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Diabetes mellitus and heart failure have a bidirectional relationship and can affect
one another. Ventricular dysfunction that occurs in the absence of coronary
atherosclerosis and hypertension in patients with diabetes mellitus is termed diabetic
cardiomyopathy. Lipotoxicity, increased oxidative stress and mitochondrial
dysfunction are a few of the mechanisms implicated in diabetic cardiomyopathy.
Patients with diabetes mellitus undergo cardiac structural changes leading to heart
failure. The novel glucose-lowering medication that is now preferred for diabetic
patients with heart failure is the SGLT-2 (sodium-glucose cotransporter 2) inhibitor.
Emerging targeted therapies are showing beneficial effects but require further
evaluation. We review the literature describing the pathophysiology of diabetic
cardiomyopathy, cardiac structural changes, along with the novel glucose-lowering
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therapies and targeted therapies for diabetic cardiomyopathy.

INTRODUCTION

Diabetes mellitus (DM) is an independent risk factor for
heart failure and there exists a bidirectional relationship
between DM and heart failure (HF). The prevalence of
heart failure in patients with DM is 4 times higher than
in the general population.! According to the Framing-
ham Heart Study, cardiovascular disease (CVD) attribut-
able to DM has increased over the past 50 years. Amongst
other risk factors, only DM demonstrated an increase in
the population attributable risk (PAR) for heart failure
over the 2 time periods (1952 to 1974 and 1975 to
1998).2 The pathophysiology of heart failure preserved
ejection fraction (HFpEF) is closely related to DM and
approximately 40% of HFpEF patients have DM.? Heart
failure with reduced ejection fraction (HFrEF) is often as-
sociated with DM progression. HFrEF has a strong asso-
ciation with type 1 diabetes mellitus (T1IDM).*

DM can cause various structural and functional
changes in the myocardium. These changes are charac-
terized by abnormal cardiac structure and function in
the absence of other cardiac risk factors and was first re-
ported in a postmortem study from diabetic patients who
developed heart failure symptoms without evidence of
coronary artery or valve disease. In 2013, the American
College of Cardiology Foundation, the American Heart
Association (ACC/AHA), and the European Society of
Cardiology (ESC) in collaboration with the European
Association for the Study of Diabetes (EASD) defined di-

abetic cardiomyopathy as a clinical condition of ventric-
ular dysfunction that occurs in the absence of coronary
atherosclerosis and hypertension in patients with diabetes
mellitus.>® In the early stages, some structural and func-
tional changes occur, some of which are left ventricular
(LV) hypertrophy, fibrosis, and cell signaling disruption.7
These changes evolve into HF and further into HFrEF.
The goal of this review is to summarize current knowl-
edge about diabetic cardiomyopathy, its current patho-
physiology and novel treatments.

METHODS

The research design of this study was a short narrative
review. We conducted a literature search on diabetic car-
diomyopathy and existing novel treatment from data-
bases consisting of PubMed and Google Scholar. We
found 465 literature search results with “diabetic car-
diomyopathy” as a keyword and 36 literature search re-
sults with its “novel treatment”. We limited our research
for literature written in the English language and for
which the access to full text was available. The selection of
the literature results reviewed in the manuscript was per-
formed qualitatively by authors. Screening for duplicates
was done automatically using citation manager software,
Mendeley.
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RESULTS

Diabetes mellitus and Heart Failure

There is a strong association between DM and HF. There
are 2 forms of heart failure described in DM: HFrEF
(LVEF < 40%) and HFpEF (LVEF 41-49%). The preva-
lence of DM among patients with HFpEF is around 45%.
A large cohort study of 1.9 million people with DM
found that the most common CVD events were heart
failure (14.1%) and peripheral arterial disease (PAD)
(16.2%).8 Based on a population-based study in Reyk-
javik, impaired glucose regulation in diabetes mellitus is
also associated with a risk of congestive heart failure. The
prevalence of glucose abnormalities and heart failure in-
creased with age. This study supports the suggestion that
glucometabolic abnormalities confer risk for heart failure
progression.9 While in T1DM, a cohort study found that
a 1% increase in HbA1C (hemoglobin A1C) was associ-
ated with a 30% increased risk of developing HF, the risk
of heart failure increased with several factors, such as age,
duration of diabetes, and other factors.1?

Patients with HF can also have an increased risk for
new-onset DM. In a cohort study, HF severity was asso-
ciated with a greater likelihood of developing DM.!1 An-
other study reported that patients with a history of HF
have a 2-fold increased risk of developing diabetes mel-
litus within 3-4 years independent of age, gender, and
other comorbidities (e.g. hypertension). They suggest
that HF may cause further worsening of DM status.1?

The correlation between HF and DM is unclear, but
there are possible explanations. Patients with HF have de-
creased cardiac output hence oxygen, insulin, and glucose
distribution to peripheral tissue are also decreased. Due
to impaired blood flow, adrenaline and noradrenaline lev-
els are increased. The increased adrenaline and noradren-
aline are suggested to increase insulin resistance and de-
crease insulin production in the palncreas.13 Cortisol and
catecholamine hormones are also increased thus increas-
ing the blood glucose level. Activation of the sympathetic
systems stimulates gluconeogenesis and glycogenolysis.
The increasing level of catecholamines can also cause in-
sulin resistance.1%

Pathophysiology of Diabetic Cardiomyopathy

Various mechanisms are thought to be responsible for
heart failure associated with diabetes mellitus and it is
not limited to diabetic cardiomyopathy. Abnormal extra-
cellular matrix, lipotoxicity to the myocardium, increase
in oxidative stress and inflammation, and mitochondrial
dysfunction are some of the mechanisms causing heart
failure. Increased levels of glucose residues and metabo-
lites upregulate the production of advanced glycation end
products (AGEs), which can affect cardiomyocytes and

endothelial cells.15 Figure 1 outlines some of the mecha-
nisms thought to contribute to diabetic cardiomyopathy.

Free Fatty Acid Accumulation

Free fatty acids are increased due to diabetes mellitus and
obesity accumulating in the adipose tissue mainly as
triglycerides. Fatty acid intake and (-oxidation are in-
creased to maintain sufficient levels of ATP production
but overtime (-oxidation cannot adequately metabolize
all incoming fatty acids resulting in the accumulation of
free fatty acid (FFA).16 Ectopic fat that accumulates in or-
gans other than the adipocytes of visceral fat and subcuta-
neous fat causes the dysfunction of cells and organs, such
as the liver, pancreatic 3 cells, the skeletal muscle, and
myocardium, through the deterioration of mitochondrial
function. This condition is called lipotoxicity.1”
Fataccumulation is present in the heart and in the my-
ocardium. Pericardial fat is divided into two types, peri-
cardial fat located on the outside and epicardial fat lo-
cated on the inside. High epicardial fat mass has been
reported to be an independent predictor of the develop-
ment of coronary artery disease.l” The myocardial FFA
build-up leads to decreased myocardial energy produc-
tion, reduced myocyte contractility, and lipoapoptosis.18

Altered Calcium Signaling

Calcium (Ca?*) has a vital role in myocardial contraction.
During an action potential, membrane depolarization-in-
duced an initial Ca®* signal so there is a Ca®* influx to
activate the Ca®* channel and finally activate myofibrils
to contract. In type 1 diabetes, there is a reduced CaZt
influx due to reduced expression of sarcolemmal L type
Ca®* channels (LTCC) where Ca®* ions pass through.!”
The intracellular [Ca2*] is decreased as well as the systolic
rate of [Ca*] rise and decay.

In type 2 diabetes mellitus (T2DM), similar to
T1DM, there is also a diminished LTCC density and
Ca?* current (c,) density.2%23 Some studies also re-
ported a depressed ryanodine receptor (RyR), a Ca?* re-
lease channel>42¢ RyR activity can also be regulated
during acute hyperglycemia. Hyperglycemia leads to O-
Glc-NAcylation of proteins such as CaMKII which plays
a key role in the regulation of excitation-contraction cou-
pling. A recent study showed that a sudden increase of
glucose or O-linked N-acetylglucosamine is directly re-
sponsible for CaMKII-dependent diastolic sarcoplasmic
reticulum (SR) Ca®* leak from the RyRs leading to con-
sequent SR Ca?* load depletion which is consistent with
the increase of SR Ca®* leak observed in different early
stage of diabetes.?”
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Figure 1. Pathophysiologic mechanisms of diabetic cardiomyopathy

Increased Oxidative stress

Chronic hyperglycemia leads to the generation of oxida-
tive stress in pancreatic P-cells.?® Hyperglycemia pro-
motes the overproduction of reactive oxygen species by
the mitochondrial electron transport chain and exacer-
bates the formation of AGE.2%-30 High glucose levels are
metabolized into sorbitol through the polyol pathway
with NADPH (nicotinamide adenine dinucleotide phos-
phate) and NAD™ (nicotinamide adenine dinucleotide).
Increased activity of polyol pathway causing an elevation
in NADH/NAD ratio that leads to overproduction of
reactive oxygen species (ROS).3! AGEs have a dominant
presence in the diabetic heart, and it is possible that AGE
also has a role in the pathogenesis of diabetic cardiomy-
opathy. AGE receptor (RAGE) is a member of the im-
munoglobulin superfamily of cell surface molecules and
the binding of ligands to RAGE stimulates various sig-
naling patthways.z’2 The AGE-RAGE interaction stimu-
lates NADPH oxidase-1 which contributes to reactive
oxygen species production in diabetes.33 All this leads to
cardiac fibrosis and hypertrophy.-”4 Hyperglycemia, ox-
idative stress, and the hexosamine biosynthetic pathway
that provide substrate for proteoglycan synthesis and for
O-linked glycosylation of certain proteins are associated
with cardiomyocyte apoptosis.35

Mitochondrial Dysfunction

The heart is an organ that greatly depends on mitochon-
dria as this organelle makes up to 1/3 of cardiac volume
and produces adenosine triphosphate (ATP) from the ox-
idation of fatty acid and glucose.36 In a diabetic state
where the insulin production or action is reduced, the mi-
tochondria will use fatty acid as a source to make ATP
instead of glucose which can also increase ROS.3” Dys-

Myocardial
lipotoxicity

Abnormal
extracellular
matrix

Mitochondrial

dysfunction

functional calcium handling, where there is an excessive
calcium influx or reduced calcium efflux can trigger the
opening of mitochondrial permeability transition pore
(mPTP), leading to mitochondrial dysfunction.38
Increased oxidative stress and mitochondrial dysfunc-
tion can cause cells, protein, and nucleic acid destructions
that lead to cell apoptosis. The heart consumes large
amounts of ATP therefore it has a rather low ATP re-
serve. In the pathological condition, however, fatty acids
only provide 50-70% energy needed by the human
heart.3? Mitochondria can switch the source of ATP pro-
duction depending on the availability of the nutrients.
Insulin also plays a role in this selection of energy
sources.“0 High consumption of ATP depletes the ATP
reservoir, and low ATP production may lead to decreased

cardiac function.*1

Structural changes

Being in a chronic hyperglycemic state may alter the
structure and function in the myocardium. In the patient
with DM, there seems to be an increase in LV mass, and
based on a study, a 1% rise in HbA1C level contributes
to a 3.0 gr increase in LV mass, although further studies
need to be done to assess the duration of elevated
HbA1C that may contribute to the increased of LV
mass.*2 LV hypertrophy in patients with DM is mainly
eccentric although both forms of hypertrophy can be pre-
sent.*3 As the disease progresses, remodeling can also
shift from eccentric to concentric.** Another hallmark of
diabetic cardiomyopathy is left ventricular diastolic dys-
function.*>4¢ The initial characteristic of diastolic dys-
function in patients with DM are prolonged and delayed
LV filling and LV relaxation.®”

On a cellular level, an extracellular matrix (ECM) re-
modeling leads to myocardial fibrosis, usually in the later

Journal of Brown Hospital Medicine 3


https://bhm.scholasticahq.com/article/37850-diabetic-cardiomyopathy-pathophysiology-and-novel-therapies/attachment/97383.png

Diabetic Cardiomyopathy: Pathophysiology and Novel Therapies

stage of the disease. In the early stage, myocytes appear to
be hypertrophic rather than fibrotic.48 Collagen deposits
can also be seen as a result of apoptotic myocyte death
and impaired collagen degradation from glycosylation of
lysine residues on collagen.*?

Diagnosis

There are two stages of diabetic cardiomyopathy; the
early stage is characterized by left ventricular concentric
hypertrophy, increased myocardial stiffness, increase in
atrial filling pressure, and impaired diastolic function;
while the late stage is characterized by an increase in car-
diac fibrosis, further impairment in diastolic function,
and appearance of systolic dysfunction. There are no dis-
tinct criteria nor biochemical markers or physical char-
acteristics for diagnosing diabetic cardiomyopathy. The
pathological changes during the disease progress are often
asymptomatic, so the only way to detect any changes re-
garding the disease is through further examination. Tis-
sue doppler imaging and strain rate imaging may be used
to assess LV dysfunction during stress testing. The ratio
of the medial mitral annulus (¢') with early passive trans-
mitral inflow velocity (E) has been shown to be a reliable
index of left ventricular filling pressure and is a useful
prognostic biomarker in diabetic patients.SO

Although it is often said that patients with diabetic
cardiomyopathy usually have diastolic dysfunction, ex-
amination using strain imaging and cardiac magnetic res-
onance (CMR) has detected a subtle presence of systolic
dysfunction and reduced longitudinal contractility with-
out discrete diastolic dysfunction.51 Magnetic resonance
(MR) spectroscopy is a novel diagnostic tool that can
identify myocardial metabolic changes, such as quantify-
ing myocardial triglyceride content. Assessment of inter-
stitial fibrosis and steatosis by using delayed gadolinium
enhancement cardiac MRI is possible but it is still under-
going investigation.52

Novel glucose-lowering drugs for Heart Failure

As mentioned above, DM is associated with poor prog-
nosis and longer hospitalization for HF. Thus, lowering
the glycemic index has become a goal in heart failure treat-
ment. New classes of antihyperglycemic drugs such as
glucagon-like peptide-1 (GLP-1) analog and sodium-glu-
cose cotransporter 2 inhibitors (SGLI2i) have been
shown to reduce cardiovascular mortality and improve
glycemic control.>35% However, the treatment of T2DM
patients with HF using GLP-1 analogs remains contro-
versial. Several studies in DM patients have found that
GLP-1 analogs did not affect any major adverse cardio-
vascular event (MACE).>>5¢ Other trials showed that
GLP-1 analogs have a significantly lower cardiovascular
mortality rate, nonfatal myocardial infarction, or nonfa-
tal stroke, improve lipotoxicity, and also protects cardiac

function in T2DM patients.57'59 On the other hand,
there are also studies that concluded the liraglutide (a
GLP-1 analog) worsened the cardiac outcomes and sig-
nificantly increase MACE.60-61

The EMPA-REG OUTCOME trial (The Em-
pagliflozin Cardiovascular Outcome Event Trial in Type
2 Diabetes mellitus Patients—Removing Excess Glucose)
showed that T2DM patients who received empagliflozin,
a selective SGLT2i, have a lower rate cardiovascular mor-
tality, hospitalization for heart failure, nonfatal myocar-
dial infarction, or nonfatal stroke.6? Canagliflozin, an-
other SGLT2i drug, also showed a significantly reduced
risk of mortality due to cardiovascular causes, nonfatal
myocardial infarction, or nonfatal stroke but had a
greater risk of stmputattion.é3 SGLT2i also have blood
pressure (BP) lowering properties but are not as effective
as other antihypertensive drugs such as angiotensin-con-
verting enzyme (ACE) inhibitors.* It is found that em-
pagliflozin was associated with reduced systolic and di-
astolic blood pressure compared with placebo (who
received an additional glucose-lowering medicine and also
antihypertensive medicine, including diuretics).®? On the
other hand, there was no significant difference in systolic
and diastolic blood pressure in the use of Canagliflozin
compared to placebo.®3 SGLT2i worked proportionally
with the ambient glucose concentration, hence it may
have a greater effect on individuals with poor glycemic
control. However, the effect of SGLT2i on blood pressure
doesn’t seem to be consistent with the blood glucose
level, lowering systolic 4-6 mmHg and diastolic
1—2mmHg.64

The incretin-based drugs such as dipeptidyl pepti-
dase-4 (DPP-4) inhibitors have no beneficial effect on HF
but were shown to reduce the occurrence of hepatic
steatosis.®>¢¢ Other trials have shown that DPP-4 in-
hibitor was not superior to plalcebo.67’69 The ESC-EASD
2019 guideline only recommends DPP-4 inhibitors when
HbA1C targets are not reached after using SGLT2i, met-
formin, and/or GLP-1 receptor agonists.70 The DPP-4
inhibitor that is not recommended for patients with or
with risk of HF is saxagliptin as it can increase the risk for
hospitalization for HF (HHF) and also increase the HF
incidence in T2DM patients.71

Novel Targeted therapies for diabetic
cardiomyopathy

MicroRNA (miRNA) is reported to have a role in the
pathophysiology of diabetic cardiomyopathy, such as in-
crease ROS production and promote cardiomyocyte
apoptosis.”>”> Anti-miRNA and miRNA mimics are ac-
tively studied and developed to treat cardiomyopa-
thy.76'78 Antioxidant therapies can be used for preven-
tion and intervention for diabetic calrdiornyopalthy.79'85
Phenolic acids are beneficial for mitochondrial dysfunc-

tion as the protective agent of the heart against mitochon-
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drial dysfunction and are obtained from plants such as
nuts and fruits and thus can be added to the diets.8¢ Bile
Acids are synthesized by cholesterol, bind and activate
Farnesoid X Receptor (FXR) that leads to reduction of
inflammation and have a regulatory effect on autophagy
and mitochondrial function and can also suppress oxida-
tive stress that showing a potential therapeutic effect.8”
However further studies are still ongoing.

CONCLUSION

There is a strong association between diabetes mellitus
and heart failure incidence. Patients with heart failure
have increased risk for new-onset DM. The proposed
mechanisms underlying the pathophysiology of diabetic
cardiomyopathy include lipotoxicity related to free fattty
acid accumulation, altered calcium signaling, increased
oxidative stress due to chronic hyperglycemia leading to
mitochondrial dysfunction and alteration of structure
and function in the myocardium. SGLT2i and novel tar-
geted therapies for diabetic cardiomyopathy are promis-

ing treatments but require further investigation. It is im-
portant  for to be aware of diabetic
cardiomyopathy in order to improve cardiovascular out-
comes in diabetes mellitus.
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