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1  | INTRODUC TION

The Korla fragrant pear is produced in the south of Xinjiang (Wang, 
Sun, Dong, Zhang, & Niu, 2014) and is one of the most important 
export fruits from China. Consumer expectations for Korla fragrant 
pear quality have been steadily increasing over the last decades. 
The Korla fragrant pear should be nutritious and also should have 
appropriate texture and taste to meet consumer demands. Soluble 

solids content (SSC) is one of the most important internal proper-
ties because it is a key parameter for determining the overall phys-
ical quality and flavor of the pear (Lan, 2017; Nicolaïa et al., 2008; 
Wang et al., 2014), and it also could provide valuable information for 
commercial decision-making (Paz, Sánchez, Pérez-Marín, Guerrero, 
& Garrido-Varo, 2009; Peiris, Dull, Leffler, & Kays, 1999). However, 
traditionally methods for SSC measurement are mostly destruc-
tive(Wang, Zhang, & Ma, 2009), so they just can be applied to small 
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Abstract
The detection of soluble solid content in Korla fragrant pear is a destructive and 
time-consuming endeavor. In effort to remedy this, a nondestructive testing method 
based on electrical properties and artificial neural network was established in this 
study. Specifically, variations of electrical properties (e.g., equivalent parallel ca-
pacitance, quality factor, loss factor, equivalent parallel resistance, complex imped-
ance, and equivalent parallel inductance) of Korla fragrant pears with accumulated 
temperature were tested using a workbench developed by ourselves. After that the 
characteristic variables of electrical properties were constructed by principal com-
ponent analysis (PCA). In addition, three models were constructed to predict SSC in 
Korla fragrant pears based on the characteristic variables: general regression neural 
network (GRNN), back-propagation neural network (BPNN), and adaptive network 
fuzzy inference system (ANFIS). The results indicated that the GRNN model has the 
best prediction effects of SSC (R2 = 0.9743, RMSE = 0.2584), superior to that of the 
BPNN and ANFIS models. Results facilitate a successful, alternative application for 
rapid assessment of SSC of the maturation stage Korla fragrant pear.
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groups of samples, and are not suitable for application in on-line pre-
diction (Tian, Li, Wang, Fan, & Huang, 2018). Hence, nondestructive 
sensing of internal SSC in fruit is of great value.

Recently, many studies have reported on multiple nondestructive 
testing techniques. The techniques based on the electrical properties 
of fruits and vegetables have attracted widespread attention for the 
simple and fast operation of the method and its high sensitivity to fruit 
and vegetable quality. Ates, Ozen, and Carlak (2017) tested the dielec-
tric properties of apples and potatoes using a vector network analyzer 
(VNA) under the microwave frequency and found that the freshness 
and degree of aging among the tested foods can be characterized by 
electrical parameters. Tang, Du, and Zhang (2012) explored the rela-
tions of the quality parameters of nectarines with complex impedance, 
equivalent parallel inductance, and equivalent parallel capacitance 
under the single frequency of 1MHz and constructed a feasible and 
effective quality index prediction model. Nyanjage, Wainwright, and 
Bishop (2001) studied the internal and external epicarp qualities of 
mangoes after thermal treatment and storage at different tempera-
tures and found that electrical impedance can characterize phys-
iological changes of the fruit. Cortes et al. (2015) analyzed complex 
impedance during the normal deterioration process of pitayas by using 
a self-made double-needle probe and found that electrical parameters 
can be applied to evaluate the aging process. These studies demon-
strate that electrical parameters can reflect internal quality changes 
of fruits and vegetables without causing damage to the food. During 
the growth period of pears, abundant water and electrolytes are con-
centrated in the fruit. Microscopically, the spatial distribution of many 
charged particles may change with mutual conversion between sub-
stances and energies during the maturation process, thus influencing 
the macroscopic electrical characteristics of the fruits (Enrico, Aldo, 
Rudi, Enrico, & Marco, 2013). These results provide the foundations for 
developing and applying nondestructive tests of SCC in Korla fragrant 
pears based on electrical properties.

Nelson, Trabelsi, and Kays (2006) have studied the electrical 
properties of section tissues and correlations of physiological indices 
of honeydew melon and found a strong linear correlation between 
electrical properties and SSC. Unfortunately, this method was not 
overly satisfying when applied to other fruit. No significant linear 
relations between SSC and electrical properties have been found 
in peaches (Guo & Chen, 2010), apples (Guo, Zhu, Yue, Liu, & Liu, 
2011), Dangshansu pears (Guo, Fang, Dong, & Wang, 2015), Red 
Bartlett pears (Wang et al., 2009), or other fruits. For this reason, 
Guo, Shang, Wang, and Zhu (2013) deduced that the traditional lin-
ear fitting method might be inapplicable to the prediction of SSC in 
fruits. Moreover, the relationship between the electrical properties 
and SSC of Dangshansu pears (Guo, Fang, Liu, & Wang, 2015) during 
the maturation period was discussed through nonlinear models, such 
as extreme learning machines (ELM) and GRNN. The prediction re-
sults were compared with results of linear models like the multiple 
linear regression models and the partial least squares regression 
method, and it was found that the artificial neural network has the 
best prediction performances. Shang, Gu, and Guo (2015) tested the 
dielectric properties of nectarines and predicted SSC by using neural 

network models (e.g., support vector machine (SVM) and ELM) and 
linear models (partial least squares) and also found that neural net-
work achieved better prediction accuracy. These studies all demon-
strate that it is feasible to test and predict fruit quality by combining 
electrical properties and artificial neural networks. However, to our 
knowledge, no attempt has been made to predict the SSC of Korla 
fragrant pears during ripening based on measurement of electrical 
properties and artificial neural network.

The objective of the present study was to investigate the electri-
cal properties of Korla fragrant pears and develop a artificial neural 
network model for nondestructive prediction of SSC. Specific aims 
are (a) to tested electrical properties of Korla fragrant pears based 
on a self-made workbench; (b) to used principal component analysis 
(PCA) construct the characteristic variables of electrical properties; 
(c) to constructed the prediction models of SSC in Korla fragrant 
pears based on the characteristic variables: general regression neu-
ral network (GRNN), back-propagation neural network (BPNN), and 
adaptive network fuzzy inference system (ANFIS); and (d) to deter-
mine the optimal artificial neural network model for nondestructive 
prediction of SSC.

2  | MATERIAL S AND METHODS

2.1 | Test materials

Samples of Korla fragrant pear were collected from the conventional 
management pear garden in the Alaer City. This is a high-quality 
production area of South Xinjiang and the pear trees were twelve 
years of age. Because the previous study of the research group 
found that there is a close relationship between SSC and accumu-
lated temperature (Lan, 2017), that during the maturation stage of 
Korla fragrant pears the accumulated temperature after blossom is 
lower than 3,000°C and SSC in the Korla fragrant pears is stable. 
When the accumulated temperature reaches 3,843.5°C, the Korla 
fragrant pear reached the end of the maturity stage. Based on this, 
as shown in Figure 1, all samples in this work were picked up in the 
accumulated temperature lasted from 3,026.50°C after the blossom 
to 3,843.50°C. (data source: Meteorological Station of Alaer City; 
corresponding time: August 23–October 2). This accumulated tem-
perature range covers the maturation stage of Korla fragrant pears. 
Every day, 30 Korla fragrant pears with carpopodium of similar fruit 
size and color and with no damage or infection were picked in dif-
ferent trees and in different canopy layers to get representative 
samples which contain a wider range of growth conditions. These 
samples were processed simply to measure the electrical properties 
and SSC directly. Then repeat this step the next day.

2.2 | Test methods

The electrical properties of the samples were tested by the self-
made testing system in Figure 2. The LCR (inductance, capacitance, 
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resistance) testing bridge was pre-heated for one hour before use. 
Subsequently, all electrical properties were set zero to reduce 
error. Electrodes of the upper parallel-plate were adjusted slightly 
by a hand-wheel to ensure that the electrodes were in close con-
tact with two relative points on the surface equator region of the 
pears. However, pears are ellipsoid in shape and air in the space be-
tween the electrodes and the pear surface is difficult to eliminate. 
Moreover, air can influence test results significantly. Therefore, 
conducting resin was coated on the contact surface between the 
electrodes and pears to eliminate air space completely. Under these 
conditions, the pear samples were clamped between copper polar 
plates with a diameter of 10 mm by using 0.5 N tightening force. The 
polar plates were connected with external mechanical structures by 
insulating rods and then put in a shielding case with the pears to 
measure electrical properties, aiming to prevent errors caused by 
external electromagnetic interference. Before the measurement, 
wax or impurities on the surface of the pears was cleaned by dis-
tilled water and put static in a constant-temperature (25°C) box for 
one hour. Equivalent parallel inductance, quality factor, equivalent 
parallel capacitance, loss factor, equivalent parallel resistance, and 
complex impedance were tested under the voltage of 100 mV and 
the frequency of 1 kHz. Pears were also peeled and the juice was 
collected to test SSC with a portable refractometer (Lan et al., 2015). 
Mean results were collected after multiple measurements and regis-
tered as a percentage value.

2.3 | Data analysis and processing techniques

2.3.1 | General regression neural network

General regression neural network (GRNN) is a radial basis function 
(RBF) neural network with a highly parallel structure that was de-
veloped by Specht (1991). It can approach any function based on 

nonlinear regression. GRNN has a simple network structure, and it is 
closely related to training data. As a feedforward network, GRNN is 
constructed based on training data of a fixed structure and configu-
ration. Different from the traditional neural network, it is easier to 
optimize parameters of GRNN, without allocation of initial weights. 
In addition, GRNN adopts single-pass learning rather than back-
propagation and avoids iterative training. Finally, GRNN converges 
at the optimized regression surface with the most sample quantity. 
It also achieves good effect under missing and unstable data due to 
the high error tolerance and robustness.

2.3.2 | Back-propagation neural network (BPNN)

In the back-propagation neural network, signals were input through 
the input layer, calculated in the hidden layer and outputted from the 
output layer. Next, output signals were compared with the expected 
output value to calculate the corresponding errors. The network 
was corrected according to errors from back-propagation. In this 
process, threshold and connecting weights among different layers 
were adjusted by the error gradient descent method (GDM). Each 
forward propagation layer and the back-propagation errors were re-
peated periodically until the output error of the BPNN algorithm was 
lower than the acceptable level. This is determined by the expected 
error set by users or the learning period set up by the algorithm. 
Nevertheless, this algorithm has a major disadvantage for the trend 
of trapping in a local optimal solution (Sun et al., 2019). This is be-
cause the initial threshold and weights are generally initialised in the 
random number within a certain range.

2.3.3 | Adaptive network fuzzy inference system

Adaptive network fuzzy inference system (ANFIS) is a multilayer 
feedforward neural network based on the Takagi-Sugeno fuzzy 

F I G U R E  1   Relationship between soluble solid content and 
accumulated temperature during sampling

F I G U R E  2   Testing system of electrical properties. 1—fine-
turning hand-wheel; 2—force sensor; 3—shielded box; 4—testing 
bridge; 5—loading motor; 6—support; 7—force controller



     |  5175LAN et AL.

inference system. It combines the neural network learning algorithm 
and the fuzzy inference system. Based on the advantages of using 
fuzzy inference systems and artificial neural networks, ANFIS im-
proves the validity of the algorithm in various applications and has 
the ability to process complicated nonlinear problems. Compared to 
classical neural networks, ANFIS can be inserted into a network as 
prior knowledge of the fuzzy rule (for example, if the water is hot, 
…). The output variables apply fuzzy rules into the fuzzy set of input 
variables. If the ANFIS model has two inputs (x and y), this results in 
one output f. For a one-order Sugeno fuzzy model, the two relevant 
fuzzy if–then rules are as follows:

where A1, A2 and B1, B2 are fuzzy sets of x and y, respectively. p1, q1, 
r1 and p2, q2, r2 are parameters of output functions that are deter-
mined during the training process. The ANFIS model offers relatively 
high convergence probability and it can reach a relatively good gener-
alization effect.

2.4 | Model assessment

To evaluate the prediction accuracy of the models, the prediction 
performances were compared by root-mean-square error (RMSE) 
and determination coefficient (R2). The equation of RMSE is:

where Nis the total number of data, YE is the expected output (test) and 
YP is the predicted value of the given input model. Generally speaking, 
a stable model shall have relatively low RMSE and high R2. Specifically, 
an R2 in the range of 0.82–0.90 indicates good performance of the 
model, while an R2 higher than 0.90 is viewed as sufficient to apply to 
a specific prediction goal.

3  | RESULTS AND DISCUSSIONS

3.1 | Analysis of the electrical parameters of Korla 
fragrant pears

The relation between electrical parameters and SSC is shown in 
Figure 3. Evidently, equivalent parallel inductance and the quality 
factor of pears increased in fluctuation with the increase of SSC. 
According to the linear fitting of equivalent parallel inductance and 
quality factor with SSC, the R2 values are 0.7531 and 0.7958, re-
spectively. With the continuous increase of SSC in pears, equiva-
lent parallel capacitance and loss factor dropped in the fluctuation 
manner and the relevant R2 was 0.7651 and 0.8322, respectively. 

According to the analysis of equivalent parallel resistance and com-
plex impedance, data fluctuated dramatically and showed no signifi-
cant linear relations with SSC: the R2 values are 0.1371 and 0.115, 
respectively. Based on the above analysis, there is no strong linear 
relationship between a single electrical property and SSC. The cor-
relation coefficient (R2) is less than 0.90. This was similar to the re-
search findings by Guo Wenchuan on peaches (Guo & Chen, 2010), 
apples (Guo et al., 2011), and Dangshansu pears (Guo, Shang, Zhu, 
& Nelson, 2015). The results demonstrate that equivalent parallel 
inductance, quality factor, equivalent parallel capacitance, and loss 
factor can represent changes in the SSC of pears to some extent. 
However, it is difficult to predict the SSC of Korla fragrant pears ac-
curately with single electrical properties due to the low determina-
tion coefficient. Therefore, it is necessary to predict the SSC of pears 
through multiple electrical properties and even all electrical proper-
ties at once. For this reason, the SSC of Korla fragrant pears was 
tested by combining PCA and artificial neural network.

3.2 | Construction of characteristic variables of 
electrical parameters

According to the Pearson correlation analysis of six electrical pa-
rameters in Table 1, SSC has extremely significant correlations with 
equivalent parallel inductance, quality factor, equivalent parallel ca-
pacitance, and loss factor and presents significant correlation with 
complex impedance. All electrical properties have strong correla-
tions except for equivalent parallel resistance. Equivalent parallel 
resistance only has extremely significant positive correlation with 
complex impedance, but significant negative correlation with the 
SSC of pears. On this basis, there are different degrees of correlation 
and overlapping information among different electrical properties. 
But mass information may hinder the analysis and it is difficult to 
characterize internal correlation with quality. Therefore, it is neces-
sary to construct characteristic variables of the electrical properties 
of Korla fragrant pears to screen electrical properties and explore 
implicit variables that are hidden in the original variables and are dif-
ficult to measure (Guo, Shang, Zhu, & Nelson, 2015).

To determine influences of equivalent parallel inductance, qual-
ity factor, equivalent parallel capacitance, loss factor, complex im-
pedance, and equivalent parallel resistance on the SSC of pears, 
factor analysis on electrical property indices was carried out after 
the Pearson correlation analysis. To begin with, the feasibility of the 
factor analysis method was verified by the Bartlett sphericity test 
and the significance was less than 0.05, indicating that the relevant 
matrix was a nonidentity matrix and applicable for factor analysis. 
Subsequently, a Kaiser–Meyer–Olkin (KMO) test was implemented. 
The results are presented in Table 2 with the KMO valued at 0.819 
(it is generally required to be higher than 0.7), which indicates strong 
partial correlations among variables. This means the factor analysis 
effect is relatively good.

It can be seen from Figure 4 and Table 3 that the first two princi-
pal components explain 92.386% of the total variance of the original 

(1)Rule 1: If x is A1 and y is B1; then f1 = p1x + q1y + r1

(2)Rule 2: If x is A2 and y is B2; then f2 = p2x + q2y + r2

(3)RMSE=

√

√

√

√

N
∑

i

(

YE−YP

)2

N
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six variables and the characteristic root of these two principal com-
ponents is higher than one. According to the general principle of 
determining the number of principal components, the number of 

characteristics when the characteristic value is higher than one, or 
the cumulative variance contribution rate is higher than 80%, is equal 
to the number of principal components. The previous two principal 

F I G U R E  3   Relations between electrical properties and SSC
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components were chosen in this study. To highlight the electrical 
properties of the first two principal components, experimental data 
taken from their loading matrices were processed using the Kaiser 
standardized tilting rotating method. In other words, the loads of 
principal components change simultaneously while the weights of 
the electrical properties remain constant. According to the PCA in 
Figure 5 and factor loading matrices in Table 4 after rotation, the 
principal component "1" mainly extracts equivalent parallel capaci-
tance, quality factor, loss factor, and equivalent parallel inductance 
of Korla fragrant pears, which contributes 67.834% of total variance. 
The principal component "2" is mainly caused by equivalent paral-
lel resistance and complex impedance in the electrical properties of 
pears, which contributes 24.553% of total variance. It can be seen 
from Table 1 that changes of SSC during the harvesting period are 
mainly manifested by changes of equivalent parallel capacitance, 
quality factor, loss factor, equivalent parallel inductance, equivalent 
parallel resistance, and complex impedance.

To construct the characteristic variables of electrical properties, 
the scoring coefficient matrix of different composition variables of 
the principal components was acquired through regression analysis 
of the test data. The results are presented in Table 5. Expressions 
of the top two principal components could be gained from different 
scoring coefficients (T1 and T2):

where tn is the standardized variable of electrical properties: tn=
(xn−xn)

�n

, xn is variable of an electrical property, xn is the mean of xn, and �n is the 
standard deviation of xn. �n can represent the influencing factors in ad-
dition to the variables of the electrical properties and it may be 
ignored.

3.3 | Prediction of the SSC in Korla fragrant pears

3.3.1 | GRNN prediction of the SSC in Korla 
fragrant pears

The neural network model chose two principal components that 
were extracted by PCA method as the network input and SSC as the 
output. According to 41 groups of datasets, which were acquired 
by statistical test data, 70% of the experimental data were chosen 
randomly for training with the GRNN model. In GRNN modeling, the 
estimated value Y

⋀

(x) is the weighted term of all observation values 
of Yi. It can be calculated according to:

where Yi is the ith observed value, N is the sample size and � is the 
generalized spreading coefficient of Gaussian function, which is 
called a smooth factor. In this equation, Di=

√

(

x−xi

)T (

x−xi

)

, where 
x is the input value and xi is the ith neuron of the corresponding 
sample.

As a feedforward network without iterative training, GRNN is 
constructed by training samples with appropriate smooth factor. 
The smooth factor � is used as the only single parameter that GRNN 
has to learn. It controls the width of RBF and determines the de-
gree of fitting of the regression function. A relatively large or small 
smooth factor may cause unsatisfying localization results, so it has 

(4)T1=0.233t1+0.252t2−0.234t3−0.249t4−0.106t5+0.077t6+�n

(5)T2=0.086t1−0.101t2−0.082t3+0.159t4+0.61t5+0.5t6+�n

(6)Y

⋀

(x)=

∑N

i=1
Yiexp

�

−
Di

2�2

�

∑N

i=1
exp

�

−
Di

2�2

�

TA B L E  1   Correlation statistics among the electrical properties of Korla fragrant pears

Index

Equivalent 
parallel 
inductance

Quality 
factor

Equivalent 
parallel 
capacitance

Loss 
factor

Equivalent parallel 
resistance

Complex 
impedance SSC

Equivalent parallel 
inductance

1.000

Quality factor 0.929** 1.000

Equivalent parallel 
capacitance

−0.982** −0.937** 1.000

Loss factor −0.919** −0.994** 0.895** 1.000

Equivalent parallel 
resistance

−0.044 −0.263 −0.050 0.304 1.000

Complex impedance 0.594** 0.367* −0.592** −0.326* 0.424** 1.000

SSC 0.868** 0.892** −0.875** −0.912** −0.370* 0.339* 1.000

Note: No label reflects insignificant correlation between two variables (p > .05).
*Reflects significant correlation between two variables (0.05 > p>.01). 
**Extremely significant correlation between two variables (p < .01). 

TA B L E  2   Correlation test between KMO and Bartlett

Kaiser–Meyer–Olkin test 0.819

Bartlett sphericity test

Bartlett sphericity test 364.649

Degree of freedom 15

Significance 0.000
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to determine the optimal value of � through continuous trial. Based 
on the examination of output values, it is expected that the best � 
of the GRNN model of SSC in pears is 0.1 and the residual 30% of 
data are input into the trained GRNN model, thus getting a group 
of predicted values. The linear fitting results between measurement 
values and prediction values are presented in Figure 6.

3.3.2 | BPNN prediction of the SSC in Korla 
fragrant pears

As with GRNN, BPNN analysis used two principal components that 
were extracted by PCA as the network input and SSC as the network 
output. Seventy percent experimental data were chosen randomly 
as the training set, and BPNN was trained for four times by cross-
validation. The number of neurons in the input and output layers was 
set one, and the number of neurons in the hidden layer was set at 12. 
The objective mean square error was set at 0.0004, and the learning 
rate was 0.1. The number of iterations was 1,000. Since the initial 
threshold and weight of BPNN were chosen randomly within a cer-
tain range, the network was trained by 100 times and the network 

with the best prediction results was used to construct the BPNN. 
The residual 30% of data were input into the trained BPNN model. 
The linear fitting results between the measurement values and pre-
diction value of BPNN are shown in Figure 7.

3.3.3 | ANFIS prediction of the SSC in Korla 
fragrant pears

Experimental data were divided into a training set and verification 
set according to the proportion of 7:3. Input data were classified by 
the meshing technique. Meanwhile, the initial ANFIS model, which 
applied two principal components as the input, was constructed 
using eight types of MFs for fuzzification of input data. The ANFIS 
model was tested on an independent dataset after the training stage. 
Data of the verification set were input into the trained model, thus 
getting the prediction value. The RMSE and R2 of the measurement 
values and prediction values during the training and verification 

F I G U R E  4   Distribution of the characteristic values of principal 
components

TA B L E  3   Statistics on the distribution of characteristic variables of principal components

Components

Initial characteristic value Extracted square sum Rotating square sum

Sum
Variance 
%

Accumulation 
% Sum

Variance 
%

Accumulation 
% Sum

Variance 
%

Accumulation 
%

1 4.070 67.834 67.834 4.070 67.834 67.834 4.032 67.204 67.204

2 1.473 24.553 92.386 1.473 24.553 92.386 1.511 25.183 92.386

3 0.358 5.969 98.355

4 0.054 0.896 99.252

5 0.028 0.464 99.716

6 0.017 0.284 100.000

Note: PCA was applied as the extraction method.

F I G U R E  5   Factor loading after rotation. Notes: Cp, Equivalent 
parallel capacitance; D, Loss factor; Lp, Equivalent parallel 
inductance; PC1, Principal component "1"; PC2, Principal 
component "2"; Q, Quality factor; Rp, Equivalent parallel resistance; 
Z, Complex impendence
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stages are listed in Table 6. Evidently, the RMSE = 0.7049 and 
R2 = 0.8268 for gasuss2mf during the prediction stage. Compared 
with the other seven types of membership function, the prediction 
results of gasuss2mf are stronger. Therefore, gasuss2mf is the most 
applicable membership function in ANFIS for the SSC prediction. 
The correlation between prediction values and measurement values 
is shown in Figure 8.

3.4 | Prediction results of GRNN, BPNN, and ANFIS

The SSC of the testing samples was predicted by models based on 
GRNN, BPNN, and ANFIS and the prediction results were compared. 
The membership function gasuss2mf, which has the best prediction 
effect of ANFIS, was chosen as the representative. It can be seen 
from Figures 6 and 7 and Table 6 that GRNN has a higher determina-
tion coefficient (R2 = 0.9743) and lower RMSE (0.2584) than BPNN 
and ANFIS, indicating that GRNN is the best model to predict SSC 
during the maturation stage of pears. The R2 of models based on 
BPNN and ANFIS values 0.7946 and 0.8268 is lower than the linear 
determination coefficient (R2 = 0.8322) between the loss factor and 
SSC. This demonstrates that the prediction accuracy of these two 
models was relatively poor, rendering the models inapplicable to 
predict the SSC of Korla fragrant pears during the maturation stage.

Based on the electrical properties of the Korla fragrant pears 
during the maturation stage, the nondestructive test of the SSC 
based on PCA and artificial neural networks was compared with 

other nondestructive test methods. It was found that GRNN achieved 
the best prediction performance, manifested by R2 = 0.9743 and 
RMSE = 0.2584. The R2 and RMSE of GRNN were slightly higher 
than the prediction results of Yu, Lu, and Wu (2018) based on deep 
learning method and hyperspectral technology (R2 = 0.890 and 
RMSE = 1.81), and the prediction results of Tian, Wang, Li, Peng, and 
Huang (2018) after the fruit characteristic classification based on hy-
perspectral technology (Rpre = 0.9368 and RMSE = 0.5256). On the 
other hand, this was similar to the SSC prediction performance of 
Zhang, Wang, and Ye (2008) based on electronic nose technology 
(R2 = 0.94). This indicates that similar to the hyperspectral technol-
ogy and electronic nose technology, the nondestructive testing of 
SSC based on the electrical properties of Korla fragrant pears is a 
very effective method.

F I G U R E  6   Correlation between prediction values and 
measurement values of SSC during the verification period of GRNN

F I G U R E  7   Correlation between the prediction values and 
measurement values of SSC during the verification period of BPNN

TA B L E  4   Factor loading matrix after rotation

Indices of electrical properties

Principal components

1 2

Equivalent parallel inductance 0.967 0.203

Quality factor 0.983 −0.074

Equivalent parallel capacitance −0.971 −0.196

Loss factor −0.956 0.163

Equivalent parallel resistance −0.237 0.889

Complex impendence 0.467 0.78

Note: PCA was applied as the extraction method. Rotating method: 
tilting rotating method with Kaiser standardization.

TA B L E  5   Scoring coefficient matrices of principal components

Indices of electrical properties

Principal component

1 2

Equivalent parallel inductance 0.233 0.086

Quality factor 0.252 −0.101

Equivalent parallel capacitance −0.234 −0.082

Loss factor −0.249 0.159

Equivalent parallel resistance −0.106 0.610

Complex impedance 0.077 0.500
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The measurement of electrical properties is simple, but its value 
is dependent upon being able to relate electrical measurements 
to physiological or physical properties of mature fruit (Nyanjage 
et al., 2001). This work demonstrated that it is possible to apply ar-
tificial neural network method together with electrical properties 
measurement technique for predicting maturation stage SSC of 
Korla fragrant pear. The results obtained by the PCA-ANN would 
encourage more research efforts on using electrical properties mea-
surement technique as a novel chemometrical method for the quality 
detection of fruit in the maturation stage. However, the SSC nonde-
structive testing method established in this paper is only applica-
ble to the mature stage of Korla fragrant pear, but Yu et al. (2018) 
study showed that SSC also changed during the storage period of 
Korla fragrant pear. In addition, researchers have established SSC 
nondestructive testing methods for fruit maturation stage or storage 
period at present (Guo, Shang, et al., 2015), but SSC nondestruc-
tive testing methods for the whole life cycle of fruit from picking, 
storage, and selling are not available. Therefore, further research will 

be conducted on SSC nondestructive testing for the commodity life 
cycle of Korla fragrant pear.

4  | CONCLUSION

In this study, we measured the electrical properties of Korla fragrant 
pears at the maturation stage using a workbench developed by our-
selves. The SSC presents poor linear correlation with equivalent 
parallel capacitance, quality factor, loss factor, equivalent parallel 
resistance, complex impedance, and equivalent parallel inductance. 
Single electrical properties are difficult to use in measuring the SSC 
of Korla fragrant pears. So the characteristic variables of electrical 
properties were constructed by principal component analysis (PCA). 
Then, some prediction models of the SSC of Korla fragrant pears dur-
ing the maturation stage are constructed by combining three artificial 
neural networks (GRNN, BPNN, and ANFIS). Prediction values were 
compared and it was found that GRNN is superior to BPNN and ANFIS 
in predicting the variation trends of the SSC of pears (R2 = 0.9743 and 
RMSE = 0.2584): ANFIS is the second-best model for SSC prediction 
(R2 = 0.8268 and RMSE = 0.7049). The results of this research prove 
that it is feasible to predict the SSC of Korla fragrant pears during the 
maturation stage by combining electrical properties and artificial neu-
ral networks. Moreover, this provides a new method for nondestruc-
tive testing of the SSC of Korla fragrant pears.

ACKNOWLEDG MENT
This work is supported by the National Natural Science Foundation 
of China (31160196); The National Youth Fund Project (31201364); 
Innovation and Entrepreneurship Project of Xinjiang Production 
& Construction Corps Special Commissioner for Science and 
Technology (2019CB037); Production & Construction Group Key 
Laboratory of Special Agricultural Products Further Processing in 
Southern Xinjiang (AP1905); and The Tarim University President 
Fund Project (TDZKCQ201902).

CONFLIC T OF INTERE S T
The authors have declared that there is no conflict of interest to this 
work.

E THIC AL APPROVAL
This study does not involve any human or animal testing.

ORCID
Zhentao Wang  https://orcid.org/0000-0002-0613-9527 
Yurong Tang  https://orcid.org/0000-0002-8261-9733 
Yang Liu  https://orcid.org/0000-0001-6852-3295 

R E FE R E N C E S
Ates, K., Ozen, S., & Carlak, H. F. (2017). The freshness analysis of an apple 

and a potato using dielectric properties at the microwave frequency 
region. 2017 Progress In Electromagnetics Research Symposium - Spring 
(PIERS). IEEE. https://doi.org/10.1109/PIERS.2017.8262020

TA B L E  6   Comparison of modeling results of ANFIS membership 
functions

Membership functions

Training stage Prediction stage

RMSE R2 RMSE R2

trimf 1.5701 0.6495 4.4174 0.6553

trapmf 0.1280 0.9943 2.6684 0.8188

gbellmf 0.2620 0.9835 0.8507 0.8266

gaussmf 0.2083 0.9864 1.1779 0.7131

gasuss2mf 0.2985 0.9783 0.7049 0.8268

pimf 0.2008 0.9861 1.3926 0.725

dsigmf 0.5706 0.9211 1.4079 0.8068

psigmf 0.5706 0.9211 1.4078 0.8068

F I G U R E  8   Correlation between the prediction values and 
measurement values of SSC acquired by gasuss2mf of ANFIS during 
the training period ( ) and verification period ( )

https://orcid.org/0000-0002-0613-9527
https://orcid.org/0000-0002-0613-9527
https://orcid.org/0000-0002-8261-9733
https://orcid.org/0000-0002-8261-9733
https://orcid.org/0000-0001-6852-3295
https://orcid.org/0000-0001-6852-3295
https://doi.org/10.1109/PIERS.2017.8262020


     |  5181LAN et AL.

Cortes, H., Edgar, V., Suárez, R., Castilloet, J., Gonçalves, L. M., & Bueno, 
P. R. (2015). Pitahaya aging diagnostic by impedance/capacitance 
spectroscopy. Food Analytical Methods, 8(1), 126–129. https://doi.org
/10.1007/s.12161-014-9878-7

Enrico, M., Aldo, R., Rudi, P. P., Enrico, S., & Marco, T. (2013). Piezoelectric 
transducers for real-time evaluation of ruit firmness. Part Ⅱ: Statistical 
and sorting analysis. Sensors and Actuators A: Physical, 201, 497–503. 
https://doi.org/10.1016/j.sna.2013.07.037

Guo, W. C., & Chen, K. K. (2010). Relationship between Dielectric 
properties from 10 to 4500 MHz and internal quality of peaches. 
Transactions of the Chinese Society for Agricultural Machinery, 41(3), 
134–138. https://doi.org/10.3969/j.issn.1000-1298.2010.03.028

Guo, W. C., Fang, L. J., Dong, J. L., & Wang, Z. W. (2015). Nondestructive 
detection of internal qualities for pears using dielectric spectra. 
Transactions of the Chinese Society for Agricultural Machinery, 46(9), 
233–239. https://doi.org/10.6041/j.issn.1000-1298.2015.09.034

Guo, W. C., Fang, L. J., Liu, D. Y., & Wang, Z. W. (2015). Determination of 
soluble solids content and firmness of pears during ripening by using 
dielectric spectroscopy. Computers and Electronics in Agriculture, 117, 
226–233. https://doi.org/10.1016/j.compag.2015.08.012

Guo, W. C., Shang, L., Wang, M. H., & Zhu, X. H. (2013). Soluble solids 
content detection of postharvest apples based on frequency spec-
trum of dielectric parameters. Transactions of the Chinese Society for 
Agricultural Machinery, 44(9), 138–143. https://doi.org/10.6041/j.
issn.1000-1298.2013.09.024

Guo, W. C., Shang, L., Zhu, X. H., & Nelson, S. O. (2015). Nondestructive 
detection of soluble solids content of apples from dielectric spectra 
with ANN and chemometric methods. Food and Bioprocess Technology, 
8(5), 1126–1138. https://doi.org/10.1007/s11947-015-1477-0

Guo, W. C., Zhu, X. H., Yue, R., Liu, H., & Liu, Y. (2011). Dielectric prop-
erties of fuji apples from 10 to 4500 MHz during storage. Journal 
of Food Processing and Preservation, 35(6), 884–890. https://doi.
org/10.1111/j.1745-4549.2011.00541.x

Lan, H. P. (2017). Research on maturity characteristics and maturity eval-
uation of Korla fragrant pear (Doctoral Dissertation). Retrieved from 
http://www.cnki.net

Lan, H. P., Jia, F. G., Tang, Y. R., Zhang, Q., Han, Y. L., & Liu, Y. (2015). 
Quantity evaluation method of maturity for Korla fragrant pear. 
Transactions of the Chinese Society of Agricultural Engineering, 31(5), 
325–330. https://doi.org/10.3969/j.issn.1002-6819.2015.05.045

Nelson, S. O., Trabelsi, S., & Kays, S. J. (2006). Correlating dielectric 
properties of melons with quality. Antennas and Propagation Society 
International Symposium 2006, IEEE. IEEE. https://doi.org/10.1109/
APS.2006.1711729

Nicolaïa, B. M., Verlinden, B. E., Desmet, M., Saevelsa, S., Saeysa, W., 
Theronc, K., … Torricellib, A. (2008). Time-resolved and continuous 
wave NIR reflectance spectroscopy to predict soluble solids content 
and firmness of pear. Postharvest Biology and Technology, 47(1), 68–
74. https://doi.org/10.1016/j.postt harvB io2007.06.001

Nyanjage, M. O., Wainwright, H., & Bishop, C. F. H. (2001). Effects of 
hot water treatments and storage temperatures on the ripening and 
the use of electrical impedance as an index for assessing post-har-
vest changes in mango fruits. Annals of Applied Biology, 139(1), 21–29. 
https://doi.org/10.1111/j.1744-7348.2001.tb001 26.x

Paz, P., Sánchez, M. T., Pérez-Marín, D., Guerrero, J. E., & Garrido-Varo, 
A. (2009). Instantaneous quantitative and qualitative assessment 
of pear quality using near infrared spectroscopy. Computers and 
Electronics in Agriculture, 69(1), 24–32. https://doi.org/10.1016/j.
compag.2009.06.008

Peiris, K. H. S., Dull, G. G., Leffler, R. G., & Kays, S. J. (1999). Spatial vari-
ability of soluble solids or dry-matter content within individual fruits, 
bulbs, or tubers: Implications for the development and use of NIR 
spectrometric techniques. HortScience, 34(1), 114–118. https://doi.
org/10.1023/A:10087 17323002

Shang, L., Gu, J. S., & Guo, W. C. (2015). Non-destructively detecting 
sugar content of nectarines based on dielectric properties and ANN. 
Transactions of the Chinese Society of Agricultural Engineering, 29(17), 
257–264. https://doi.org/10.3969/j.issn.1002-6819.2013.17.033

Specht, D. F. (1991). A general regression neural network. IEEE 
Transactions on Neural Networks, 2(6), 568–576. https://doi.
org/10.1109/72.97934

Sun, G. D., Qin, L. A., Hou, Z. H., Jing, X., He, F., Tan, F. F., … Zhang, 
S. C. (2019). Feasibility analysis for acquiring visibility based on 
lidar signal using genetic algorithm-optimized back propagation 
algorithm. Chinese Physics B, 28(2), 24213–024213. https://doi.
org/10.1088/1674-1056/28/2/024213

Tang, Y., Du, G. Y., & Zhang, J. S. (2012). Modeling peach quality changes 
based on electric property analysis. Food Science, 33(9), 68–71. 
1002-6630(2012)09-0068-04

Tian, X., Li, J., Wang, Q., Fan, S., & Huang, W. (2018). A bi-layer model for 
nondestructive prediction of soluble solids content in apple based on 
reflectance spectra and peel pigments. Food Chemistry, 239, 1055–
1063. https://doi.org/10.1016/j.foodc hem.2017.07.045

Tian, X., Wang, Q. Y., Li, J. B., Peng, F., & Huang, W. Q. (2018). qNon-de-
structive prediction of soluble solids content of pear based on fruit 
surface feature classification and multivariate regression analysis. 
Infrared Physics & Technology, 92, 336–344. https://doi.org/10.1016/j.
infred.2018.06.019

Wang, B. H., Sun, X. X., Dong, F. Y., Zhang, F., & Niu, J. X. (2014). Cloning 
and expression analysis of an MYB gene associated with calyx per-
sistence in Korla fragrant pear. Plant Cell Reports, 33(8), 1333–1341. 
https://doi.org/10.1007/s00299-014-1619-2

Wang, R. Q., Zhang, J. S., & Ma, S. S. (2009). Nondestructive determi-
nation of the quality of Red Bartlett pear during shelf life by electri-
cal characteristics. Transactions of the Chinese Society of Agricultural 
Engineering, 25(04), 243–247. 1002-6819(2009)-4-0243-05

Yu, X. J., Lu, H. D., & Wu, D. (2018). Development of deep learning 
method for predicting firmness and soluble solids content of post-
harvest Korla fragrant pear using Vis/NIR hyperspectral reflectance 
imaging. Postharvest Biology and Technology, 141, 39–49. https://doi.
org/10.1016/j.postt harvB io.2018.02.013

Zhang, H., Wang, J., & Ye, S. (2008). Predictions of acidity, soluble sol-
ids and firmness of pear using electronic nose technique. Journal 
of Food Engineering, 86(3), 370–378. https://doi.org/10.1016/j.
jFood.2007.08.026

How to cite this article: Lan H, Wang Z, Niu H, et al.  
A nondestructive testing method for soluble solid content in 
korla fragrant pears based on electrical properties and artificial 
neural network. Food Sci Nutr. 2020;8:5172–5181. https://doi.
org/10.1002/fsn3.1822

https://doi.org/10.1007/s.12161-014-9878-7
https://doi.org/10.1007/s.12161-014-9878-7
https://doi.org/10.1016/j.sna.2013.07.037
https://doi.org/10.3969/j.issn.1000-1298.2010.03.028
https://doi.org/10.6041/j.issn.1000-1298.2015.09.034
https://doi.org/10.1016/j.compag.2015.08.012
https://doi.org/10.6041/j.issn.1000-1298.2013.09.024
https://doi.org/10.6041/j.issn.1000-1298.2013.09.024
https://doi.org/10.1007/s11947-015-1477-0
https://doi.org/10.1111/j.1745-4549.2011.00541.x
https://doi.org/10.1111/j.1745-4549.2011.00541.x
http://www.cnki.net
https://doi.org/10.3969/j.issn.1002-6819.2015.05.045
https://doi.org/10.1109/APS.2006.1711729
https://doi.org/10.1109/APS.2006.1711729
https://doi.org/10.1016/j.posttharvBio2007.06.001
https://doi.org/10.1111/j.1744-7348.2001.tb00126.x
https://doi.org/10.1016/j.compag.2009.06.008
https://doi.org/10.1016/j.compag.2009.06.008
https://doi.org/10.1023/A:1008717323002
https://doi.org/10.1023/A:1008717323002
https://doi.org/10.3969/j.issn.1002-6819.2013.17.033
https://doi.org/10.1109/72.97934
https://doi.org/10.1109/72.97934
https://doi.org/10.1088/1674-1056/28/2/024213
https://doi.org/10.1088/1674-1056/28/2/024213
http://1002-6630(2012)09-0068-04
https://doi.org/10.1016/j.foodchem.2017.07.045
https://doi.org/10.1016/j.infred.2018.06.019
https://doi.org/10.1016/j.infred.2018.06.019
https://doi.org/10.1007/s00299-014-1619-2
http://1002-6819(2009)-4-0243-05
https://doi.org/10.1016/j.posttharvBio.2018.02.013
https://doi.org/10.1016/j.posttharvBio.2018.02.013
https://doi.org/10.1016/j.jFood.2007.08.026
https://doi.org/10.1016/j.jFood.2007.08.026
https://doi.org/10.1002/fsn3.1822
https://doi.org/10.1002/fsn3.1822

