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Jolkinolide B (JB) is a bioactive compound isolated from a Chinese herbal medicine that

exerts antitumor activity. However, the anti-lymphoma effect of JB and its mechanism

are yet to be revealed. Because free JB has poor pharmacokinetics and weak antitumor

efficacy, we opted to use black phosphorus quantum dot (BPQD) nanomaterials as a drug

loading platform to synthesize a nano-traditional Chinese medicine (nano-TCM) called

BPQDs@JB. Compared with free JB, Raji cells administrated with BPQDs@JB exhibited

the cell viability of 19.85 ± 1.02%, and the production of intracellular reactive oxygen

species (ROS) was promoted. Likewise, BPQDs@JB was capable of rising the apoptosis

rate of Raji cells to 34.98± 1.76%. In nude mice transplanted tumor model administrated

with BPQDs@JB, the tumor tissue sections administrated with BPQDS@JB achieved a

conspicuous red fluorescence, demonstrating the presence of most ROS production in

the BPQDS@JB. TUNEL achieved a number of positive (brown) nuclei in vivo, revealing

that BPQDS@JB could significantly induce tumor tissue apoptosis. As revealed from the

mentioned results, BPQDs@JB can generate considerable ROS and interfere with the

redox state to inhibit tumor. In brief, BPQDs@JB may be adopted as a treatment option

for lymphoma.

Keywords: black phosphorus quantum dots, Jolkinolide B, apoptosis, reactive oxygen species, lymphoma

INTRODUCTION

Jolkinolide B (JB) is a bioactive compound extracted from Euphorbia fischeriana, which grows
at high altitude and is a traditional Chinese medicine (TCM) with high medicinal value (Yan
et al., 2019). In recent years, research on the antitumor and antiviral effects of JB has gained
increased attention (Gao et al., 2016; Xu et al., 2016). In fact, previous studies have shown that
JB exhibits antitumor effect on numerous tumor cells. For instance, Yan et al. (Gao and Han, 2018)
revealed that JB inhibits the proliferation of non-small cell lung cancer cells by downregulating
the expression of hexokinase 2. JB can induce apoptosis and anti-metastasis of the breast cancer
cell line, MDA-MB-231 (Xu et al., 2013; Sun et al., 2015; Shen et al., 2017). Previously, JB was also
found to induce the apoptosis of the human leukemic cells, HL-60 and THP-1 cells, through the
JAK2/STAT3 pathway (Wang et al., 2013). The above studies suggest that JB can be used to treat
malignant tumors; however, its anti-lymphoma effect has not yet been reported. To provide an
experimental basis for its use in the clinic, we aimed to explore the effect of JB on lymphoma and
its possible mechanism.
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There are some defects in the active ingredient of TCM (e.g.,
poor water solubility, low bioavailability and rapid clearance in
vivo), which limits its clinical application to a certain extent
(Yang et al., 2011). With the emergence of nanotechnology,
however, these problems have been improved. The loading of
TCM into nanocarriers can increase their stability and improve
their water solubility, bioavailability, and distribution in tumor
tissues through the enhanced permeability and retention (EPR)
effect on tumors (Khan et al., 2019). Because of its good
biocompatibility, high specific surface area, and drug loading rate
(Shao et al., 2016), black phosphorus nanoparticle quantum dot
(BPQD) serves as an ideal candidate carrier for drug delivery and
antitumor therapy (Li et al., 2017).

BPQD, an ultra-small derivative of BP nanosheet, was
discovered in 2015 (Zhang et al., 2015). Because P is a key element
in the human body, BPQP can be degraded into non-toxic and
biocompatible phosphorus oxide (phosphate or phosphonate),
which is well tolerated in the human body (Wang et al., 2015).
Guo et al. (2018) confirmed that BPQDs do not exhibit evident
cytotoxicity and can be cleared by the kidney. Furthermore,
Huang et al. (2019) used erythrocyte membrane camouflage
BPQDs combined with doxorubicin and Kirenol as an antitumor
therapy. Shang et al. (2019) used BPQDs to load Hederagenin to
mediate apoptosis and autophagy against breast cancer. Based
on the above results, BPQD is a non-toxic, safe, and efficient
nano-drug delivery platform.

To provide a reference for the clinical treatment of lymphoma
with nano-TCM according to the above findings, we aimed to
construct and synthesize BPQDs@JB nano-TCM and perform a
preliminary assessment to derive the strategy and mechanism of
this anti-lymphoma TCM nanodrug delivery system (Figure 1).

MATERIALS AND METHODS

Materials
The BPQD dispersions were purchased from Yuanduo
Biotechnology (China). JB was purchased from Desite Biology
(China). DMSO and the dialysis membranes (2 kD) were
obtained from Solarbio Science & Technology (China). The
Annexin V-FITC/PI apoptosis detection kit was purchased from
BD Biosciences (China). The ROS test kit was obtained from
Beyotime Biotechnology (China). The CCK-8 cell counting kit
was purchased from Dojindo Chemical Technology (Japan).
Fetal bovine serum (FBS) and RPMI-1,640 were purchased from
Biological Industries (Israel). TdT in situ apoptosis detection
kit was purchased from R&D Systems (China). DAPI was
produced by Servicebio Technology (China). The polycarbonate
porous membrane syringe filter (200 nm) was purchased from
Whatman (USA).

Cell Culture
Human lymphoma Raji cells were purchased from the Advanced
Research Center of Central South University and cultured in
RPMI-1,640 medium containing 10% fetal bovine serum. The
cells were cultured in a cell incubator at 37◦C and 5% CO2.

Preparation of BPQDs@JB
PBS we used was sterilized at high temperature to reduce the
solubility of oxygen in water, i.e., oxygen could be released.
BPQDs (1mg) was dissolved in PBS. JB (1mg) was dissolved
in DMSO. Afterwards, BPQDs@JB was built in a nitrogen-filled
environment. After being stirred at 25◦C for 24 h, free JB was
removed by 2 kD dialysis membrane at ambient temperature.
The samples after dialysis were employed to determine the
concentration of JB, and the samples after being dialysed were
filtered 30 times with a filter under a pore diameter of 200 nm.
After the solution was collected and centrifugated at (10,000 rpm
× 2min), the precipitates were washed with ddH2O 3 times to
synthesize BPQDs@JB. The encapsulation efficiency (EE) and
load efficiency (LE) of JB were calculated (Zhao et al., 2020)
using EE% = Total mass of JB- mass of JB in supernatant/Total
mass of JB × 100%; LE% = Total mass of JB-total mass of JB in
supernatant/(Total mass of JB-total mass of JB in supernatant)+
mass of BPQDs× 100%.

Characterization of BPQDs@JB
The morphology of BPQD was detected with a transmission
electron microscope (TEM, Tecnai G2 F20, USA). The particle
size and zeta potential values of BPQD were respectively
determined with a Zetasizer Nano ZS (Malvern Nano series,
Malvern, UK). The absorbance of BPQDs, JB, and BPQDs@JB
was measured by UV/Vis spectroscopy (ScanDrop, Analytik
Jena, Germany).

BPQDs@JB Release Properties for JB in

vitro
The in vitro drug release experiments were carried out under pH
7.4 and pH 5.0 conditions to determine the ability of BPQDs@JB
to release JB in a pH-dependent manner. Thereafter, 1mL of
BPQDs@JB was added to 20mL of PBS solutions with pH
values of 7.4 and 5.0, respectively, and dialyzed at 37◦C. The
absorbance of JB in the dialysate was measured by a microplate
reader (PerkinElmer EnSpire, USA) (Shang et al., 2019). The
concentration and cumulative release of JB were calculated
complying with the standard curve. The cumulative release
percentage (%) of JB in BPQDs@JB at each time point under
different conditions was calculated, and the cumulative release
curve of time drug was plotted (Zhou et al., 2017).

Cell Viability of BPQDs@JB Assessed by
CCK-8
After Raji cells were inoculated into 96-well plates with 5 × 103

cells per well for 24 h, they were treated with 0, 5, 10, 20, 40, and
80 µmol/L of the free JB drug. After 24 h of incubation, 10 µL of
CCK-8 was added to each well for an additional 4 h of incubation.
Absorbance was then detected at 450 nm. Raji cells were also
treated with PBS, BPQDs, JB, and BPQDs@JB, according to the
above steps, and the cell survival rates were respectively detected.

Apoptosis Assay of BPQDs@JB by Flow
Cytometry in vitro
To evaluate the antitumor effect of BPQDs@JB in vitro, we
employed an Annexin V-FITC/PI apoptosis kit and detected the
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FIGURE 1 | Construction of BPQDs@JB and the schematic diagram of its anti-lymphoma mechanism.

FIGURE 2 | Characterization of BPQDs@JB. (A) TEM images of BPQDs. Scale bar: 10 nm. (B) Hydraulic radius of BPQDs. (C) UV/Vis spectra of BPQDs, JB, and

BPQDs@JB.

apoptosis of Raji cells. Briefly, Raji cells were inoculated into a
6-well plate with 1 × 105 cells/well. Thereafter, the cells were
treated with PBS, BPQDs, JB, and BPQDs@JB for 24 h. The level
of apoptosis was detected by flow cytometry (FACS CantoTM II,
BD, USA).

ROS Assay of BPQDs@JB by Flow
Cytometry in vitro
Raji cells in logarithmic growth phase were inoculated in
6-well plates at the density of 1 × 105 cells/mL. After
being cultured for 12 h, the cells were administrated with
PBS, BPQDs, JB and BPQDs@JB, respectively. After being

cultured for 24 h, the cells were collected. DCFH-DA was
diluted to 10 µmol/L in final concentration with serum-free
RPMI-1,640 medium. Each well was incubated with 100 µL
diluted DCFH-DA, at 37◦C, 5% CO2 incubator for 20min.
The cells were washed gently with serum-free RPMI-1,640
medium 3 times to remove the DCFH-DA that did not enter
the cells (the cells should not be sucked out). Photographs
were taken under an inverted fluorescence microscope. Flow
cytometry was adopted to detect the fluorescence intensity
before and after the action of the drug. The excitation
wavelength was 488 nm, and the emission wavelength was
525 nm (Li et al., 2019).
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FIGURE 3 | Drug LE of BPQDs and the release rate of BPQDs@JB. (A) EE and LE of BPQDs. (B) Cumulative release rates of JB from BPQDs@JB at different

pH-values (7.4 and 5.0). Compared with the BPQDs@JB (pH = 7.4) group, **p < 0.01.

FIGURE 4 | Effect of BPQDs@JB on Raji cell viability in vitro. (A) Viability of Raji cells following treatment with different concentrations of JB (IC50). (B) Raji cell viability

following the administration of PBS, BPQDs, JB, and BPQDs@JB for 24 h. Data are presented as mean ± SD (n = 3).

Establishment of the Tumor-Bearing
Mouse Model of Lymphoma
Six-week-old Balb/c nude mice were purchased from Hunan
SJA Experimental Animal Co., Ltd (China). Each mouse was
subcutaneously injected 6× 107 Raji cells/100µL.When a tumor
volume of 100 mm3 was achieved, this indicated the successful
establishment of the tumor model.

BPQDs@JB Treatment in
Lymphoma-Bearing Mice
After animals were randomly divided into four groups (n = 3),
100 µL of PBS, BPQDs, JB, and BPQDs-JB was injected into the
tail vein of mice every 3 days for a total of four times. Thereafter,
the tumor size of animals were measured every 3 days. On day
21, the animals were killed and their tumors and visceral tissues
(heart, liver, spleen, lung, and kidney) were collected. Tumor
tissues and organs were fixed with 4% formalin and frozen at
−80◦C. The fixed tissues were embedded in paraffin and sliced

TABLE 1 | A table to summarize all data in Figure 4B by putting the respective

numbers.

PBS BPQDs JB BPQDs@JB

Cell viability (%) 97.17 ± 1.68 94.83 ± 2.56 50.08 ± 2.37*** 19.85 ± 1.02****

Compared with the PBS group, ***p < 0.001, ****p < 0.0001.

into sections for H&E staining, immunofluorescent staining, and
immunohistochemical staining.

ROS and TUNEL Assays in vivo
Briefly, paraffin-embedded tissue samples were dewaxed for
antigen recovery. Thereafter, the nuclei of apoptotic cells
were identified with a TDT in situ apoptosis kit. The
morphology of cells was observed and images were captured
with a light microscope. ROS was observed via DCFH-DA
immunofluorescence staining. The nucleus was stained with
DAPI. The images were analyzed and captured with a laser
confocal microscope (LCFM, LSM700, Germany).
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FIGURE 5 | ROS and Apoptosis assessment by flow cytometry in vitro. (A) Flow cytometric detection of ROS level in Raji cells treated with PBS, BPQDs, JB, and

BPQDS@JB for 24 h. (B) Flow cytometric assessment of the level of apoptosis in Raji cells administered PBS, BPQDs, JB, and BPQDS@JB for 24 h. Data are

presented as mean ± SD (n = 3). Compared with the PBS group, **p < 0.01, ****p < 0.0001.

Statistical Analysis
Data were assessed by SPSS 18.0 and expressed as mean ±

SD. Intergroup differences were assessed by One-Way ANOVA,
followed by Tukey’s post-hoc test (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <

0.001, and ∗∗∗∗p < 0.0001).

RESULTS AND DISCUSSION

Preparation and Characterization of
BPQDs@JB Nano-TCM
To prepare the BPQDs@JB nano-TCM, JB was first loaded
into BPQDs to derive BPQDs@JB (Figure 1). Through TEM
imaging, BPQDs and BPQDs@JB were recognized to be
monodispersed (Figure 2A and Figure S1A), the obtained
BPQDs and BPQDs@JB were 12 nm in size on average by
dynamic light scattering (Figure 2B and Figure S1B). Since
BPQDs is negatively charged in water (Tayari et al., 2015). Small
molecule drugs with positive charge are likely to be adsorbed
by BPQDs by electrostatic interaction (Chen et al., 2017). Thus,
the interaction mechanism between BPQDs and JB may be
the electrostatic interaction of charge adsorption. As shown
in Figure S1C, the Zeta potentials of BPQDs and BPQDs@JB
were −37.26 ± 1.7mV, −28.07 ± 1.6mV, respectively. UV/Vis
spectra (Figure 2C) of BPQDs@JB revealed absorption peaks
at 256 and 211 nm, which align with the absorption peaks
of BPQDs and JB, respectively. Therefore, BPQDs@JB was
successfully assembled.

EE and LE of the Drug, and the Release
Rate of BPQDs@JB
As new two-dimensional material, black phosphorus, which
has good biodegradability, could be utilized in drug delivery
(Chen et al., 2017). Compared to BP nanosheets, BPQD is more
attractive for drug delivery systems owing to its smaller size
(Geng et al., 2018). By using BPQD-loaded drugs, we found that
the EE and LE of JB in the BPQDs@JB nano-TCM were 90.3
± 2.1% and 74.6 ± 2.4%, respectively (Figure 3A). Thereafter,
we proceeded to evaluate the drug release characteristics of
BPQDs@JB. As shown in Figure 3B, when BPQDs@JB exhibited
a pH of 5.0, the cumulative release rates of JB at 6, 12, 18, 24, 30,
36, 42, 48, 54, and 60 h were 8.3 ± 2.1%, 13.9 ± 2.3%, 35.2 ±

2.7%, 47.6 ± 2.3%, 64.9 ± 2.3%, 72.6 ± 3.8%, 86.3 ± 1.9%, 93.6
± 3.8%, 94.5 ± 4.2%, 95.2 ± 3.6%, respectively, and at pH 7.4,
the cumulative release rate of JB at 6, 12, 18, 24, 30, 36, 42, 48,
54, and 60 h were 3.9 ± 1.3%, 5.9 ± 1.8%, 8.8 ± 2.0%, 20.5 ±

1.9%, 27.8± 2.6%, 36.5± 1.9%, 45.3± 2.0%, 50.9± 2.1%, 52.1±
3.0%, 52.5 ± 3.1%, respectively. Therefore, the release rate of JB
at pH 5.0 was higher than that at pH 7.4. Moreover, an increase
in cumulative drug release was identified, thereby indicating the
accelerated degradation of BPQDs under acidic conditions (Zhou
et al., 2018). Because the tumor environment is weakly acidic
(Matsumoto et al., 2017), BPQDs@JB is a type of nano-TCM
released in response to pH, which is beneficial for the treatment
of tumor. Generally, the above findings demonstrate that BPQD
is an efficient drug carrier, and an acidic environment enables the
release of JB from BPQDs@JB.
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FIGURE 6 | Antitumor effects of BPQDs@JB in vivo. (A) After intravenous injection of PBS, BPQDS, JB, and BPQDs@JB into the tail vein of nude mice, the

fluorescence signal images of tumor tissues were detected on day 21. (B) Semi-quantitative evaluation of the fluorescence signal of tumor tissue samples in each

group. (C) Changes in tumor volume in the Raji tumor-bearing mouse model during treatment. Data are expressed as mean ± SD (n = 3; *p < 0.05, **p < 0.01).

Effect of BPQDs@JB on Raji Cell Viability
in vitro
Raji cells were isolated and established from Burkitt’s lymphoma
of the left upper jaw in an 11-year-old black boy, i.e., the
origin of B cells (Theofilopoulos et al., 1974). Since Burkitt’s
Lymphoma is considered a highly invasive and malignant non-
Hodgkin’s Lymphoma (Ribrag et al., 2016), Raji cells were taken
to conduct the experimental study. Raji cells were administrated
with BPDs at concentrations of 0, 0.25, 0.5, 1.0, and 2.0 mg/mL
for 24 h, respectively, and the cell viability rate was determined
by CCK-8. As shown in supporting Information Figure S2,
the cell viability rate of Raji cells incubated with a series of
concentrations of BPDs for 24 h, of which the viability rate of Raji
cells administrated with 2.0 mg/mL CCM@MSNs was as high
as 90%. Therefore, BPQDs (concentration of 0.25 mg/ml) were
taken as the follow-up experiment. Then, Raji cells were treated
with different concentrations of JB. According to the cell survival
rate, the IC50 value of JB was ∼20 µmol/L (Figure 4A). Thus,
JB (concentration of 20 µmol/L) for the follow-up experiment.

To compare the survival rate of Raji cells between BPQDs@JB
and free JB, the JB in BPQDs@JB was diluted to 20 µmol/L in
concentration for the follow-up experiment. Thereafter, Raji cells
were respectively treated with PBS, BPQDs, JB, and BPQDs@JB.
As shown in Figure 4B and Table 1, the CCK-8 results revealed
that PBS and BPQDs had no evident toxic effects on Raji cells.
The cell viability of Raji cells administrated with free JB was 50.08
± 2.37%. However, the cell viability of Raji cells administrated
with BPQDs@JB was (19.85± 1.02%). Compared with JB group,
the cell viability of BPQDs@JB group decreased significantly.
Therefore, BPQDs@JB nano-TCMhas a stronger anti-lymphoma
effect than using JB alone.

ROS and Apoptosis Assessment by Flow
Cytometry in vitro
Oxidative stress caused by reactive oxygen species (ROS)
might serve as an important factor in tumor occurrence and
development. Recent studies have shown that excessive ROS
can lead to the apoptosis and necrosis of tumor cells (Wu
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FIGURE 7 | Changes in the level of ROS and the results of the TUNEL assay. (A) After 21 days of administering PBS, BPQDs, JB, and BPQDs@JB into the tail vein of

mice, the level of ROS in the tumor tissue was detected by immunofluorescence. (B) Tumor tissues were assessed at 21 days after intravenous injection of PBS,

BPQDs, JB, and BPQDs@JB via TUNEL assays.

et al., 2019). Ren et al. (2016) revealed that psoralen induces
DNA damage and apoptosis in breast cancer cells by inducing
ROS production. To verify whether JB can kill Raji cells via
ROS production, we sought to determine the effect of PBS,
BPQDs, JB, and BPQDs@JB on Raji cells by flow cytometry. As
shown in Figure 5A and Figure S3A, compared to treatment
with PBS and BPQDs, treatment with the BPQDs@JB nano-
TCM or JB could cause a shift to the right in the histogram,
suggesting that the latter two groups can produce a large amount
of ROS, with BPQDS@JB producingmore ROS than JB. The same
result is shown in Figure S3B, the red fluorescence intensity of
BPQDs@JB was significantly stronger than that of other groups,
revealing that BPQDs@JB can significantly increase ROS in Raji
cells. Flow cytometry was subsequently employed to further
detect the apoptotic effect of PBS, BPQDs, JB, and BPQDs@JB
on Raji cells. As shown in Figure 5B, compared to the PBS
group, the BPQD group did not cause significant apoptosis of Raji
cells. However, after treatment with BPQDs@JB nano-TCM, the

apoptotic rate of Raji cells was 34.98± 1.76%, a value higher than
that achieved following treatment with JB (10.11 ± 1.03%). This
finding indicates that BPQDs@JB nano-TCM could better induce
Raji cell apoptosis than free JB. Therefore, BPQDs@JB nano-
TCM can induce apoptosis of Raji cells via ROS production.

Antitumor Effects of BPQDs@JB in vivo
Herein, we employed the Raji tumor-bearing mouse model
to elucidate the anti-lymphoma effects of BPQDs@JB in vivo.
PBS, BPQDs, JB, and BPQDs@JB were injected into the tail
vein of Raji tumor-bearing mice. On day 21, these nude mice
were observed with a live imager. As shown in Figures 6A,B,
the tumor fluorescence signal intensity of the JB group and
BPQDs@JB group was significantly weaker than that of the PBS
group and BPQDs group. Further, the tumor fluorescence signal
intensity of the BPQDs@JB group was weaker than that of the
other groups. Similarly, as illustrated in Figure 6C, after 21
days of monitoring the changes in tumor volume, BPQDs@JB
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FIGURE 8 | PBS, BPQDs, JB, and BPQDS@JB were injected into the tail vein of nude mice for 21 days. The heart, liver, spleen, lung, and kidney of nude mice were

retrieved for histological imaging. Scale bar: 100µm.

exerted a better anti-lymphoma effect than JB alone. These
findings suggest that BPQDs@JB exhibits an enhanced antitumor
effect in vivo.

Change in ROS Level and the Results of
the TUNEL Assay
imbalance in ROS level in tumor cells can activate the apoptotic
pathway and induce apoptosis (Uthaman et al., 2019). Therefore,
breaking the redox state in tumor cells is an effective strategy

for the treatment of tumors. Presently, this strategy has been

employed to synthesize numerous drugs, which are either
being developed or have entered clinical trials, and exhibit
good anticancer effects (Martin-Cordero et al., 2012; Raza
et al., 2017). As BPQDs@JB nano-TCM produced a large
amount of ROS against lymphoma in vitro, we opted to
further detect the level of ROS produced by BPQDs@JB in
vivo. As shown in Figure 7A, the tumor tissue sections treated
with BPQDS@JB exhibited a Conspicuous red fluorescence.
However, the fluorescence exhibited by sections treated with
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JB was significantly weaker than that exhibited by sections
treated with BPQDS@JB. A slight red fluorescence was also
observed in the PBS group and BPQD group, suggesting that
most ROS production occurred in the BPQDS@JB group.
We proceeded to use the TUNEL method to detect the
level of apoptosis in tumor tissue. As shown in Figure 7B,
the number of positive (brown) nuclei in the BPQDs@JB
group was significantly greater than that in other groups.
Such finding indicates that the results of TUNEL detection in
tumor tissue sections in vivo were consistent with those of
the apoptosis induced by BPQDs@JB in vitro. These results
suggest that BPQDs@JB can produce excessive ROS to inhibit
tumor and interfere with the new strategy of the redox state
against lymphoma.

Safety Evaluation of Important Organs by
BPQDs@JB
BPQD nano-TCM exerted a significant anti-lymphoma effect in
vitro and in vivo. To verify the safety of BPQD nano-TCM in
vivo, we used H&E staining to determine its toxic effect on the
heart, liver, spleen, lung, and kidney. The histological data of the
heart, liver, spleen, lung, and kidney revealed no abnormalities
in the PBS group, BPQD group, JB group, and BPQDs@JB group
(Figure 8). There were no abnormal changes inWBC, HGB, PLT,
ALT, AST, BUN, CRE, CK, and Myo in nude mice treated with
PBS, BPQDs, JB, and BPQDs@JB (Supporting Table 1).
Such findings demonstrate that BPQDs@JB did not
cause any side effects and may serve as a safe and
effective nano-TCM.

CONCLUSIONS

In the present study, we revealed that the newly derived
two-dimensional material, BPQD, exhibit many properties
with a high drug-loading rate, which is similar to an
aircraft carrier, thereby enabling its transport of numerous
drug molecules. The release of JB from BPQDs@JB can be
accelerated in the acidic microenvironment of the tumor.
As a result, BPQDs@JB nano-TCM kills lymphoma cells
by regulating ROS. Because of these characteristics, BPQD
is a non-toxic and efficient drug delivery platform. To
summarize, herein, we revealed the role and potential mechanism
of BPQDs@JB nano-TCM in the treatment of lymphoma.
Hopefully, it can provide a novel idea for the treatment
of lymphoma.
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