whereas mature fibrillar inclusions are not.
Some studies have noted α-syn secretion is enhanced by
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macroautophagic/lysosomal inhibition; this suggests exocytosis
could be a central mechanism for the clearance of α-syn
aggregates (discussed below) (Jang et al., 2010; Danzer et al.,
2012; Lee et al., 2013; Poehler et al., 2014).

Three recent reports have studied the fate of internalized
α-syn fibrils in neuronal cells under physiological conditions
(i.e., non-overexpressed α-syn). In 2017, Sacino et al., showed
that exogenously added α-syn fibrils were progressively degraded
by mixed neuronal-glial cultures with a half-life of 3–5 days.
Lysosomal inhibition in these cells resulted in the accumulation
of α-syn fibrils in vesicles. Another study, using either neuronal
or astrocytic cultures, showed a progressive decrease of full-
length α-syn fibrils over time accompanied by an increase in
cleaved products in the neuronal cultures. Conversely, astrocytes
degraded both full-length and cleaved fragments more efficiently,
suggesting that fibrils degrade more slowly in neuronal cultures
(half-life of 6-9 days) vs. astrocytic cultures (Loria et al.,
2017). In accordance with these results, other studies have
shown minimal degradation of exogenously added α-syn fibrils
in neuronal cultures (Karpowicz et al., 2017; Loria et al.,
2017). Understanding the differences in the clearance of α-syn
aggregates in different types of brain cells will have important
implications for understanding the mechanism of seeding and
spreading of aggregates; especially as these studies support the
hypothesis that astrocytes play a neuroprotective role against the
propagation of α-syn pathology.

INTRACELLULAR INTERACTION WITH
ENDOGENOUS α-SYNUCLEIN

An appealing hypothesis suggests the spreading of α-syn
pathology in PD is a result of permissive templating, whereby
misfolded species of α-syn interact with normal, intracellular α-
syn causing a conformational change. This is consistent with the
mechanisms in prion disorders whereby healthy prion protein
(PrPC) is converted into its misfolded conformer (PrPSc) (Colby
and Prusiner, 2011). The inherent self-propagating nature of
these interactions within and between cells is therefore thought
to underlie the progressive aspect of the PD pathology.

Co-localization of internalized α-syn fibrils and intracellular
α-syn protein has been shown in both neuronal and non-
neuronal cell lines, supporting the idea that exogenous α-syn
fibrils act as a nucleating seed to recruit intracellular α-syn into
larger assemblies (Luk et al., 2009; Waxman and Giasson, 2010;
Volpicelli-Daley et al., 2011). These aggregates stain for markers
relevant to Lewy body pathology, such as α-syn phosphorylated at
the serine 129 position (pSer129) and Thioflavin S (Desplats et al.,
2009; Luk et al., 2009; Volpicelli-Daley et al., 2011). There is now
sufficient evidence to suggest that exogenous α-syn can imprint
its intrinsic structural characteristics onto endogenous α-syn
creating distinct strains of misfolded protein (Bousset et al., 2013;
Watts et al., 2013; Peelaerts et al., 2015). Importantly, intracellular
aggregation does not occur upon exposure to monomeric α-
syn or soluble fibrils (Waxman and Giasson, 2008; Luk et al.,
2009). Furthermore, the finding that α-syn-deficient neurons
are resistant to exogenous aggregates suggests that endogenous

recruitment is imperative for pathology (Volpicelli-Daley et al.,
2011). While numerous studies have described the parameters
involved in seeding between exogenous and intracellular α-syn,
the location of these interactions requires further clarification.

Because endocytosed α-syn fibrils are likely encapsulated in
the lumen of endocytic vesicles and downstream compartments,
there is an obvious question as to how the lumenal protein might
escape the endocytic compartment to interact with intracellular
cytoplasmic α-syn. Propagation by prion-like means predicts
that extracellular α-syn must interact directly with endogenous
protein. One possibility is that misfolded α-syn is able to disrupt
membranes and exit the endocytic pathway, analogous to viral
entry into cells with the aid of an amphipathic protein that
ruptures endocytic vesicles (Wiethoff et al., 2005). The process
can be measured with cytoplasmically expressed galectin-3 (Gal-
3), which relocalizes to ruptured vesicles due to its affinity for
β-galactoside sugars on the lumenal membrane (Paz et al., 2010;
Maier et al., 2012). Using this assay, treatment of mCherry-
Gal-3 expressing cells with fibrillar, but not monomeric α-syn,
caused Gal-3 fluorescence to redistribute from the cytoplasm
to intracellular vesicles, consistent with α-syn-mediated vesicle
rupture (Freeman et al., 2013; Samuel et al., 2016; Flavin et al.,
2017). Co-localized α-syn andmCherry-Gal-3 were detected with
early endosome and lysosomal markers providing a mechanism
by which endocytosed misfolded α-syn can directly interact with
intracellular α-syn in the cytosol after escaping from ruptured
vesicles.

The prevailing evidence indicates extracellular fibrils enter
cells and are subsequently directed to the endo-lysosomal
pathway (Lee et al., 2008a; Apetri et al., 2016; Flavin et al., 2017;
Karpowicz et al., 2017). Exogenous fibrils, labeled with a pH
sensitive dye, were applied to neurons and by four hours over
50% of fibrils were located within acidic vesicles; these levels
rose and were persistent up to 7 days. Further investigation
showed these fibrils also co-localized with the lysosomal marker
Lamp-1 (Karpowicz et al., 2017). Conversely, overexpression
and endogenous expression models have demonstrated co-
localization between PSer129 α-syn and autophagic markers such
as LC3 and p62 following exposure to fibrils (Tanik et al., 2013).
Therefore, in addition to vesicle rupture by endocytosed α-
syn fibrils, another point of interaction between exogenous and
intracellular α-syn may be within vesicles along the autophagic
pathway. Evidently, there are many opportunities for seeding
events to occur and exert their toxic effects on the cell.
Whether the predicted cytosolic or lumenal α-syn interactions
occur independently, in parallel, or in sequence remains to be
determined.

EXPORT AND TRANSFER OF
α-SYNUCLEIN FIBRILS

Conventionally secreted proteins are co-translationally
transported into the endoplasmic reticulum (ER) and trafficked
along the exocytic pathway to the cell surface (Viotti, 2016).
There is general agreement that α-syn is released through an
unconventional secretion pathway (Lee et al., 2005, 2016; Jang
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et al., 2010), which enables proteins lacking a signal peptide to
reach the plasma membrane bypassing the Golgi (Rabouille,
2017). Several studies have identified monomeric and multimeric
α-syn in extracellular vesicles, although there remains debate
regarding the precise species of α-syn contained within these
structures. Furthermore, the source of the secretory organelle
has yet to be identified (Lee et al., 2005; Jang et al., 2010; Danzer
et al., 2011; Brahic et al., 2016).

Two recent studies shed some light on the possible
mechanisms of fibrillar α-syn secretion. In 2016, Lee et al.
identified a secretion pathway where misfolded cytoplasmic
proteins are released into the extracellular space by way of
a cellular stress response (Lee et al., 2016). USP19, an ER-
associated deubiquitylase, acts as a chaperone and escorts the
waste into a newly described export pathway, particularly
when the proteasome becomes overwhelmed (Figure 2). They
found that α-syn, but not tau, was secreted in a USP19-
dependent fashion. More specifically, USP19 mediated the

recruitment of misfolded proteins to Rab9-positive endosomes
prior to secretion. Currently, it is unclear if neurons follow
this mechanism for secretion. Moreover, because substrates in
this pathway must translocate from the cytoplasm into the
ER, it seems unlikely that large aggregates could enter this
secretion pathway. A second study showed that the chaperone
complex Hsc70/DnaJC5 binds to different proteins connected
with neurodegenerative diseases, including tau and α-syn, and
facilitates their removal from neurons (Figure 2; Fontaine et al.,
2016). SNAP-23 has been implicated in this process as it’s
knockdown in HEK293 and neuroblastoma cells decreased
DnaJC5-mediated release of tau and α-syn (Fontaine et al., 2016).
How, and where in the cell, the protein cargos enter this export
pathway is unknown. In addition, the conformation of α-syn
secreted by this pathway has yet to be determined.

Whether aggregated α-syn is secreted by neurons through
any of these mechanisms still needs to be demonstrated. In
addition, the specific compartment used to exit the cell has not

FIGURE 2 | Some pathways have been implicated in the secretion of α-syn protein. ESCRT-mediated import of intracellular α-syn to multivesicular bodies can result in

the excretion of α-syn through exosomal release; although, it should be noted this form of secretion is only associated with monomeric and oligomeric forms of α-syn.

Cytoplasmic α-syn is also recruited to Rab9a-positive vesicles through chaperone-mediated pathways involving USP19 and Hsc70/DnaJC5 leading to exocytosis.

Lastly, intracellular α-syn is secreted through tunneling nanotubules (TNTs) to neighboring cells providing a direct path for the spreading of pathology. When

internalized proteins are not immediately directed to protein degradation systems, they may also be released through exocytosis. This exocytic process can occur

directly from late endosome/multivesicular bodies and, more recently, release from secretory autophagic vesicles has also been described.
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been identified. Organelles like late endosomes/multivesicular
bodies (MVBs), autophagosomes, and amphisomes constitute
attractive candidates for the release of misfolded proteins,
such as α-syn, through exocytosis. These organelles are known
to undergo physiological exocytosis (Ponpuak et al., 2015),
a process that could be enhanced under stressful (lysosomal
inhibition) or pathological conditions (PD genetic risk factors)
(Tsunemi et al., 2014). All possible secretion pathways described
previously suggest a vesicle-derived exocytosis mechanism.
ESCRT-mediated import of ubiquitinated cargo into MVBs, or
the direct uptake of cytosolic cargo into autophagosomes by
selective autophagy, could explain a route of entry for α-syn
fibrils into the lumen of these compartments (Hasegawa et al.,
2011; Sugeno et al., 2014). Note that secretory autophagosomes
may fuse with MVBs to generate amphisomes before fusion
with lysosome or the plasma membrane (Figure 2). On
the other hand, microautophagy, where cargo is imported
into late endosomes and the degradative process occurs in
late endosomes/MVBs, could also mechanistically explain the
presence of α-syn fibrils in these organelles (Sahu et al., 2012;
Tekirdag and Cuervo, 2017).

Some misfolded proteins, including tau, reportedly leave the
cell via vesicular packages called exosomes that are released
by the fusion of MVBs with the plasma membrane (Figure 2;
Saman et al., 2012). However, it has been reported that export
via exosomes tends to favor normal, folded proteins (Lo Cicero
et al., 2015). The exosomal-association of fibrillar α-syn is still
under debate and may depend on the cellular model used as
some groups find little or no association of α-syn with secreted
exosomes (Ejlerskov et al., 2013; Fernandes et al., 2016). Thus far
oligomers, but not fibrils, have been located in exosomes (Danzer
et al., 2012).

Lastly, tunneling nanotubules (TNT) have also been proposed
as a mechanism for α-syn transfer between cells (Figure 2).
TNTs are actin-based membrane channels that connect cells

(Dieriks et al., 2017). Recently, it has been shown that α-syn can
move between cells through TNTs and appears to be directed
to the lysosome in recipient cells (Abounit et al., 2016). TNT
transfer has been observed in primary neurons as well as pericytes
(Abounit et al., 2016; Dieriks et al., 2017).

FINAL REMARKS

Our understanding of α-syn pathobiology has advanced rapidly
in recent years from its widely replicated behavior as a small
unfolded protein in nerve terminals that self-aggregates into
fibrils resembling the pathological assemblies observed in Lewy
bodies. The recognition that these longer structures are not mere
endpoints of a disease process, but intermediate and transferable
agents of the disease, is leading to potential therapies that
were thought unlikely to succeed only a few years ago, such
as α-syn gene silencing and vaccines to clear extracellular α-
syn. Nevertheless, there remain many unresolved questions as
to how α-syn misfolding and propagation is exacerbated by
age-related changes to multifactorial physiological processes,
including immune response, inflammation, oxidative stress,
and protein degradation, which could conceivably be targeted
to mitigate neurodegenerative processes before their clinical
manifestation.
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