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Abstract: Silicane, a hydrogenated monolayer of hexagonal silicon, is a candidate material for future
complementary metal-oxide-semiconductor technology. We determined the phonon-limited mobility
and the velocity-field characteristics for electrons and holes in silicane from first principles, relying
on density functional theory. Transport calculations were performed using a full-band Monte Carlo
scheme. Scattering rates were determined from interpolated electron–phonon matrix elements
determined from density functional perturbation theory. We found that the main source of scattering
for electrons and holes was the ZA phonons. Different cut-off wavelengths ranging from 0.58 nm
to 16 nm were used to study the possible suppression of the out-of-plane acoustic (ZA) phonons.
The low-field mobility of electrons (holes) was obtained as 5 (10) cm2/(Vs) with a long wavelength
ZA phonon cut-off of 16 nm. We showed that higher electron (hole) mobilities of 24 (101) cm2/(Vs)
can be achieved with a cut-off wavelength of 4 nm, while completely suppressing ZA phonons
results in an even higher electron (hole) mobility of 53 (109) cm2/(Vs). Velocity-field characteristics
showed velocity saturation at 3 × 105 V/cm, and negative differential mobility was observed at
larger fields. The silicane mobility was competitive with other two-dimensional materials, such as
transition-metal dichalcogenides or phosphorene, predicted using similar full-band Monte Carlo
calculations. Therefore, silicon in its most extremely scaled form remains a competitive material for
future nanoscale transistor technology, provided scattering with out-of-plane acoustic phonons could
be suppressed.

Keywords: silicane; phonon scattering; mobility; Monte Carlo; DFT; DFPT

1. Introduction

While scaling of complementary metal-oxide-semiconductor (CMOS) technology is facing serious
issues such as mobility degradation, drain-induced barrier lowering, increasing tunneling current
through the gate oxide, and source-to-drain tunneling, two-dimensional (2D) materials are under
investigation as promising candidates to overcome these issues [1]. The high mobility of carriers in
graphene [2] along with the possibility of wafer-scale fabrication [3–6] make graphene a very attractive
material for electronic applications. However, any material to be used as a channel in a performant
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CMOS technology should exhibit not only a high carrier mobility but also a sufficiently large bandgap
(more than 0.4 eV for Ion/Ioff of ~104) to realize a sufficiently low off-current [7,8]. Therefore, despite
having high mobility, associated with its Dirac dispersion, the use of graphene as a channel material is
limited because of the absence of a bandgap.

On the other side, silicene, the silicon analog of graphene, can be considered to be the limit of
an extremely scaled silicon CMOS technology and may be easier to integrate than graphene. Silicene
has attracted a significant amount of attention, especially after the first experimental demonstration
of a metal-oxide-semiconductor field-effect transistor (MOSFET) with a silicene channel [9]. While
silicene shows many resemblances to graphene, one key difference is the presence of buckling of the
crystal, breaking the horizontal mirror symmetry. For potential CMOS application, silicene suffers
from an extremely low phonon-limited mobility, which is almost zero [10], and its negligible bandgap
(~2 meV [11]), resulting in poor performance in both the on- and off-state of a silicene device.

The poor mobility stems from the strong scattering with the out-of-plane acoustic phonon (ZA)
modes, which is permitted at first order by the broken horizontal mirror symmetry. As was shown in
the detailed theoretical study by Fischetti and Vandenberghe [10], the parabolic phonon dispersion
relation, combined with the Dirac dispersion, quenches the theoretical phonon-limited mobility in
free-standing silicene to values as low as 0.01 cm2/(Vs). Note that some more primitive calculations
in previous papers did not effectively account for the ZA phonon coupling and predicted much
higher values [12–14]. Silicene–substrate interaction will somewhat alleviate mobility depression by
suppressing ZA phonon scattering [15,16]. The effect of suppression of ZA phonon scattering can be
crudely approximated by introducing a cut-off frequency. However, with realistic cut-offs, the carrier
mobility in silicene is unlikely to reach a competitive value [10,17].

The absence of a bandgap must be alleviated by inducing a larger bandgap. Several methods
of inducing a bandgap have been investigated, including strain, perpendicular electric fields, and
hydrogenation. The use of tensile and compressive strain [18–20] has been shown to be ineffective
and applying a perpendicular electric field [21,22] requires an excessively high electric field when
applied externally [23]. However, studies based on density functional theory (DFT) have shown that
hydrogenated silicene, called silicane, has a large bandgap, exceeding 2 eV [24–29].

The silicane crystal structure can come in two major configurations, a chair-like and a boat-like
configuration. Stability studies based on total-energy calculations have shown that the chair-like
configuration is more stable [27,28], while Houssa et al. [29] have shown both configurations have a
similar stability. Unfortunately, silicane, similar to silicene, does not have horizontal mirror symmetry,
(as can be seen in Figure 1) and will also suffer from scattering with out-of-plane acoustic phonons.
However, the gapped silicane band structure does not display a Dirac cone and will have less
pronounced backscattering compared to the out-of-plane acoustic phonon scattering in silicene [10],
offering the prospect of a better mobility.

The silicane band structure has been studied previously but a precise theoretical study of its carrier
mobility has not been conducted. The only work on the silicane mobility that we are aware of was
performed by Restrepo et al. [24], who reported a mobility of 464 cm2/(Vs) for electrons, based on the
linearized Boltzmann transport equation. However, this study did not provide detailed information
on the contribution of the different phonon branches, nor did it discuss how the parabolic nature of the
out-of-plane phonon modes was considered. A detailed and precise treatment is very important and a
lack of an accurate treatment has led to an overestimation for the mobility in studies of several other
materials, as discussed by Gaddemane et al. [17]. Moreover, to the best of our knowledge, no work has
been done to estimate the hole mobility in silicane.

In this paper, we studied both the electron and hole mobility in silicane in its chair-like structure.
In Section 3.1, the silicane electronic is determined using the DFT framework. In Section 3.2, the
interaction matrix elements between the carriers and the phonons are calculated and, in Section 3.3,
the matrix elements are used to calculate the phonon scattering rates. In Section 3.4 the Boltzmann
transport equation (BTE) is solved using a full-band Monte Carlo scheme to obtain electron and hole
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mobility. Finally, in Section 3.5, the velocity-field characteristics are investigated, and the average
energy of carriers and their distribution is used to better explain the observed velocity-field behavior.
Comparing the calculated silicane mobility with that of other gapped 2D materials, we conclude that
silicane, i.e., a hydrogen terminated mono-layer of silicon, is a competitive material candidate for future
electronic devices, provided scattering with out-of-plane phonons can be sufficiently suppressed.

2. Computational Methodology and Silicane Structure

2.1. Methodology

The DFT calculations were performed using the QUANTUM ESPRESSO package (QE) [30,31]
using norm-conserving pseudopotentials [32]. We provide the input files in the Supplementary
Materials. A zone-centered Monkhorst-Pack k grid [33] of 24 × 24 × 1 was used to sample the reciprocal
lattice in the self-consistent charge density calculations. A maximum kinetic energy cut-off of 50 Ry
was used for the plane-wave basis set for the psesudo-wavefunctions, while 200 Ry was used for the
charge density and the potentials. Our calculations used H 1s1 and Si 3s23p2 electrons as the valence
electrons. Calculations were performed within the generalized gradient approximation (GGA) of
the Perdew–Burke–Ernzerhof (PBE) [34] form. The structural optimization was performed with a
force convergence-threshold of 2.5 × 10−3 eV/Å and a total energy threshold of 3 × 10−5 eV. A vertical
vacuum space of 20 Å was inserted to minimize the artificial out-of-plane interaction between adjacent
silicane layers.

Phonon calculations were performed using the DFPT method [35], as implemented in QE, with a
12 × 12 × 1 q-grid sampling of the first Brillouin zone (FBZ). The electron (hole) phonon matrix element
for a transition of an electron (hole) from an initial state band i with wave vector k to a final state in
band j with wave vector of k + q, was determined by [36]:

gνi j(k, q) =

√
}

2Mcellων,q

〈
ψ j, k+q

∣∣∣∂VSCF
q, ν

∣∣∣ψi, k
〉

(1)

where h̄ and Mcell are the reduced Planck’s constant and the mass of the unit cell, respectively. ∂VSCF
q, ν

corresponds to the change in the Kohn–Sham potential associated with the phonon mode ν with
frequency ων,q and wave vector q. In contrast to the finite displacement method [37,38], density
functional perturbation theory calculations do not require the use of a supercell to limit the interaction
among neighboring cells. Silicane, a non-polar material, will also be minimally affected by the spurious
interaction among adjacent supercells that was reported by Sohier, et. al. [39] in the computation of
electron–phonon matrix elements for polar 2D materials in the long wavelength regime (q→ 0).

The full-band Monte Carlo calculations required the electronic eigenvalues, phonon
eigenfrequencies, and the electron–phonon interaction matrix elements on fine electron (k) and
phonon (q) grids [14]. Electronic eigenvalues were extracted on a very fine mesh of 150 × 150 × 1 to
provide a good resolution of carriers’ velocity for mobility calculations. However, rather than increasing
the DFPT grid resolution, which is computationally expensive, we used an interpolation technique
using maximally localized Wannier functions [38,40], as implemented by the Electron-phonon Wannier
(EPW) code [41]. Specifically, we interpolated the phonon energies and electron–phonon matrix
elements to a fine 50 × 50 × 1 grid using 10 Wannier functions.

The scattering rates of electrons and holes were then calculated following Fermi golden rule and
accounting for a phonon bath in equilibrium at room temperature (T = 300 K):

1
τνi,k

=
2π
}

∑
q,j

∣∣∣∣g(i j)ν
qk

∣∣∣∣2[Nν,qδ
(
E j,k+q − }ων,q − Ei,k

)
+

(
Nν,q + 1

)
δ
(
E j,k−q + }ων,q − Ei,k

)]
(2)
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where the first and second terms inside the square bracket on the right side of the equation represent
absorption and emission processes, respectively. Nν,q is the phonon occupation number which is
determined by the Bose–Einstein distribution:

Nν,q =

e

}ων,q

kBT + 1


−1

(3)

where kB is the Boltzmann constant and T the temperature.
To obtain the transport properties of electrons and holes, the BTE is solved stochastically using

the full-band Monte Carlo method previously used in Reference [17] to study electronic transport
in phosphorene. The Monte Carlo calculations were performed for intrinsic silicane in the absence
of an electric field to estimate the mobility and in the presence of various uniform electric fields to
obtain the high-field behavior. The mobility was estimated from the diffusion constant to reduce the
statistical fluctuations associated with the carrier velocity at low fields [42], while the velocity-field
characteristics were determined directly from the average carrier velocity in steady state. In our Monte
Carlo study, we considered an ensemble of 500 carriers that evolved in time using a time-step of 0.1 fs.
By inspecting the average velocity of electrons and holes, we determined the transient period for low
electric fields to last 30 ps. Calculations were then continued until a total of 100 ps to gather sufficient
statistical data at steady state. All mobilities and velocities shown were obtained by averaging over the
last 70 ps of the simulation.

2.2. Structure

The chair-like atomic configuration of silicane is shown in Figure 1. Silicane has a buckled
honeycomb structure composed of Si atoms accompanied by H atoms alternatingly on the top and
bottom. Hydrogenation of the Si atoms changes the band hybridization of Si atoms from a sp2–sp3

hybrid in silicene to pure sp3 in silicane, which makes the Si hybridization strongly resemble the one in
bulk Si. The extracted structural and electronic parameters of silicane are listed in Table 1, which are in
good agreement with earlier works [25,26]. The lattice constant of silicane was obtained as 3.88 Å which
is slightly larger than the lattice constant of silicene (3.87 Å) and also the similar distance between Si
atoms in the <111> direction of Si bulk (3.867 Å). The buckling height was 0.715 Å, compared to only
~0.44 Å [43] in silicene and close to the buckling height along the <111> direction of bulk Si (0.72 Å).
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3. Results and Discussions 

Figure 1. (a) Top view and (b) cross-view of the silicane structure; (c) reciprocal lattice of silicane in
which b1 and b2 represent reciprocal lattice vectors and Γ, K, and M are the high symmetry points of
the first Brillouin zone (FBZ).
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Table 1. Silicane characteristics.

Parameter This Work [26] [25]

Lattice constant (Å) 3.887 3.84 3.889
Si–Si bond (Å) 2.44 2.34 2.358
Si–H bond (Å) 1.502 1.51 1.501

Buckling height ∆ (Å) 0.715 0.74 0.719
me,x (m0) 0.13 0.12 0.123
me,y (m0) 3.5 3.79 3.23
mlh,x (m0) 0.12 0.13 0.151
mlh,y (m0) 0.12 - 0.142
mhh,x (m0) 0.57 0.52 0.573
mhh,y (m0) 0.58 - 0.603

Indirect gap (eV) 2.19 - 2.19
Direct gap (eV) 2.335 - 2.33

3. Results and Discussions

3.1. Electronic Band Structure and Phonon Dispersion

Figure 2 shows the calculated band structure of silicane. A Γ–M indirect gap measuring 2.19 eV
was obtained which was 0.145 eV lower than its direct bandgap at Γ. To get a better overview of the
energy landscape, the first conduction band and the light hole and heavy hole band energies are plotted
as a function of the wave vector in the entire FBZ in Figure 2b–d. The conduction-band minimum and
valence-band maximum were found at the M and Γ points, respectively.

The ellipsoidal shape of the equi-energy contours of the conduction band implies an anisotropic

effective mass of the electrons near the minimum of the band
(
M∗x(y) ∝ (∂2E/∂k2

x(y))
−1

)
. The effective

mass of electrons was ~27 times higher along the zigzag (y) direction (M→Γ) compared to the effective
mass along the armchair (x) direction (M→K), as denoted in Table 1. The hole effective mass, on the
other hand, is the same along the x and y directions because of the rotational symmetry at Γ, the location
of the valence band maximum.
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the FBZ. (b–d) Respectively, conduction, light hole, and heavy holes valence band energies of silicane
in the FBZ.
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Figure 3 illustrates the silicane phonon dispersion along high symmetry points of the FBZ. A total
of 12 phonon branches, associated with the four atoms in the unit cell, are distinguished. All phonon
energies were positive, as required for material stability. The ZA phonon had a parabolic relation
near the Γ point (ω = bq2 where b = 2.47 × 10−7 m2/s), as is always the case in free-standing 2D
materials [10,44]. The dispersion of the two remaining acoustic modes, LA and TA, was linear near the
Γ point with sound velocities vTA = 5.5× 103 cm/s and vLA = 8.9× 103 cm/s.Materials 2019, 12, x FOR PEER REVIEW 6 of 14 
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Figure 3. The calculated phonon dispersion of silicane along high symmetry directions of the FBZ.
Note the parabolic dispersion of the out-of-plane phonon mode near the Γ point. The vertical axis was
broken to capture the two high-energy phonon branches which were associated with the movement of
the hydrogen atoms.

Table 2 indicates the phonon energies of the 12 phonon branches at the high symmetry points of
the first Brillouin zone of silicane. Among the 12 phonon branches, the two phonons with very large
energy (~262 meV) were associated with the movement of the hydrogen atoms and were expected to
be of minimal importance for electronic transport.

Table 2. Silicane phonon energies (meV) at Γ, K, and M.

Phonon Branch Number Γ K M

1 0 13.8 10.8
2 0 13.8 13.8
3 0 24.0 18.4
4 47.5 47.0 50.5
5 60.5 47.0 50.7
6 60.5 57.0 56.6
7 63.1 59.0 60.0
8 63.1 81.9 76.8
9 89.3 81.9 87.7
10 89.3 92.5 91.0
11 262.5 262.1 262.0
12 264.3 262.1 262.4

3.2. Interaction Matrix Elements

In low-field calculations of electronic transport, only the first conduction band will participate in
conduction due to the large energy difference among the minima of the first two conduction bands
(~1.5 eV). On the other hand, both of the top valence bands (i.e., light hole and heavy hole bands), which
are degenerate at Γ, will participate in hole conduction. To better understand the scattering mechanisms,
Figure 4 plots the magnitude of the electron–phonon interaction matrix elements for scattering from an
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electron placed at the conduction band minimum, i.e., the M point, k = π/a
(
0, 2/

√
3
)
, as a function of

phonon wave vector, q of the final state in the same band. Also, a schematic of the inter-valley scattering
mechanisms is depicted in Figure 5. Analysis of the matrix elements shows that the main scattering
mechanism appears to be intra-valley scattering (q = 0) and the inter-valley scattering between similar
valleys from M to M’ and M” (q = π/a(±1, ±1/

√
3)). The inter-valley scattering mechanism from M

to Γ (q ∼ π/a(0, ±2/
√

3)) shows smaller matrix elements and will not significantly contribute to
the scattering rate.
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Figure 5. Schematic of possible inter-valley scattering mechanisms for electrons placed at conduction
band minimum (M point).

Figure 6 shows the hole–phonon interaction matrix elements as a function of q over the FBZ for
the holes placed at the valence band maximum (k = 0). It should be noted that due to the degeneracy
of the LH and HH bands at the Γ point, the band index of the initial state cannot be unambiguously
determined and distinguishing inter-band from intra-band scattering is not meaningful for holes
located at the valence band maximum. Therefore, for the holes at valence band maximum, an averaged

g is defined as gνi (k = 0, q) =

√(
gνLH,i(k = 0, q)

)2
+

(
gνHH,i(k = 0, q)

)2
where i is the index of the

final state, either in the 1st hole band (LH) or the 2nd hole band (HH). Figure 6 shows that there will be
significant intra-valley scattering at Γ as well as inter-valley Γ–M and Γ–K scattering. However, at low
fields the intra-valley scattering in the Γ point will dominate since Γ–M and Γ–K scattering requires
much higher hole energy, which is not available at low fields.



Materials 2019, 12, 2935 8 of 15

Materials 2019, 12, x FOR PEER REVIEW 8 of 14 

 

 
Figure 6. Hole–phonon interaction matrix elements in units of eV for (a) light hole valence band 
(lower one of the two top valence bands) and (b) heavy hole valence band for different phonon 
branches. The hole initial state k was assumed as the valence band maximum (Γ point). 

3.3. Scattering Rates 

Like in all free-standing 2D materials, the scattering rates in silicane diverge as mandated by the 
Mermin–Wagner theorem [10,45]. The divergence stems from the diverging population of the out-of-
plane phonons (ZA) which have a parabolic dispersion at long wavelengths. To maintain 2D material 
structural stability, there will be physical mechanisms that avoid the phonon population divergence. 
For example, Geim and Novoselov [3] proposed that finite grain sizes and wrinkles could provide 
such a mechanism but this mechanism of avoiding the divergence is not expected to dramatically 
affect mobility calculations. Another mechanism that will avoid the divergence is related to the 
interaction of the 2D material with a substrate. In this case, the hybridization of the ZA phonons with 
the Rayleigh waves of the substrate result in a gapped and broadened dispersion of the ZA phonons 
as studied by Amorim and Guinea [46] and also Ong and Pop [47]. 

To account for possible different mechanisms avoiding ZA phonon divergence, we adopted a 
crude simplification and calculated scattering rates assuming complete suppression of the ZA 
phonons with wavelengths higher than a specific cut-off wavelength. The smallest cut-off 
wavelengths correspond to a very optimistic scenario where all scattering with ZA phonons is 
suppressed. A more precise treatment of the ZA phonon/substrate interaction, beyond the scope of 
our current study, is required to determine how close silicane can come to this limit of “ignoring” 
scattering due to the ZA phonons. 

Figure 7 shows the total scattering rates of electrons and holes in silicane, for each of the phonon 
branches, at room temperature (T = 300 K) for the cut-off wavelength of 16 nm for the ZA phonons. 
The magnitude of the wavevector associated with this wavelength coincides with the magnitude of 
the first EPW phonon grid wavevector after Γ: q = 4𝜋/√3𝑎 × 1/50. As expected, Figure 7 shows that 
the acoustic modes, especially the ZA phonon modes, have the largest scattering rates for both 
electrons and holes. The scattering rate with ZA phonons was almost two orders of magnitude higher 
than the others and its large magnitude stemmed from the parabolic ZA phonon dispersion. 
Specifically, the parabolic dispersion, resulting in small phonon energies near the Γ point yielded 

Figure 6. Hole–phonon interaction matrix elements in units of eV for (a) light hole valence band (lower
one of the two top valence bands) and (b) heavy hole valence band for different phonon branches. The
hole initial state k was assumed as the valence band maximum (Γ point).

3.3. Scattering Rates

Like in all free-standing 2D materials, the scattering rates in silicane diverge as mandated by
the Mermin–Wagner theorem [10,45]. The divergence stems from the diverging population of the
out-of-plane phonons (ZA) which have a parabolic dispersion at long wavelengths. To maintain 2D
material structural stability, there will be physical mechanisms that avoid the phonon population
divergence. For example, Geim and Novoselov [3] proposed that finite grain sizes and wrinkles
could provide such a mechanism but this mechanism of avoiding the divergence is not expected to
dramatically affect mobility calculations. Another mechanism that will avoid the divergence is related
to the interaction of the 2D material with a substrate. In this case, the hybridization of the ZA phonons
with the Rayleigh waves of the substrate result in a gapped and broadened dispersion of the ZA
phonons as studied by Amorim and Guinea [46] and also Ong and Pop [47].

To account for possible different mechanisms avoiding ZA phonon divergence, we adopted a crude
simplification and calculated scattering rates assuming complete suppression of the ZA phonons with
wavelengths higher than a specific cut-off wavelength. The smallest cut-off wavelengths correspond
to a very optimistic scenario where all scattering with ZA phonons is suppressed. A more precise
treatment of the ZA phonon/substrate interaction, beyond the scope of our current study, is required to
determine how close silicane can come to this limit of “ignoring” scattering due to the ZA phonons.

Figure 7 shows the total scattering rates of electrons and holes in silicane, for each of the phonon
branches, at room temperature (T = 300 K) for the cut-off wavelength of 16 nm for the ZA phonons.
The magnitude of the wavevector associated with this wavelength coincides with the magnitude of the
first EPW phonon grid wavevector after Γ: q = 4π/

√
3a× 1/50. As expected, Figure 7 shows that the

acoustic modes, especially the ZA phonon modes, have the largest scattering rates for both electrons
and holes. The scattering rate with ZA phonons was almost two orders of magnitude higher than
the others and its large magnitude stemmed from the parabolic ZA phonon dispersion. Specifically,
the parabolic dispersion, resulting in small phonon energies near the Γ point yielded huge scattering
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rates, in agreement with Equations (2) and (3). Higher cut-off wavelengths resulted in higher ZA
phonon scattering rates while lower ZA phonon scattering rates were observed for lower cut-offs.
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Figure 7. The scattering rates of (a) electrons and (b) holes in silicane which were calculated at room
temperature with a cut-off wavelength of 16 nm. The zero-energy in electron/hole scattering rates shows
conduction band minimum and valence band maximum. Note that the 12th phonon branch scattering
rates for electrons and holes were less than 1011 s−1 and, thus, almost non-visible in these plots.

The step-like increases in the optical phonon scattering rates of electrons and holes observed in
Figure 7 can be attributed to the onset of phonon emission when the electron energy exceeded the
phonon energy of each optical branch. An additional sharp step in the electron–phonon scattering rates,
caused by the onset of inter-valley scattering has been reported in MoS2 and WS2 [14,48] phosphorene.
In silicane, such a step was not observed thanks to the smaller inter-valley M–Γ scattering matrix
elements, when compared to strong intra-valley scattering in the M valley and inter-valley scattering
between the M, M’, and M” valleys.

3.4. Mobility Calculations

Performing diffusion-constant Monte Carlo calculations, we obtained the low-field mobility values
for electrons and holes for four different cut-off wavelengths of 16, 1, 4, and 0.5 nm, as shown in Table 3.
The 0.58 nm cut-off wavelength represents a wave vector magnitude equal to the first Brillouin zone
edge (q = 4π/3a where a is the silicane lattice constant) and, thus, no scattering at all due to the ZA
phonons which were taken into account. In this case, the highest mobility for electrons was 53 cm2/(Vs)
and for the holes, 109 cm2/(Vs). Mobility values for the armchair and zigzag direction were identical
because of the 120◦ rotational symmetry in silicane. The calculated electron mobility was significantly
lower than the 1290 cm2/Vs [49] found in silicene when neglecting the scattering with the ZA phonons.

Inter-valley transitions from M to M’ and M” require phonons with a wave vector of magnitude
q ≈ 2π/

√
3a, or equivalently, a wavelength of around 0.67 nm. Thus, with a cut-off wavelength of

1 nm, M–M’–M” scattering processes were allowed for electrons and a lower electron mobility was
obtained. No change in hole mobility was observed since there was only intra-valley scattering around
the Γ point. For a 4 nm wavelength, intra-valley scattering processes were allowed for electrons which
resulted in a lower mobility. This reduction in mobility of both electrons and holes will continue with
increasing cut-off wavelengths, as shown up to 16 nm.

Table 3. Phonon-limited electron and hole mobilities in silicane at room temperature (T = 300 K) for
different cut-off wavelengths.

Cut-OffWavelength (nm) µe (cm2V-1s-1) µh (cm2V-1s-1)

0.58 53 109
1 31 109
4 24 101
16 5 10
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3.5. Velocity Field Calculations

Next, we calculated the velocity of electrons and holes under the application of an electric field and
the results are presented in Figure 8. The slope of the velocity-field characteristics (Figure 8a,b) at low
fields for both electrons and holes matched well with the mobility obtained from the calculated diffusion
constant. At higher fields, the velocity-field characteristics were no longer linear. The deterioration
of the slope for electrons and holes can be understood from Figure 8c,d, which shows that average
energy of the electrons and holes increases rapidly beyond a critical applied electric field of about 2 ×
105 V/cm. As the average energy increases significantly, electrons gained enough energy to scatter to
the Γ valley, decreasing the mobility at high fields.

Figure 9 shows the electron and hole distributions in k-space at the final step of our Monte Carlo
run to illustrate the impact of the electric field. Figure 9a shows that, at low fields, electrons were
confined to the conduction-band maximum at the M point. However, at higher electric fields, electrons
were no longer confined around the M point and occupied states with reduced velocity. This resulted
in velocity saturation at a field of 3 × 105 V/cm and a negative differential mobility for fields exceeding
4 × 105 V/cm.
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Figure 8. Velocity-field characteristics of (a) electrons and (b) holes. The average energy-field of
(c) electrons and (d) holes in silicane calculated using the Monte Carlo method at room temperature
(T = 300 K). Velocity saturation was observed at 3 × 105 V/cm and a negative slope of velocity-field
was observed for fields exceeding 4 × 105 V/cm.

For holes, Figure 9b shows the occupation near the valence band maximum at the Γ-point at low
fields. Increasing the electric field resulted in the scattering of holes to the M point where the valence
bands were almost flat. The flat-band regions featured extremely low velocities (v ∝ ∂E/∂k) which in
turn resulted in velocity-field saturation at a field measuring 3 × 105 V/cm and finally into negative
differential mobility for fields exceeding 4 × 105 V/cm. No Γ–K scattering of holes was observed up to
fields of 5 × 105 V/cm since scattering to the K point required an even higher hole energy than available
at these electric fields.
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Figure 9. Distribution of (a,c) electrons and (b,d) holes in (a,b) low electric fields (Efield = 103 V/cm) and
(c,d) high electric fields (Efield = 5 × 105 V/cm) in the FBZ of silicane at room temperature (T = 300 K).
It can be seen at low electric fields that electrons (holes) were confined at the M (Γ) valley. Increasing
electric fields resulted in the scattering of electrons from the M to the Γ valley and also resulted in the
occupation of higher energy states. For holes, increasing the electric fields would increase occupation
towards the M point.

3.6. Discussion

To assess the prospect of silicane for future electronic devices, we compared the computed silicane
mobility with the mobility of other candidate semiconductor device channel materials. Phosphorene
electron (hole) mobility was predicted as low as 10 (3) cm2/Vs and 21 (19) cm2/Vs in the zigzag
and armchair direction, respectively [17]. Electron (hole) mobilities of MoSe2 were predicted as
25 (90) cm2/(Vs) [48]. Monolayer MoS2 had a higher predicted electron mobility of 130 cm2/(Vs) [14]
and 150 cm2/(Vs) [50] and hole mobility of 270 cm2/(Vs) [48] and might be a better candidate for
electronic devices. An electron mobility of 410 cm2/(Vs) was also reported in Reference [51], although
this relatively higher mobility might come from their assumption that electron–phonon matrix elements
are independent of the initial electron wave vector, reducing the accuracy of their model. Calculated
electron (hole) mobilities for the transition-metal dichalcogenides (TMDs) WSe2 and WS2 were reported
as 30 (270) cm2/Vs and 320 (540) cm2/Vs [48], respectively.

On the other hand, electron (hole) mobility of bulk Si is known to be 1450 (450) cm2/Vs [52].
However, the mobility of bulk Si is known to strongly reduce with decreasing Si layer thickness [53],
e.g., in 1.5 nm Si layers, phonon-limited electron mobility drops to less than 550 cm2/Vs and, when
accounting for surface roughness scattering, further reduces to 300 cm2/Vs under a transverse field of
104 V/cm. An even more dramatic reduction in silicon mobility is expected when Si layer thickness
becomes even smaller. At the atomic scale, silicene can be viewed as one possible extreme limit of
silicon scaling, but as mentioned in the introduction, the issue with the vanishing bandgap can be
addressed by hydrogenation which results in silicane. The calculated carrier mobility of silicane
provides a fairly good estimate of the upper limit of extremely scaled Si.

Finally, it should be noted that PBE underestimates the electronic bandgap and effective masses.
More advanced DFT approaches addressing these issues, such as hybrid functionals, are not currently
implemented in EPW. For example, Poncé et al. [54] showed that the electron (hole) mobility in silicon
will change by selecting different exchange correlation functionals or by including spin-orbit coupling.
Therefore, despite our efforts to obtain maximal accuracy, some uncertainty will remain concerning the
error of our final results. This error is in addition to all physical effects introduced by unaccounted
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physical mechanisms (e.g., defects, doping, substrate effect on band energies, and also additional
possible scattering processes due to the substrate).

4. Conclusions

The silicane bandgap was determined to be 2.19 eV with a valence band maximum and a
conduction band minimum at the Γ and M points, respectively. Phonon calculations, including phonon
energies, and the interaction of electrons and holes with phonons were performed using density
functional perturbation theory. We calculated scattering rates for both electrons and holes, and showed
that the acoustic branches had the largest scattering rates. In particular, the ZA phonon branch, with
its parabolic phonon dispersion near the Γ point, had a scattering rate exceeding all other scattering
rates by at least two orders of magnitude. Different cut-off wavelengths ranging from 0.58 nm to 16 nm
were used to investigate the upper limit of mobility when ZA phonon scattering could be suppressed
at different levels.

We determined the silicane mobility and velocity-field characteristics using the Monte Carlo
method. The electron and hole mobilities were found to be 5 cm2/(Vs) and 10 cm2/(Vs) for a cut-off

wavelength of 16 nm. We showed that providing a cut-off wavelength of 4 nm increased electron
mobility to 24 cm2/(Vs) and hole mobility to 101 cm2/(Vs), while complete supersession of ZA resulted
in an even higher mobility of 53 cm2/(Vs) for electrons and 109 cm2/(Vs) for holes.

Finally, the impact of the electric field on electron and hole transport was studied, showing that
the velocity starts to saturate at a field of 3 × 105 V/cm and features negative differential mobility for
fields exceeding 4 × 105 V/cm, for both electrons and holes. This phenomenon was consistent with the
average energy and the distribution of the Monte Carlo ensemble.

The mobility values we obtained for silicane are competitive with computed values found in the
literature for other 2D materials such as phosphorene and some of the TMDs. Silicane, i.e., hydrogen
passivated <111> silicon slab scaled to its monolayer limit, can be thought of as the ultimate limit of
silicon scaling. Given the competitive mobilities, we conclude that even at the most extreme scaling,
silicon can still be considered as a promising material for future CMOS technology.
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