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Abstract

According to standard linguistic theory, the meaning of an utterance is the product of conven-

tional semantic meaning and general pragmatic rules on language use. We investigate how such a

division of labor between semantics and pragmatics could evolve under general processes of selec-

tion and learning. We present a game-theoretic model of the competition between types of language

users, each endowed with certain lexical representations and a particular pragmatic disposition to act

on them. Our model traces two evolutionary forces and their interaction: (i) pressure toward commu-

nicative efficiency and (ii) transmission perturbations during the acquisition of linguistic knowledge.

We illustrate the model based on a case study on scalar implicatures, which suggests that the rela-

tionship between underspecified semantics and pragmatic inference is one of coevolution.

Keywords: Semantics Pragmatics Language evolution Evolutionary game theory

1. Introduction

What is conveyed usually goes beyond what is said. A request for a blanket can be

politely veiled by uttering “I’m cold”; a temporal succession of events can be communi-

cated by the order in which conjuncts appear as in “I traveled to Paris and got married”;

an invitation can be declined by saying “I have to work”. An influential explanation of

the relation between the literal meaning of expressions and what they may convey in con-

text is due to Grice (1975), who characterizes pragmatic use and interpretation as a
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process of mutual reasoning about rational language use. For instance, under the assump-

tion that the speaker is cooperative and relevant, “I have to work” may be interpreted as

providing a reason why the speaker will not be able to accept an invitation, going beyond

its literal meaning. Some of these enrichments are rather ad hoc. Others show striking

regularities, such as the use of ability questions for polite requests (“Could you please

. . .?”), or certain enrichments of lexical meanings such as and to convey and then.
A particularly productive and well-studied class of systematic pragmatic enrichments is

scalar implicatures (Geurts, 2010; Hirschberg, 1985; Horn, 1984, Levinson, 1983). Usually,

the utterance of a sentence like “I own some of Johnny Cash’s albums” will be taken to

mean that the speaker does not own all of them. This is because, if the speaker instead

owned them all, she could have used the word all instead of some in her utterance, thereby

making a more informative statement. Scalar implicatures, especially the inference from

some to some but not all, have been studied extensively, both theoretically (e.g., Chierchia,

Fox, & Spector, 2012; van Rooij & de Jager, 2012; Sauerland, 2004) as well as experimen-

tally (e.g., Bott & Noveck, 2004; Degen & Tanenhaus, 2015; Grodner, Klein, Carbary, &

Tanenhaus, 2010; Goodman & Stuhlm€uller, 2013; Huang & Snedeker, 2009). This makes

them particularly suitable candidates for the study of the evolution of regular pragmatic

inferences. While there is much dispute in this domain about many details, a position

endorsed by a clear majority is that a scalar item like some is underspecified to mean some
and maybe all and that the enrichment to some but not all is part of some regular process

with roots in pragmatics. If this majority view is correct, the question arises how such a divi-

sion of labor between semantics and pragmatics could have evolved.

Models of language evolution abound. There are simulation-based models studying

populations of communicating agents (Baronchelli, Puglisi & Loreto, 2008; Hurford,

1989; Lenaerts, Jansen, Tuyls & Vylder, 2005; Spike, Stadler, Kirby & Smith, 2016;

Steels, 1995; Steels, 2011; Steels & Belpaeme, 2005) and there are mathematical models

of language evolution, many coming from game theory (Blume, Kim, & Sobel, 1993;

Huttegger, 2007; Nowak, 2006; Nowak & Krakauer, 1999; Skyrms, 2010; W€arneryd,
1993). Much of this work has focused on explaining basic properties such as composi-

tionality and combinatoriality (e.g., Batali, 1998; Franke, 2016; Gong, 2007; Kirby, 2002;

Kirby & Hurford, 2002; Kirby, Tamariz, Cornish & Smith, 2015; Nowak & Krakauer,

1999, Nowak, Plotkin & Jansen, 2000; Smith, Kirby & Brighton, 2003; Verhoef, Kirby &

de Boer, 2014), but little attention has been paid to the interaction between conventional

meaning and pragmatic use. What is more, many mathematical models explain evolved

meaning as a regularity in the overt behavior of agents, abstracting from complex interac-

tions between semantic representations and pragmatic use.

In contrast, we will here explicitly model language users’ representations of lexical

meanings and their own particular manner of production and interpretation based on these

lexical representations. Different types of pragmatic behavior—ways of deploying mean-

ing in interaction—are represented using probabilistic models of pragmatic language use

(Frank & Goodman, 2012; Franke & J€ager, 2016; Goodman & Frank, 2016). Replication

and selection are described by the replicator mutator dynamic, a general and established

model of evolutionary change in large and homogeneous populations (Hofbauer, 1985;
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Hofbauer & Sigmund, 2003; Nowak, 2006; Nowak et al., 2000; Nowak, Komarova &

Niyogi, 2001). This approach allows us to study the interaction between (i) pressure

toward communicative efficiency and (ii) infidelity in the transmission of linguistic

knowledge, caused by factors such as inductive learning biases and sparse learning data

(Kirby, Griffiths & Smith, 2014; Kirby & Hurford, 2002; Smith et al., 2003).

It is important to consider the effects of transmission of linguistic knowledge through

(iterated) learning because neither semantic meaning nor pragmatic usage patterns are

directly observable. Instead, language learners have to infer these unobservables from the

observable behavior in which they result. We formalize this process as a form of Baye-

sian inference. Our approach thereby contains a well-understood model of iterated Baye-

sian learning (Griffiths & Kalish, 2005, 2007) but combines it with functional selection,

here formalized as the most versatile dynamic from evolutionary game theory, the repli-

cator dynamic (Taylor & Jonker, 1978). Section 2 introduces this model.

Section 3 applies this model to a case study on scalar implicatures. It shows that induc-

tive learning biases of Bayesian learners that favor simpler lexical meanings may play a

role in preventing the lexicalization of scalar inferences and thereby lead to the emergence

of Gricean-like pragmatic reasoning types, but only if there is selective pressure for com-

municative efficiency and learnability. The results of this study are critically assessed in

the light of the simplifying assumptions inherent in our abstract model in Section 4.

2. A model of evolving lexical representations and pragmatic behavior

2.1. Communicative success and learnability

The emergence and change in linguistic structure are influenced by many factors in

complex ways (Benz, J€ager, & van Rooij, 2005; Steels, 2011; Tamariz & Kirby, 2016).

Social and ecological pressures determine communicative needs, while biology determi-

nes the architecture that enables and constrains the means by which they can be fulfilled.

In the following sections, our focus lies on cultural aspects, wherein processes of linguis-

tic change are viewed as shaped by language use and its transmission, that is, as a result

of a process of cultural evolution (Pagel, 2009, Thompson, Kirby, & Smith, 2016).

The idea that language is an adaptation to serve a communicative function is funda-

mental to many synchronic and diachronic analyses, at least since Zipf’s (1949) explana-

tion of word frequency rankings as a result of competing hearer and speaker preferences

(e.g., Horn, 1984; J€ager & van Rooij, 2007; J€ager, 2007a; Kirby et al., 2015; Piantadosi,

2014; Martinet, 1962). If processes of selection, such as conditional imitation or rein-

forcement, favor communicative efficiency, languages are driven toward semantic expres-

sivity (e.g., Nowak & Krakauer, 1999; Skyrms, 2010). But pressure toward

communicative efficiency is not the only force that shapes language. Learnability is

another. Natural languages need to be learnable to survive their faithful transmission

across generations. Furthermore, the effects of even small learning biases can have
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striking effects on an evolving language in a process of iterated learning (Kirby & Hur-

ford, 2002; Smith et al., 2003; Kirby et al., 2014).

While natural languages are pressured for both communicative efficiency and learnabil-

ity, these forces may pull in opposite directions (Christiansen & Chater, 2008:x7). Their

opposition becomes particularly clear when considering the extreme (Kemp & Regier,

2012; Kirby et al., 2015). A language consisting of a single form-meaning association is

easy to learn but likely bad for communication with peers. Conversely, a language that

lexicalizes distinct forms for a large number of different meanings may be better for com-

munication but more challenging to acquire.

2.2. The replicator mutator dynamic

An elegant formal approach to capture the interaction between selection for commu-

nicative efficiency and learnability is the replicator mutator dynamic (Hofbauer, 1985;

Hofbauer & Sigmund, 2003; Nowak, 2006; Nowak et al., 2000, 2001). The RMD is a

population dynamic which describes the average change in the composition of a commu-

nity of agents of different types. The dynamic assumes a virtually infinite population, so

that it is able to abstract away from what individual agents do. It describes the most prob-

able trajectory of change in the population vector x~, in which each component xi gives
the relative frequency of type i and

P
i xi ¼ 1. In its simplest discrete-time formulation,

the RMD defines the frequency x0i of each type i in the population at the next time step

as a function of (i) the frequency xi of each type i before the update step, (ii) the fitness

fi of each type i before the update, and (iii) the probability Qji that an agent who observes

the behavior of an agent with type j ends up acquiring type i (with
P

k Qjk ¼ 1 for all j):

x0i ¼
X
j

xjfjQji

U
; ð1Þ

where U ¼ P
k xkfk is the average fitness in the population.

The RMD consists of two components: fitness-based selection and transmission biases

encoded in the so-called mutation matrix Q. This becomes most transparent when we

consider an equivalent formulation in terms of a step-wise application of the discrete-time

replicator dynamic (Taylor & Jonker, 1978) on the initial population vector x~ and a sub-

sequent multiplication with the mutation matrix Q:

x0i ¼ ðMðRDðx~ÞÞÞi; ð2Þ

where

RDðx~Þð Þi¼
xifi
U

and ðMðx~ÞÞi ¼ ðx~ � QÞi ¼
X
j

xjQji

 !
i

:
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If there is no mutation, so that types are always replicated faithfully with Qji ¼ 1

whenever j = i, the RMD reduces to the replicator dynamic. If fitness is the same for all

types, fi ¼ fj for all i and j, the RMD reduces to a process of iterated mutation.

Appendix A provides an abstract minimal example.

2.3. Interpreting the replicator mutator dynamic

The RMD is an abstract description of population-level changes. It abstracts away, to

the extent possible, from specific assumptions about how agents interact and what exactly

causes selection and mutation. To understand this better, the following looks at each com-

ponent in isolation: first replication, then mutation.

According to the replicator dynamic, the relative frequency xi of type i increases pro-

portional to its average fitness in the population. This dynamic is popular and versatile

because it can be derived from many processes of biological and cultural transmission

and selection (for overview and several derivations, see Sandholm, 2010). Under a bio-

logical interpretation, the model describes population-level changes when the number of

offsprings under single-parent reproduction is proportional to the parent’s fitness. Under a

cultural interpretation, examples of concrete agent-level processes that lead to population-

level changes as described by the replicator dynamic include conditional imitation (e.g.,

Helbing, 1996; Schlag, 1998) or reinforcement learning (e.g., Beggs, 2005; B€orgers &

Sarin, 1997). In conditional imitation, for instance, each agent carries a fixed type i which
it may change to a type j when it happens to observe another agent using type j. Imitation

occurs with a probability that is a monotonic function of fj, that is, of how well j fares
against the population: the better the behavior j, the more likely it is to be imitated.1

If all types have equal fitness at all times, the replicator mutator dynamic reduces to a

process of iterated mutation. Mutation can be interpreted as biological or cultural as well.

Under a biological interpretation where types are genetically encoded behavioral traits,

Qji is the probability by which offspring of type j genetically mutates into type i. Under a
cultural interpretation where types are transmitted by observation or learning, such as in

conditional imitation, Qji is the probability that an agent trying to learn, adopt, or imitate

the behavior of an agent with type j acquires type i.
In the following application to language evolution, we prefer a cultural interpretation

of the mutator component as the perturbation induced by how easy different linguistic

traits are learnable from observation of language use. In this way, the RMD contains a

chain of iterated (Bayesian) learning as a special case (Griffiths & Kalish, 2005, 2007).

Nothing of current relevance hinges on whether the replicator component is interpreted as

a biological process or a cultural process. We believe that this flexibility of interpretation

is an asset. It abstracts away from specific assumptions and focuses on a general and ver-

satile description of fitness-based selection. Still, to have something concrete in mind

when interpreting the following application, a derivation of the RMD from a specific

scheme of agent-level conditional imitation is given in the Supplementary Material.
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2.4. Fitness and learnability of lexical meanings and pragmatic strategies

Our goal is to apply the RMD to the evolution of lexical representations and pragmatic

behavior. This requires determining three things: (i) what the relevant types are, (ii) how

fitness of a type derives from its communicative success, and (iii) how the mutation

matrix Q is computed. These issues are addressed, one by one, in the following.

2.4.1. Types: Lexica and pragmatic strategies
Types are what evolution promotes or demotes. Its type determines an agent’s behavior

and thereby an agent’s fitness, so that it makes sense to speak of the fitness of a type

itself. To study the joint evolution of semantic meaning and pragmatic use, types are

pairs consisting of a lexicon and a linguistic strategy of language use.

Agents play signaling games, in which the speaker wants to communicate a world state s
with a message m to a hearer who receives m but does not know s (e.g., Lewis, 1969;

Skyrms, 2010). A lexicon associates each message with a set of states. A linguistic behavior

specifies a probabilistic speaker rule (a probabilistic choice of message for each state) and a

probabilistic hearer rule (a probabilistic choice of state for each message) given a lexicon.

Lexica codify the truth-conditions of expressions. A convenient way to represent lexica

is by (|S|,|M|)-Boolean matrices, where S is a set of states (meanings) and M a set of mes-

sages (forms available in the language). For example, suppose that there are two relevant

world states S ¼ fs9:8; s8g. In state s9:8, Chris owns some but not all of Johnny Cash’s

albums, while in s8 Chris owns them all. Suppose that there are two messages

M ¼ fmsome; mallg where msome is short for a sentence like Chris owns some of Johnny
Cash’s albums and mall for the same sentence with some replaced by all. Lexica then

assign a Boolean truth value, either 0 for false or 1 for true, to each state-message pair.

The following two lexica are minimal examples for the distinction between a lexicalized

upper bound for some, in Lbound, and the widely assumed logical semantics with only a

lower bound, in Llack.

Linguistic strategies define dispositions to produce and interpret messages given a lexi-

con. We distinguish between two kinds strategies. Literal interlocutors produce and inter-

pret messages literally, being guided only by their lexica. Pragmatic interlocutors instead
engage in mutual reasoning to inform their choices. Recent game-theoretic (e.g., Benz,

2006; Benz & van Rooij, 2007; Franke & J€ager, 2014; J€ager, 2007b) and probabilistic

models of rational language use (e.g., Frank & Goodman, 2012; Franke & J€ager, 2016;
Goodman & Frank, 2016) capture different types of pragmatic behavior in a reasoning

hierarchy. In the following sections, we aim at a general formulation of speaker and lis-

tener behavior which is as simple and as practical as possible for our current purposes

but still in line with both the game-theoretic and the Bayesian traditions.
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The hierarchy’s bottom, level 0, corresponds to literal language use, as in Eqs. (3) and

(4). Pragmatic language users of level n+1 act (approximately) rational with respect to

level-n behavior of their interlocutors, as in Eqs. (5) and (6).

H0ðsjm; LÞ / prðsÞL½s;m� ð3Þ

S0ðmjs;LÞ / expðk L½s;m�Þ ð4Þ

Hnþ1ðsjm; LÞ / prðsÞSnðmjs; LÞ ð5Þ

Snþ1ðmjs; LÞ / expðk Hnðsjm; LÞÞ ð6Þ

According to (3), a literal hearer’s interpretation of a message depends on her lexicon

and her prior over states, pr 2 D(S), which is in the following assumed flat for simplicity.

Literal interpreters thereby choose an arbitrary true interpretation for each message

according to their lexicon. Pragmatic hearers, defined in (5), instead use Bayes’ rule to

weigh interpretations based on a conjecture about speaker behavior. Speaker behavior is

regulated by a soft-max parameter k ≥ 0 (Luce, 1959; Sutton & Barto, 1998). As k
increases, choices approximate strict maximization of expected utilities. Expected utility

of a message m in state s for a level n + 1 speaker is here defined as Hnðsjm;LÞ, the
probability that the hearer will assign to or choose the correct meaning.2 For literal speak-

ers, utility only tracks truthfulness. Literal speakers choose any true message with equal

probability but may send false messages as well with a probability dependent on k.
In words, an agent’s linguistic behavior—what message to send when or which mes-

sage to interpret how—is defined by (i) her reasoning level and (ii) her lexicon. In what

follows, this is what we identify an agent’s type with, in order to analyze under which

conditions combinations of (i) and (ii) emerge through cultural evolution. Intuitively, lit-

eral behavior (level-0 reasoning) results from unreflected language use. Such agents pro-

duce and comprehend solely based on the truth-conditions of their lexicon. In a Gricean

spirit, pragmatic behavior (level-n + 1 reasoning) results from reasoning about rational

language use. Such agents produce and comprehend by reasoning about how they them-

selves would interpret or use expressions. Higher order behavior is therefore, even if in

tendency rational, quite simple. It does not assume agents to know their interlocutor’s

type when interacting (e.g., what lexicon the interlocutor is using); they simply act based

on a conjecture about language use derived from their own (solipsistic) perspective.

The following examples illustrate these behaviors numerically. A literal interpreter

with lexicon Lbound assigns s∃¬∀ a probability of H0ðs9:8jmsome;LboundÞ ¼ 1 after hear-

ing msome, while a literal interpreter with Llack has H0ðs9:8jmsome;LlackÞ ¼ 0:5:
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In contrast, pragmatic hearers of level 1 have the following interpretative behavior for

k = 1:

This is the outcome of reasoning about their level-0 speaker counterparts with k = 1:

With low k, speakers choose true messages with more slack. Reasoning over this behav-

ior, therefore, also results in a weaker association of messages with not only true states in

receivers but also in a slightly stronger association of msome with s∃¬∀ over ∀ for Llack
users, because they reason that S0ðmsomejs9:8;LlackÞ [ S0ðmsomejs8; LlackÞ. For k = 20,

there will be less slack in literal speaker behavior:

And accordingly less slack in level 1 pragmatic interpretation:

Lastly, turning to types that have no bearing on the choices of hearers of level 1, with

k = 1 pragmatic speakers of level 1 have:

For k = 20, pragmatic speaker behavior of level 1 is instead as follows:

In contrast to their literal counterparts of level 0, pragmatic agents of level 1 who use

Llack associate msome preferentially with s∃¬∀. This association is not perfect, and usually

less strong than what agents with a lexicalized upper bound in Lbound can achieve—with

or without pragmatic reasoning. Higher order reasoning beyond level 1 leads to stronger

associations of msome and s∃¬∀ also for the receiver. Still, the case study presented in Sec-

tion 3 will consider sender and receiver behavior at levels 0 and 1, as the latter are the
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simplest pragmatic reasoning types which show a tendency to communicatively attuned

pragmatic enrichment.

When it comes to competition between types of use of lexicon Lbound, pragmatic reason-

ing at level 1 is not advantageous. The reason for this is that literal use of Lbound already

endows agents with a behavioral strategy that associates a single state with a single mes-

sage (in tendency; depending on k for senders). For Lbound-receivers of level 1, reasoning

over stochasticity introduced at S0ð�j�;LboundÞ will generally decrease the association of

one state with one message. This decrease is only slight if k is high, but nevertheless pre-

sent. That is to say, level-1 reasoning does not necessarily confer a functional advantage.

For some types, such as users of Lbound, literal signaling is preferable. In sum, the defini-

tion of types introduced here constitutes conditions that are purposefully averse to what

we would like to show; the evolution of a division of labor between semantics and prag-

matics is not immediate just based on fitness-based selection, to which we turn next.

2.4.2. Fitness and fitness-based selection based on communicative success
In the context of language evolution, fitness is usually associated with the ability to

successfully communicate with other language users from the same population (e.g.,

Nowak et al., 2000; Nowak, Komarova, & Niyogi, 2002; Nowak & Krakauer, 1999).

Concretely, the fitness of type i is its average expected communicative success, or ex-
pected utility (EU), given the relative frequencies xj of types j in the current population:

fi ¼
X
j

xjEUðti; tjÞ:

The expected utility EUðti; tjÞ for type i when communicating with type j is the average

success of i when talking or listening to j. If, as standardly assumed, agents are speakers

half of the time, this yields:

EUðti; tjÞ ¼ 1=2EUSðti; tjÞ þ 1=2EUHðti; tjÞ;

where EUSðti; tjÞ and EUHðti; tjÞ are the expected utilities for i as a speaker and as a

hearer when communicating with j, defined as follows, where ni and nj are type i’s and

type j’s pragmatic reasoning types and Li and Lj are their lexica:

EUSðti; tjÞ ¼
X
s

PðsÞ
X
m

Sniðmjs;LiÞ
X
s0

Hnjðs0jm; LjÞdðs; s0Þ;

EUHðti; tjÞ ¼ EUSðtj; tiÞ:

As usual, we assume that agents are cooperative: dðs; s0Þ ¼ 1 iff s ¼ s0 and 0 otherwise.

In words, expected utility EUðti; tjÞ quantifies how successful communication between

agents of types i and j is, with each type’s behavior resulting from a combination of a

lexicon and a reasoning level (Section 2.4.1). Fitness fi indicates how well type i fares in
a population x~where the probability of meeting a type j is xj.
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2.4.3. Learnability
In biological evolution, where types are expressed genetically, transmission infidelity

comes into the picture through infrequent and mostly random mutation and genetic drift

(Kimura, 1983). However, an agent’s lexicon and a disposition for pragmatic reasoning

are likely not inherited genetically. They need to be learned from observation, such as in

conditional imitation (see Supplementary Material). Concretely, when agents learn from

or imitate type j, they observe the overt linguistic behavior of type j and need to infer the

covert type that most likely produced the observed behavior.

Iterated learning is a process in which languages are learned repeatedly from the obser-

vation of linguistic behavior of agents who have themselves acquired their behavior from

observation and inference. In the simplest case there is a single teacher and a single lear-

ner in each generation (e.g., Brighton, 2002; Kirby, 2001). After sufficient training the

learner becomes a teacher and produces behavior that serves as input for a new learner.

Due to the pressure exerted toward learnability, iterated learning alone generally leads to

simpler and more regular languages (see Kirby et al., 2014; Tamariz & Kirby, 2016 for

recent surveys).

Following Griffiths and Kalish (2005, 2007), we model language acquisition as a pro-

cess of Bayesian inference in which learners combine the likelihood of a type producing

the witnessed learning input with prior inductive biases. In a Bayesian setting these biases

can be codified in a prior P 2 D(T), which reflects the amount of data a learner requires

to faithfully acquire the language of the teacher (cf. Griffiths & Kalish, 2007:450).

The prior’s influence depends on particulars of the learning or inference process. Early

simulation results suggested that weak biases could be magnified by exposing learners to

only small data samples (e.g., in Brighton, 2002). Griffiths and Kalish (2007) proved that

if learners adopt a random type as a sample from their posterior beliefs about which types

may have generated the learning data that they saw, the population distribution of types

will eventually come to match the learners’ prior distribution over types exactly. More

deterministic strategies such as the adoption of the type with the highest posterior proba-

bility, so-called maximum a posterior estimation (MAP), increase the influence of both

the prior and the data (Griffiths & Kalish, 2007; Kirby, Dowman, & Griffiths, 2007). In

the following, we use a parameter l ≥ 1 to modulate between posterior sampling and the

MAP strategy. When l = 1, learners sample from the posterior. The learners’ propensity

to maximize the posterior grows as l increases.3

Let D be the set of possible data that learners may be exposed to. This set contains all

sequences of state-message pairs of length k, for example, hhs1;m1i; . . .; hsk;mkii. As k
increases, learners have more data to base their inference on and so tend to recover the

true types that generated a given sequence with higher probability. The mutation matrix

Q of the replicator mutator dynamic in (1) can then be defined as follows: Qji is the prob-

ability that a learner acquires type i when learning from an agent of type j. The learner

observes length-k sequences d of state-message pairs, but the probability PðdjtjÞ with

which sequence d ¼ hhs1;m1i; . . .; hsk;mkii is observed depends on type j’s linguistic

behavior:
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Pðd ¼ hhs1;m1i; . . .; hsk;mkiijtjÞ ¼
Yk
i¼1

Snjðmijsi; LjÞ;

where, as before, nj is j’s pragmatic reasoning level and Lj is j’s lexicon. For a given

observation d, the probability of acquiring type i is FðtijdÞ, so that:

Qji ¼
X
d2D

PðdjtjÞFðtijdÞ:

The acquisition probability FðtijdÞ given datum d is obtained by probability matching

l = 1 or a tendency toward choosing the most likely type l > 1 from the posterior distri-

bution P(�|d) over types given the data. This is calculated by Bayes’ rule:

FðtijdÞ / PðtijdÞl and

PðtijdÞ / PðtiÞPðdjtiÞ:

When l = 1, learners sample a type to adopt from their posterior distribution which they

obtain from observing the teacher produce utterances in particular states. From Griffiths and

Kalish (2007), we know that under l = 1 iterated Bayesian learning will converge to a popu-

lation proportion that exactly matches the agents’ prior over types. If l > 1 learners tend to

pick types which are a posteriori more likely with a higher probability than less likely types.

Even in the absence of a prior bias, iterated Bayesian learning with l > 1 can lead to popula-

tions in which a particular type ti has a higher proportion than other types. For l > 1, much

hinges on particular asymmetries in production likelihoods PðdjtjÞ and therefore on the

composition of the set of types in general. Intuitively put if there are many types tj which
all happen to (“erroneously”) produce data that are most likely produced (“correctly”) by ti,
this can lead to a larger proportion of ti in the long run even when priors over types are uni-

form. Appendix B provides an abstract example for these likelihood-driven effects.

2.5. Model summary

Communicative success and learnability is central to the cultural evolution of language.

These components can be modelled, respectively, as replication based on a measure of fit-

ness in terms of communicative efficiency and iterated Bayesian learning. Their interac-

tion is described by the discrete time replicator mutator dynamic in (1), repeated here:

x0i ¼
X
j

Qji
xjfjP
h xhfh

:

This equation defines the frequency x0i of type i at the next time step, based on its fre-

quency xi before the update step, its fitness fi, and the probability that a learner infers i
when observing the behavior of a type-j agent. Fitness-based replication can be thought
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of as biological (fitness as expected relative number of offspring) or cultural evolution

(fitness as likelihood of being imitated or repeated; see Supplementary Material for a con-

crete example). A type’s communicative success depends on how well it communicates

within its population while its learnability depends on the fidelity by which it is inferred

by new generations of learners. The learners’ task is consequently to perform a joint

inference over types of linguistic behavior and lexical meaning.

The model has three parameters: k regulates the degree to which speakers choose mes-

sages that appear optimal from the point of view of the agent’s own utility measure

(which may be unrelated to the expected utility when communicating with a given popu-

lation); k is the length of observations received by each language learner; l regulates

where the learners’ inference behavior lies on a spectrum from probability matching to

acquisition of the most likely teacher type.

3. Case study: Scalar implicatures

This section addresses the question under which conditions the division of labor, which

was described in Section 1, between underspecified semantics and pragmatic enrichment

could have evolved. We consider what are perhaps two of the simplest nontrivial setups

that speak to this matter and reflect on their limitations in Section 4. Section 3.1 first

investigates a minimal example intended to isolate effects of replication and mutation and

to gain insights into the sense in which semantic meaning and pragmatic use could be

said to coevolve. We then turn to a larger and more realistic setup in Section 3.2. Sec-

tion 3.3 describes simulations for this case and their results.

3.1. Coevolution of semantics and pragmatics in a restricted type space

This section illustrates how replication and mutation act on the evolution of semantic

meaning and pragmatic use in the simplest nontrivial type space, which consists of only

the four types from Section 2.4.1: a type has either lexicon Llack or Lbound and it is either

a literal (level-0) or a pragmatic (level-1) language user. We may think of such a popula-

tion as a point in a two-dimensional space. The grey dotted square in Fig. 1 outlines this

space. The space’s first dimension determines the proportion of types that lexicalize

ambiguous msome (the y-axis in Fig. 1). The second dimension determines the proportion

of pragmatic language users (the x-axis in Fig. 1). Populations at the corners of this space

are monomorphic; all agents in them are of a single type. Points away from the corners

represent mixed populations of various types.4 We can predict general trends in evolu-

tionary trajectories in this space based on what we know from the literature and the setup

from Section 2.4, even before any simulation results.

When it comes to communicative success, types with Lbound have a functional advan-

tage over Llack; literal Lbound has a slight advantage over pragmatic Lbound; all have a siz-

able advantage over literal Llack. The red arrows in Fig. 1 sketch trajectories we can

accordingly expect if there is only pressure for communicative success. How much each
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replicator step moves a population through this space ultimately depends on the rational-

ity parameter k. Functional differences decrease as k increases: If k is sufficiently high,

all types except for literal Llack speakers will show a strong tendency to associate s9:8
with msome and s8 with mall.

Under probability matching, l = 1, iterated Bayesian learning converges to the prior

over types (Griffiths & Kalish, 2007). If the prior on types is uniform, populations gravi-

tate toward the space’s center under repeated mutator steps. This is sketched by the blue

dash-dotted arrows in Fig. 1. If instead the prior favors Llack over Lbound, we expect

repeated mutator steps to drive the population toward the upper half of the space. This is

suggested by the solid purple arrows in Fig. 1. The system’s predictions are more difficult

to predict when l > 1, because now individual mutator steps may also be influenced not

only by the prior but also by the differential likelihood with which a particular type i can
be confused for any other type j (see Section 2.4.3 and Appendix B).

Despite its simplicity, the diagram in Fig. 1 makes clear the sense in which semantics

and pragmatics might coevolve. Pragmatic language use will not evolve under strong and

fully expressive semantics (bottom part of Fig. 1). A weak semantic convention will not

evolve without disposition toward pragmatic enrichments (left part of Fig. 1). But

together a weak semantics and a pragmatic disposition for enrichment can coevolve.

Fig. 1. Sketch of dynamics on a two-dimensional type space with four types. The y-axis represents the pro-

portion of types with Llack; the x-axis represents that of pragmatic ones. Arrows sketch population trajectories

under functional pressure (replicator steps, red arrows) and learnability pressure (mutator steps) with either a

flat prior (blue dash-dotted arrows) or a prior that favors Llack (solid purple arrows).
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These abstract theoretical considerations also suggest that we need both fitness-based

selection of communicative efficiency and pressure toward learnability to see underspeci-

fied semantics and pragmatic language use emerge together.

Fig. 2 shows actual evolutionary trajectories in this type space. The replicator steps

shown in the top row of Fig. 2 make the functional disadvantage of Llack against Lbound
apparent. With increasing k, this difference is mitigated for pragmatic users of Lbound,
who are no longer selected against by fitness-based selection.

As for the iterated learning only, the diagrams in the bottom row of Fig. 2 show the

case of a prior which favors types with underspecified semantics (Llack) over those with

lexicalized upper bounds (Lbound) by a factor of 1.05. There are three main things to note.

First, as expected from the literature, a small bias for a type will lead to larger propor-

tions of types who adopt it under l = 1 (see lower left space in Fig. 2, where the system

gravitates indeed to a population where the relative frequency of Llack over Lbound is

exactly 1.05). Second, if l > 1, the dynamic is influenced heavily also by asymmetries in

production likelihoods. Third, these asymmetries in the production likelihoods are in turn

influenced by k, so that k also has an effect on iterated Bayesian learning (compare the

middle and right-most diagram in the bottom row of Fig. 2).

Figs. 1 and 2 investigate replicator and mutator steps in isolation. It remains to investi-

gate how exactly these forces shape a population over time when they apply together.

This will also hinge on which types are present because the space of all types determines

how much production likelihoods asymmetrically favor certain types over others (when

l > 1; see Appendix B). For this reason, we turn to a somewhat more realistic but still

manageable setup with a larger set of types next.

3.2. Setup

3.2.1. States, messages, lexical representations, and lexica
Consider a state space with three states S ¼ f;; s9:8; s8g and think of it as a partition

of possible worlds into cells where none, some, or all of the As are Bs, for some arbitrary

fixed predicates A and B. Eight lexical representations can be distinguished based on their

truth or falsity in three world states, six of which are not contradictory or tautological

(see Table 2 below).

A lexicon L is a mapping M?R from messages to representations. With three mes-

sages there are 63 ¼ 216 possible lexica. Some assign the same representations to more

than one message and others lexicalize the same representations but associate them with

different messages. Out of these possible lexica, three kinds are of particular relevance.

First, lexica that assign the same lexical representations to more than one message. Such

lexica lack in expressivity but may be favored by particular learning biases nonetheless

(see below). Second, lexica that conventionalize upper bounds to realize a one-to-one

mapping of messages to states. Finally, lexica that do not lexicalize upper bounds but

would allow for perfect communication under additional pragmatic strengthening. There

are six lexica of the second kind and six of the third. The following three lexica exem-

plify each kind:
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Recall that types are a combination of a lexicon and a manner of language use. We

analyze the model’s predictions in populations of types with one of the two behaviors

introduced earlier: literal or pragmatic. The former correspond to level-0 reasoners and

the latter to ones of level 1. Accordingly, there is a total of 432 types. Six types are prag-

matic language users with Llack-like lexica. We refer to these as target types because they

represent lexica and language use that conform to the majority view of scalar implica-

tures. Twelve types are either literal or pragmatic users of lexica of the Lbound kind. We

refer to these as competitor types, because they are expected to be the target types’ main

contenders in evolutionary competition.

Note that while different types may lexicalize the same representations, they may nev-

ertheless map different states to different overt messages. Consequently, different types of

the same kind will fail to understand each other completely.

Fig. 2. Dynamics on a two-dimensional type space with four types. The y-axis represents the proportion of

types with Llack; the x-axis that of pragmatic ones. Arrows indicate directionality of trajectories after (a) repli-

cator steps and (b) mutator steps with a prior that favors types with Llack by a factor of 1.05 over those with

Lbound. Colored contours show the proportion of pragmatic Llack users after a step.
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3.2.2. An inductive learning bias for semantic simplicity
There is a growing effort to develop empirically testable representational languages that

allow for the measure of semantic complexity. For instance, so-called languages of thought
(LOTs) have been put to test in various rational probabilistic models that show encouraging

results (see, for example, Katz, Goodman, Kersting, Kemp, & Tenenbaum, 2008; Piantadosi

et al. under review, 2012; and Piantadosi & Jacobs, 2016 for recent discussion). At its core, a

LOT defines a set of operations and composition rules from which lexical representations can

be derived. As a first approximation and for the sake of concreteness, we follow this approach

to motivate and formalize a preference of learners for simpler semantic representations (Cha-

ter & Vit�anyi, 2003; Feldman, 2000; Kirby et al., 2015; Piantadosi, Tenenbaum, &Goodman,

2012; Piantadosi et al. under review). In a weighted generative LOT, a representation’s com-

plexity is a function of its derivation cost.

Our toy grammar of lexical representations is given in Table 1. This grammar uses

basic set-theoretic operations to form expressions which can be evaluated as true or

false in states s∅, s∃¬∀, or s∀ from above. Applications of generative rules have a

cost attached to them. Here, we simply assume that the formation of Boolean combina-

tions of representations incurs two cost units, while all other rule applications incur

only one cost unit. Table 2 lists all six lexical representations relevant here, their truth

conditions, and the simplest formula that expresses this representation in the grammar

in Table 1.

The complexity measures for lexical representations from Table 2 are used to define a

learning bias that favors simpler representations over more complex ones. The prior prob-

ability of a type is just the prior probability of its lexicon. The prior of a lexicon is a

function of the complexity of the lexical representations in its image set. Lexica with

simpler representations accordingly have a higher prior. One simple way of defining such

priors over lexica (and thereby types) is:

PðLÞ /
Y

r2ImðLÞ
PðrÞ; with PðrÞ / max

r0
Complðr0Þ � ComplðrÞ þ 1;

where Compl(r) is the complexity of the minimal derivation cost of representation r
according to the LOT-grammar (see Table 2). Applied to our space of lexica, this con-

strual assigns the highest probability to a lexicon of type Lall, which only uses the sim-

plest lexical representation “all” for all messages. Lexica of type Llack are less likely, but

more likely than Lbound.
The menu of inductive biases argued to shape language acquisition is steadily being

refined. Apart from simplicity, prominent examples include mutual exclusivity (Clark,

2009; Merriman & Bowman, 1989), regularization (Hudson, Kam, & Newport, 2005),

and generalization (Smith, 2011). Even when these biases are considered in isolation,

there are many ways in which they can be translated into priors over types. The key

assumption here, common to all simplicity-biased priors, is that simple representational

expressions should be favored over more complex ones (see, for example, Goodman,
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Tenenbaum, Feldman, & Griffiths, 2008; Kirby et al., 2015; Piantadosi et al., 2012). In

view of these numerous possibilities, we should stress that these details—from the gener-

ative grammar to its complexity measure—are to be regarded as one convenient opera-

tionalization of one general approach to explicating learning biases; this is not an implicit

commitment to the claim that this particular instrumentalization is the single most plausi-

ble. We merely want to have a maximally concrete working example in which the priors

over types are systematically related to the complexity of lexical representations. We

return to this issue in Section 4.

3.3. Simulation results

Recall that there are three parameters held constant across types: soft-max parameter k
affects how strongly speakers favor messages that appear best from their subjective point

of view; the bottleneck size k influences how faithfully learners can identify their teacher

type; l defines the learners’ disposition toward choosing the most likely teacher type from

the posterior distribution. Based on considerations and results from Section 3.1, we expect

that competitor types (types with lexica of the kind Lbound) have a fitness advantage over

target types (pragmatic types with lexica of the kind Llack), especially for very low levels

of k (see Fig. 1). Selection based on fitness alone may, therefore, not lead to prevalence

of target types in the population. On the other hand, lexica of type Llack are simpler than

those of type Lbound by the postulated measure from above. This may make them more

likely to be adopted by learners, especially when l is high. Still, lexica of the kind Lall
are in turn even more likely a priori than lexica of the kind Llack. Simulation results will

shed light on the question whether target types can emerge, and for which parameter con-

stellations this is likely.

Table 1

Toy grammar in a set-theoretic LOT with weighted rules.

R !2 R ^ R R !2 :R
R !1 X � X R !1 X 6¼ ; R !1 X ¼ ;
X !1 fA;Bg X !1 X \ X X !1 X [ X

Table 2

Available lexical representations and their minimal derivation cost.

Intuitive Name s; s∃¬∀ s∀ Least Complex Formula Complexity

“all” 0 0 1 A ⊆ B 3

“some but not all” 0 1 0 A \ B 6¼ ; ^ A 6¼ ; 8

“some” 0 1 1 A ∩ B6¼∅ 4

“none” 1 0 0 A ∩ B∅ 4

“none or all” 1 0 1 :ðA \ B 6¼ ; ^ A 6¼ ;Þ 10

“not all” 1 1 0 ¬(A⊆B) 5
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As before, we first look at the behavior of the replicator and mutator step in isolation,

and then in combination. All simulation runs are initialized with an arbitrary distribution

over types, constituting a population’s first generation. All reported results are the out-

come of 50 update steps. These outcomes correspond to developmental plateaus in which

change is, if not absent, then at least very slow. In other words, even if the resulting

states do not correspond to an eventual attracting state, they characterize population states

in which the system remains for a long time. As specified in Section 2.4.3, the mutation

matrix Q can be obtained by considering all possible state-message sequences of length

k. Given that this is intractable for large k, the sets of data which learners are exposed to

are approximated by sampling 250 k-length sequences from each type’s production proba-

bilities.

3.3.1. Replication only: Selection based on communicative success
Selection based on communicative success is sensitive to k since k influences signaling

behavior, which in turn determines communicative success. Fig. 3 shows the proportion

of target types, the highest competitor types, and the highest type with an Lall-style lexi-

con in a representative population after 50 replicator steps. The plot also indicates the

proportion of the majority type: the type with the highest proportion in the population.

With low k many types have very similar behavior, so that evolutionary selection lacks

grip and becomes very slow. The result is a very long transition with near stagnancy in a

rather homogeneous population with many types. Conversely, higher k promotes less

stochastic linguistic behavior, widening the gap in expressivity between some types and

promoting more homogeneous populations. As suggested by Fig. 3, under replication only

the majority in most populations is not one of the six pragmatic Llack-style types. That is,

a pressure only for communicative success does not lead to a prevalence of target types

under any k-value. For instance, with k = 20, 1,000 independent populations only had 11

cases in which a target type was the majority type, corresponding to a mean proportion

of .003 across populations. In contrast, in 913 cases the majority types had Lbound with

close to an even share between literal (454) and pragmatic types (459), corresponding to

a mean proportion of about .48 taken together. In sum, fitness-based selection of single

types requires sufficiently high k but does not often single out types with an underspeci-

fied semantic representation.

3.3.2. Iterated learning only: Transmission fidelity and learnability
Recall that iterated learning without pressure for communicative success and posterior

sampling (l = 1) converges to a population that mirrors the prior (Griffiths & Kalish,

2007), shown in the left-most pane of Fig. 4. Its effects when learners exhibit a stronger

tendency toward posterior maximization are illustrated in the other two plots of Fig. 4.

The prior shows that while users of Llack are not the most favored by the inductive bias

(compared, for example, to Lall), they are nevertheless more advantaged than others, such

as Lbound, in virtue of the relatively simple semantics they conventionalize. In contrast to,

for example, Lall, however, Llack enables its users to convey each state with a single mes-

sage when combined with pragmatic reasoning and sufficiently high k. This makes it less
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likely to be confused with other types if the learning data are not too sparse (k ≥ 5) and

k not too low (k ≥ 5). What is more, learners have a propensity to infer pragmatic Llack
when the teacher’s type produces very similar data, such as when using Lbound (see Sec-

tion 3.1). As a consequence, a stronger propensity to maximize the posterior increases

their proportion in the population. In 1,000 independent populations with k = 20 and

l = 5, all majority types were target types, with each reaching approximately the same

proportion of users in the population.

Crucially, in contrast to a pressure only for communicative success with high k (see

Fig. 3), learnability alone does not succeed in selecting for a single prevalent type; all six

target types tend to coexist at roughly equal proportion. Each is passed on to the next

generation with the same faithfulness and, differently from a pressure for communicative

success, they do not stand in competition with each other.

As with a pressure only for communicative success, low values of k make the differ-

ences in observable behavior across types less pronounced. This makes differences in the

likelihood of particular types having generated a learning input less pronounced. There-

fore, low k leads populations to reflect the learners’ inductive bias more faithfully. This

Fig. 3. Proportion of target types, the six competitor types with the highest proportion, the most frequent

type of the Lall-kind, and the population’s majority type, in representative populations after 50 generations

under only a pressure for communicative success (replicator steps).
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favors functionally deficient but a priori preferred types such as those that use Lall. A
pressure for learnability alone may consequently lead to a spread of communicatively

suboptimal types that lexicalize simpler semantics. For higher k and at least a slight ten-

dency to maximize the posterior, it becomes clear that a high prior is not the only thing

that counts when it comes to learnability (see Section 3.1 and Appendix B). As soon as

there is information for learners to discern whether one type is more likely to have gener-

ated the data (depending on k and k), it becomes paramount for types to produce data that

make them easily identifiable if they are to be inferred more often.

In sum, when pressured for learnability, pragmatic Llack is promoted over functionally

similar but semantically more complex alternatives such as Lbound. However, learnability
alone does not foment the propagation of a single target type across the population,

because it does not differentiate between different ways of mapping the same semantic

representations onto different overt signals.

3.3.3. Combining pressures of communicative success and learnability
Pressure for communicative success and learnability is not sufficient on their own to

have a single target type dominate the population. But the combination of both pressures

can lead to the selection of a single target type (see Fig. 5). The proportion of a single

majority target type increases with k and l.

Fig. 4. Proportion of target types, the six competitor types with the highest proportion, the highest type of

the Lall-kind, and the population’s majority type in representative populations after 50 generations under only

a pressure for learnability (k = 20, k = 5). The learning prior is shown in the right-most plot, with top-most

groupings corresponding to types, literal and pragmatic, with lexica of kinds Llack, Lbound, and Lall.
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As before, low k and l lead to the prevalence of communicatively suboptimal types

that are a priori favored, such as Lall. An increase in k leads to the selection of target

types but does not necessarily lead to monomorphic populations if learners’ tendency to

maximize the posterior is not very strong (see the uppermost row in Fig. 5) or absent.

Finally, a combination of high k and l leads to increasing proportions of a single majority

target type. This joint influence is summarized in Fig. 6, which shows the mean differ-

ence between the most frequent target type and the proportion of the most frequent non-

target type in 1,000 independent populations across k and l values. Higher values of k
and l increase the prevalence of a single target type, whereas lower values lead to less

pronounced differences, with a valley resulting from low k and high l (cf. distance to the

majority type in Fig. 5 for k = 1).

Effects of manipulating the sequence length k have not been addressed so far, but are

rather predictable: Small values lead to more heterogeneous populations that reflect the

learner’s prior more faithfully. This is due to the fact that the likelihood that a small

sequence was produced by any type is relatively uniform. In contrast, larger values

increasingly allow learners to differentiate types with different signaling behaviors.

In sum, when pressured for communicative success only, target types are outperformed

by competitor types. When pressured for learnability only, populations are polymorphic

due to lack of competition. When we combine both pressures, the (slight) functional dis-

advantage of targets is counterbalanced by an advantage in learnability. This leads to

large proportions of targets and, due to the competition among types applied by each

Fig. 5. Proportion of target types, the six competitor types with the highest proportion, the highest type of

the Lall-kind, and the population’s majority type in representative populations after 50 generations under both

pressures (k = 5).
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replicator steps, to more monomorphic populations. To conclude, target types can come

to dominate the population if three assumptions are met: (i) language is pressured toward

both communicative success and learnability; (ii) pragmatic language use is an option;

(iii) learners prefer simpler over more complex lexical representations and exhibit a ten-

dency toward the acquisition of the type that best explains the learning data.

4. General discussion

The approach introduced here combines game-theoretic models of functional pressure

toward successful communication (Nowak & Krakauer, 1999), effects of transmission

perturbations on (iterated) language learning (Griffiths & Kalish, 2007), probabilistic

speaker and listener types of varied degrees of pragmatic sophistication (Frank & Good-

man, 2012; Franke & J€ager, 2014), as well as reasoning about unobservable lexical repre-

sentations (Bergen, Goodman, & Levy, 2012; Bergen, Levy, & Goodman, 2016). This

allows for a conceptual investigation of the (co-)evolution of conventional meaning and

pragmatic language use. Main contributions of the model are (i) its modular separation of

Fig. 6. Mean difference between proportion of highest target type and highest other type in 1,000 indepen-

dent populations after 50 generations under both pressures (k = 5).
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communicative success and learnability on evolutionary trajectories, (ii) the characteriza-

tion of language learning as a joint inference over linguistic behavior and lexical mean-

ing, and (iii) the possibility to trace the coevolution of conventional semantics and

pragmatic use.

With respect to (i), Kirby et al. (2015) propose a comparable model of the interaction

between a lexicon’s expressivity and its learnability. A main difference is that here we

considered communicative pressure for mutual understanding. This pressure can indirectly

select for expressive types, those that can convey states unequivocally, whereas Kirby

et al. only consider the bearing that the latter ability has on the production of learnable

data. We see three main reasons for considering communicative success rather than just

expressivity, and for looking at communication and learning rather than just learning.

First, learning alone can promote populations with non-negligible proportions of function-

ally defective types. This is true both of simulations and of laboratory experiments with

human subjects (see Kirby, Cornish, & Smith, 2008; Silvey, Kirby, & Smith, 2014; see

Fay & Ellison, 2013 for review of laboratory results). Second and more important, types

may be equally expressive but their performance as a means of information transfer

depends not only on themselves but on the population they find themselves in (compare

the competition of target types in Fig. 5 and their lack of competition in Fig. 4). That is,

we contend that the adoption and retention rate of an expressive type that generates learn-

able data does not, in itself, capture a type’s arguably central communicative function of

transferring information to peers. Taking communication into consideration allows the

model to be responsive to the task for which language is learned. Lastly, chains of iter-

ated learning alone do not put types in direct competition. Accordingly, learning alone

leads to polymorphous populations in which multiple types of a kind coexist (Nowak,

2006).

The main result of our case study is that types that correspond to the majority view of

scalar implicatures—scalar readings are nonlexicalized pragmatic enrichments—can come

to dominate a population. This can happen if pragmatic language use is recruited indi-

rectly by a preference for simpler lexical representations (relative to more complex ones

that lead to comparable overt linguistic behavior without pragmatic language use). Under

this view, semantics and pragmatics play a synergic role and can coevolve: Pragmatic use

allows maintenance of simpler representations; pressure toward representational simplicity

indirectly promotes pragmatic over literal language use.

While the results of this case study are interesting, they also raise a number of critical

issues. First of all, while many favorable parameter settings exist which lead to a preva-

lence of target types, other types are usually represented in non-negligible proportions as

well (see Fig. 5 and 6). This may just be a technical quirk of the mutator step; but there

is a related issue of empirical importance. Several experimental studies on scalar implica-

tures suggest that participants can be classified as either semantic or pragmatic users of,

in particular, some (e.g., Bott & Noveck, 2004; Degen & Tanenhaus, 2015; Nieuwland,

Ditman, & Kuperberg, 2010). The former consistently accept some where all would be

true as well, the latter do not. Interestingly, in our simulations, when a target type is the

majority type, an inflated proportion of the population uses compatible lexica with a
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lexicalized upper bound. In other words, we find a tendency toward a similar coexistence

of semantic and pragmatic types. Whether this analogy has any further explanatory value

is an interesting path for future exploration.

Another important issue that is not addressed in the present model are potential costs

associated with pragmatic reasoning. Here, we simply assumed that literal and pragmatic

reasoning strategies exist from the start and are equally costly to apply. In contrast,

empirical results suggest that the computation of a scalar implicature may involve addi-

tional cognitive effort (e.g., Breheny, Katsos, & Williams, 2006; Huang & Snedeker,

2009; Neys & Schaeken, 2007; Tomlinson, Bailey, & Bott, 2013). Extensions of the

model presented here to include processing costs for pragmatic language use would be

interesting future work. It seems plausible that effects of reasoning cost may tradeoff with

the frequency with which a given scalar expression is used. It may be that frequently

drawn scalar implicatures lexicalize to avoid cost, whereas infrequent ones are derived

online to avoid more complex lexical representations during acquisition. Such a predic-

tion would lend itself to empirical testing in line with a recent interest in differences

between various scalar implicature triggers (van Tiel, van Miltenburg, Zevakhina, &

Geurts, 2016).

We tried to motivate and formalize a general assumption about lexical representations’

complexity with a concrete, albeit provisional proposal. The specification of a learning

bias in terms of a “grammar of representations” can and should be seen critically, how-

ever. Much depends on the primitives of such a grammar. For instance, the lexical repre-

sentation “none or all” is the most complex in Table 2. But consider adding a new

primitive relation between sets A⌣B which is true if and only if :ðA \ B 6¼ ; ^ A 6¼ ;Þ.
The lexical representation “none or all” would then be one of the simplest. Clearly, fur-

ther research, empirical and conceptual, into the role of representational complexity, pro-

cessing costs, and learning biases is needed. The model here makes a clear and important

contribution nonetheless: It demonstrates how simplicity of representations can interact

with use and evolutionary selection and shows that for simple representations to emerge

it may require pragmatic strategies to compensate their potential expressive deficiencies.

Hence, a model of coevolving semantics and pragmatics is needed. Future work should

also include the possibility that representational simplicity may itself be a notion that is

subject to evolutionary pressure (cf. Thompson et al., 2016), as well for the evolution of

elements that define the agents’ cognitive make-up: k and l.
This case study is a first attempt at an explanation of how scalar implicatures evolved.

But other factors, which are presently not taken into account, should be considered even-

tually even if they will lead to much more complex modeling. One such factor is the

observation that nonlexicalized upper bounds allow a broader range of applicability, for

example, when the speaker is not certain as to whether all is true. This may suggest an

alternative and purely functionalist argument for why upper bounded meanings do not

conventionalize: Should contextual cues provide enough information to the hearer to

identify whether a bound is intended to be conveyed pragmatically, then this is preferred

over expressing it overtly through longer expressions, for example, by saying some but
not all explicitly. Importantly, although morphosyntactic disambiguation may be
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dispreferred due to its relative length and complexity (Piantadosi et al., 2012), it allows

speakers to enforce an upper bound and override contextual cues that might otherwise

mislead the hearer. In a nutshell, this explanation posits that scalar implicatures fail to

lexicalize because, all else being equal, speakers prefer to communicate as economically

as possible and pragmatic reasoning enables them to do so. What this alternative argu-

ment does not explain is why functional pressure does not lead to the emergence of dif-

ferent, equally costly lexical items to express different knowledge states of the speaker

(Horn, 1972, 1984:252-267; Traugott, 2004, van der Auwera, 2010). That is, this argu-

ment does not explain why English and other languages do not have a monomorphemic

dual for, for example, some that lexicalizes an upper bound. If this hypothetical expres-

sion existed, it could be deployed to signal that the speaker knows that some but not all
holds, and unbounded some could exclusively signal epistemic uncertainty. Looking at

pressure from learnability might come in again.

Beyond scalar implicatures, the model can generate predictions about likely lexicaliza-

tion trajectories of pragmatic inferences, or a lack thereof. In this realm, an interesting

issue is whether proposed principles, such as the semantic conventionalization of once

highly context-dependent inferences, if they become regular enough (Levinson, 2000;

Traugott, 2004), can be given a formal rationale and inform postulated directionalities of

change. The present investigation made a first start and gave a framework for exploring

these issues systematically.

5. Conclusion

The cultural evolution of meaning is influenced by intertwined pressures. We set out to

investigate this process by putting forward a model that combines pressure toward suc-

cessful information transfer with perturbations that may arise in the transmission of lin-

guistic knowledge in acquisition. Its objects of selection and replication are pairs of

lexical meanings and patterns of language use. This allows the model to trace the evolu-

tionary interaction between conventional meaning and pragmatic use. Additionally, it

takes the challenge seriously of neither semantics nor pragmatics being directly observ-

able. Instead, learners need to infer these unobservables from overt data that result from

their combination. These components and their mutual influence were highlighted in a

case study on the lack of lexical upper bounds in weak scalar expression. This study

showed that, when pressured for learnability and communicative success, the former force

can drive for simpler semantic representations inasmuch as pragmatics can compensate

for lack of expressivity in use. That is, the relative learning advantage of simpler seman-

tics in combination with functional pressure in use may offer an answer to why natural

languages fail to lexicalize systematic pragmatic inferences. Conversely, by appealing to

the economy of lexical representations, this model also suggests a rationale for why a

system of pragmatic enrichment could have evolved in the first place. The resulting pic-

ture is one of coevolution: The division of labor between semantics and pragmatics could

have evolved because underspecified lexical meanings are easier, yet can only be

T. Brochhagen, M. Franke and R. van Rooij / Cognitive Science 42 (2018) 2781



maintained with a mechanism of pragmatic enrichment; pragmatic reasoning, however,

would not evolve in the absence of lexically ambiguous representations.

Notes

1 A crucial assumption in all of the derivations of the replicator dynamic as a biologi-

cal or cultural process of evolution is that agents themselves are rather limited in

their strategic capacities. They are, for example, not able to innovate a strategy, that

is, to just choose a type that is optimal given the current population state. They are

also not able to strategically adapt their behavior to any particular agent they are

interacting with on some given occasion. Such minimalism about the strategic

capacities of agents is a conservative methodological choice. It is one thing to be

able to demonstrate that phenomenon X is what a rational agent would do. This is

useful but may not always be the most satisfactory answer to the question how X
happened to evolve. It is another thing to show that even if no agent was individu-

ally capable of seeing X as the rational thing to do, X would still evolve if every

agent at least sometimes, locally and myopically, tried to optimize its behavior, for

example, by imitating what seems to be working well for others (Skyrms, 2010).

2 An alternative choice for the speaker’s utility function, frequently made in Bayesian

approaches after Frank and Goodman (2012), is logHnðsjm;LÞ. Conceptually, the
difference is that without the logarithm, utilities are derived from action choices,

while with the logarithmic, utilities are derived from how closely the listener’s

beliefs (after hearing an utterance) align with the speaker’s, as measure by Kull-

back–Leibler divergence. In an evolutionary context, where fitness comes from

actual interactions with the environment, not just solemn beliefs held about it, the

formulation without the logarithm may be slightly more appealing. Moreover, log-

based speaker utilities cause the speaker never to use false utterances. Since we aim

here for a situation in which any type has a reasonable chance to be mistaken for

any other based on their production behavior (see Section 2.4.3), we want speaker

types which send any message in any state with positive probability.

3 The way the posterior over types is formed and how learners employ it are impor-

tant design choices. There are other alternatives as well. For instance, instead of

adopting a single type, learners could keep their uncertainty over types and base

their production behavior on the posterior over types they form (Burkett & Griffiths,

2010). A straightforward operationalization of this idea would then see production

defined as a two-step process wherein a speaker first samples from her posterior and

then produces utterances based on the type she sampled, as done in Kirby et al.

(2015). Beyond adding complexity to the model, a disadvantage of this approach is

that it could happen that a speaker that first uttered a Hungarian utterance speaks

Quechua in the next, so to speak. We, therefore, maintain the simpler assumption of

a single type being acquired in the present context, and we postpone further investi-

gation of more complex type-adoption schemes to future research.
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4 This two-dimensional representation underspecifies the exact proportions of types

found in a mixed population. The space’s center, for instance, could be composed

in equal parts of pragmatic Llack and of literal Lbound. But it could equally well be a

population that has all four types in equal proportions. This level of granularity will

nevertheless be sufficient for our purposes, as we are only interested in sketching

rough trajectories after replicator or mutator steps.
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Appendix A. A minimal example of the replicator mutator dynamic

Consider a simple and abstract coordination game. Agents are of two types: positive or

negative. If agents of different types interact with each other, they obtain a payoff of 0.

If negative meets negative, each receives a payoff of 1. If positive meets positive, they

get a payoff of 2. A population state is completely characterized by the proportion x of

negatives. The fitness of negatives in population state x is fnðxÞ ¼ x, that of positives is

fpðxÞ ¼ 2� 2x. The average fitness is UðxÞ ¼ xfnðxÞ þ ð1� xÞfpðxÞ ¼ 3x2 � 4xþ 2.

Without mutation, the replicator dynamic will update x to

RDðxÞ ¼ f ðxÞx=UðxÞ ¼ x2=UðxÞ.
The update function RD(x) of the replicator step is plotted in Fig. 7 as the blue line. Rest

points, for which RD(x) = x, are at x = 0, x = 1 and x = 2/3. The former are attractors; nearby

points converge to them. Points near x = 2/3 also move toward 0 or 1. This is schematically pic-

tured in the topmost phase portrait in Fig. 7. Adding mutation changes the dynamic and its rest

points. Let us assume thatQji ¼ :9 when j = i. This is the proportion of types that are replicated
faithfully. Conversely, a proportion of .1 will change their type from positive to negative, and

vice-versa. The update effect of mutation on its own are described by M(x) = .9x+.1
(1�x) = .8x+.1, plotted as the linear green line in Fig. 7. As shown in Fig. 7, in this example

mutation alone has only one stable rest point. It is located at x = .5. If we first take the replicator

step and then the mutation step in sequence, we obtain the replicator mutator dynamic

RMDðxÞ ¼ MðRDðxÞÞ ¼ :9x2 � :2xþ :2=3x2 � 4xþ 2, which is plotted in red in Fig. 7. The

rest points are at x = .121, x = .903 and x = .609. The former two are attractors (see Fig. 7).

Appendix B. Example of iterated Bayesian learning

We consider three types and three possible data observations they can produce. Types

are equally likely a priori but show different and crucially asymmetric production behav-

ior. The likelihood with which type ti produces datum dj is LHij:

(a) (b)

Fig. 7. Example. (a) Update functions: the population state x is mapped onto x0 in one update step. (b) Phase

portraits for RD, M, and RMD: unstable rest points are hollow, and attractors are solid. [Color figure can be

viewed at wileyonlinelibrary.com]
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If d > e, production likelihoods are asymmetrically skewed to favor t1, in the sense that

both types t2 and t3 produce behavior that is strong evidence for t1 more often than

behavior that is strong evidence for any other type different from themselves. Type t1
makes no such “asymmetric mistakes” and is more faithfully recognized based on its pro-

duction behavior than the other types.

Using the definitions from Section 2.4.3, we calculate mutation matrices Q for l = 1

and l = 10 when e = 0.1 and d = 0.2:

Despite flat priors over types, the mutation matrix for l = 10 is skewed toward t1 in the

sense that the probability of any type mutating to t1,
P

i Qi1 ¼ 1:2, is higher than the

probability of
P

i Qij ¼ 0:8 for j 2 {2,3}. For l = 1, these probabilities are all equal for

all three types. Consequently, under iterated Bayesian learning with l = 1 the population

will eventually converge to a uniform distribution over all three types in the limit, but for

l = 10 it converges to a skewed population vector x~� h0:5; 0:25; 0:25i, where t1 is a

clear majority type. This demonstrates how iterated Bayesian learning with l > 1 can be

sensitive to the set of types represented in the model, in particular when production likeli-

hoods are asymmetrically in favor of some types. With probability matching learners

(l = 1), these considerations do not play a role, as the system will gravitate to the prior

distribution over types nonetheless.
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