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Abstract: Here, we have presented the development of a systems pharmacokinetics-pharmacodynamics
(PK-PD) model for antibody-drug conjugates (ADCs), which uses intracellular target occupancy
to drive in-vivo efficacy. The model is built based on PK and efficacy data generated using
Trastuzumab-Valine-Citrulline-Monomethyl Auristatin E (T-vc-MMAE) ADC in N87 (high-HER2) and
GFP-MCF7 (low-HER2) tumor bearing mice. It was observed that plasma PK of all ADC analytes was
similar between the two tumor models; however, total trastuzumab, unconjugated MMAE, and total
MMAE exposures were >10-fold, ~1.6-fold, and ~1.8-fold higher in N87 tumors. In addition, a prolonged
retention of MMAE was observed within the tumors of both the mouse models, suggesting intracellular
binding of MMAE to tubulin. A systems PK model, developed by integrating single-cell PK model with
tumor distribution model, was able to capture all in vivo PK data reasonably well. Intracellular occupancy
of tubulin predicted by the PK model was used to drive the efficacy of ADC using a novel PK-PD model.
It was found that the same set of PD parameters was able to capture MMAE induced killing of GFP-MCF7
and N87 cells in vivo. These observations highlight the benefit of adopting a systems approach for ADC
and provide a robust and predictive framework for successful clinical translation of ADCs.

Keywords: Antibody-drug conjugates; cellular pharmacokinetics; tumor pharmacokinetics; PK-PD
model; in vivo efficacy; Trastuzumab-vc-MMAE; tubulin occupancy

1. Introduction

An ability to deliver potent chemotherapeutic agents to antigen expressing tumors via targeted
monoclonal antibodies (mAbs) make antibody-drug conjugates (ADC) an attractive platform for
anticancer drug development [1]. These molecules present an opportunity to expand the therapeutic
index of chemotherapeutic agents, by enhancing their exposure at the site-of-action in the tumor
and reducing the exposure inside toxicity prone normal tissues. With the advent of novel linker
technologies [2], site-specific conjugation [3], and design of synthetic payloads (e.g., PBDs) [4],
the clinical landscape of ADC is exponentially increasing with four drugs approved by the
FDA and more than 80 molecules in clinical development [5]. While ADCs are very promising,
their clinical success is not always guaranteed, and often challenged by lack of efficacy and severe
dose-limiting toxicities [6]. Consequently, development of robust quantitative methods, such as
pharmacokinetics-pharmacodynamics (PK-PD) modeling and simulation (M&S), can be very valuable
for guiding a cost and time-effective development of ADCs.
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There are several PK-PD models reported in the literature for ADCs [7,8], whose ability to predict
novel scenarios and facilitate preclinical-to-clinical translation varies. In general, multiscale systems
PK-PD models are preferred over empirical models [9,10], as they can incorporate key elements of
the underlying system, which ultimately imparts quantitative and mechanistic rigor to these models.
An ability to accurately characterize cellular disposition of ADCs is an essential component of these
models, as this process is integral for successful delivery of payload into the tumor cells and subsequent
cytotoxic effects. In fact, using multiple ADC molecules we have demonstrated that it is important to
accurately characterize cellular disposition of ADCs for successfully predicting tumor exposures and
clinical outcomes of ADCs using PK-PD M&S [11–13].

We have recently developed a single cell PK model for ADCs using Trastuzumab-Valine-
Citrulline-Monomethyl Auristatin E (T-vc-MMAE) as a tool for ADC [14]. The model is mathematically
unique in a sense that it could predict the catabolic fate of an ADC within a single cancer cell, among a
growing population of tumor cells. Using known system parameters, such as target antigen expression,
ADC binding affinity, internalization rate and intracellular degradation rate, the model was able to
effectively characterize the relationship between extracellular ADC concentrations and intracellular
exposure of different ADC analytes, in high and low HER2 expressing cells (i.e., HER2-high N87 and
HER2-low GFP-MCF7 cells). The model was also expanded to include two different populations
of cells in a coculture system, to characterize the bystander effect of ADCs. A unique in-vitro
PK-PD relationship was developed using this model, which utilized intracellular occupancy of
pharmacological target (tubulin) by the payload (MMAE) to characterize direct and bystander killing
of cancer cells in a coculture system [15,16].

In this paper, we have extended the application of the single cell ADC PK-PD model towards
in-vivo system. The in vivo PK model was developed by integrating the single cell PK model with
our previously published tumor disposition model for ADCs [11–13]. Tumor disposition model was
further integrated with a cell-level PK-PD model to develop an in-vivo systems PK-PD framework,
where occupancy to tubulin by MMAE was used to drive the killing of tumor cells. The developed
model was validated with the help of experimental data. In vivo PK studies were conducted using
T-vc-MMAE ADC in GFP-MCF7 and N87 xenograft mouse models to obtain plasma and tumor PK
of different ADC analytes (i.e., total trastuzumab, free MMAE, and total MMAE). In addition, tumor
growth inhibition (TGI) studies were conducted in both xenograft models using different dose-levels
of T-vc-MMAE to establish dose-response relationship for the ADC. All the experimental data was
mathematically integrated using the proposed in-vivo systems PK-PD model for ADCs.

2. Materials and Methods

2.1. Cell Lines

The two HER2-expressing cell lines utilized for the development of tumor bearing mouse models
were NCI-N87 cells (human gastric carcinoma cells) and green fluorescent protein (GFP) transfected
MCF7 cells (breast cancer cells). HER2 expression for N87 and GFP-MCF7 cells has been reported to be
around 950,000 and 55,000 receptors per cell, respectively [14], which makes them appropriate model
systems for investigating high and low HER2 expressing tumors.

2.2. Tool ADC

The tool ADC utilized for current investigation was Trastuzumab-vc-MMAE, which was
synthesized and characterized in-house. Commercially available Trastuzumab (Herceptin®, Genentech,
South San Francisco, CA, USA) was conjugated with valine-citrulline MMAE (drug-linker solution)
using random conjugation method, resulting in a heterogeneous formulation with an average drug:
antibody ratio (DAR) of ~4. Detailed protocol for synthesis and characterization of T-vc-MMAE has
been published before [14,16].
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2.3. Development of Xenograft Mouse Models

Male severe combined immunodeficient (NOD.CB17-Prkdcscid/J) mice were purchased at the age
of six weeks from Jackson Laboratory, ME, USA. After acclimation to their new housing conditions
for two weeks, mice were subcutaneously implanted in the right dorsal flank with ~10 million tumor
cells (N87 or GFP-MCF7) suspended in the growth medium with no FBS. To facilitate faster growth of
GFP-MCF7 tumors, mice were supplemented with 1µg of 17β-estradiol valerate (Sigma®, St. Louis,
MO, USA) in 50 µL of pharmaceutical grade peanut oil (Sigma®), by subcutaneous injection every
4 days [17] until the termination of the study. All procedures involving animals, including housing
and care, method of euthanasia, and experimental protocols were conducted in accordance with the
Institutional Animal Care and Use Committee (IACUC) at State University of New York at Buffalo.
The permission for the animal experiments was provided by IACUC under the approval number
PHC26114Y on 1 October 2014.

2.4. Development of Bioanalytical Techniques

To characterize the plasma and tumor PK of T-vc-MMAE, three different bioanalytical methods
were developed to measure total trastuzumab, total MMAE (conjugated and unconjugated), and free
MMAE (unconjugated) in plasma and tumor matrices. A sandwich ELISA method was used to
measure total intact trastuzumab levels, whereas LC-MS/MS based method was used to measure free
(unconjugated) MMAE in plasma and tumor. A forced deconjugation method was utilized to release
antibody-conjugated MMAE in a biological sample, which was then analyzed using the LC-MS/MS
method to determine total MMAE in plasma and tumor samples. For bioanalysis, weighed tumor
samples were homogenized in DI water with 1% protease inhibitor cocktail using a tissue homogenizer
to a final concentration of 300 mg/mL. A typical blood sample was collected in tubes precoated with
K2EDTA at 4 ◦C followed by centrifugation for 15 min at 1000 RPM. Plasma and tumor lysate sample
were then divided into three groups associated with detection of each analyte. Standard curves were
generated using plasma and tumor lysate samples from untreated animals and spiking with different
concentrations of either trastuzumab (for ELISA) or MMAE (for LC-MS/MS). Detailed methodology,
development, and validation of all three bioanalytical techniques have been published before [14].

2.5. Tumor Pharmacokinetic Studies

A total of 18 SCID mice were equally divided into two groups, which were inoculated with either
GFP-MCF7 or N87 cells. Treatment was initiated four to six weeks after tumor implantation, when the
tumors were ~500 mm3. All the animals from each group were treated with single 10 mg/kg dose of
T-vc-MMAE intravenously. At 24 h, 72 h, and 168 h after ADC administration, three animals from
each group were sacrificed to collect blood and tumor samples. In addition, a blood sample was also
collected from each animal at 10 min after ADC dose via retro-orbital sampling. Blood samples were
immediately processed to extract plasma, and all the plasma and tumor samples were stored at −80 ◦C
until further analysis.

2.6. Tumor Growth Inhibition Studies

A total of 56 SCID mice were equally divided into two groups, which were inoculated with either
GFP-MCF7 (Group A) or N87 (Group B) cells. Treatment with different dose-levels of T-vc-MMAE was
initiated once the tumors reached ~350−400 mm3. On day 0, mice from each group (A and B) were
further randomly divided into four equal subgroups (n = 7), either control (A1 and B1) or treatment
(A2-4 and B2-4). GFP-MCF7 bearing mice were injected with a single intravenous dose of 3 mg/kg
(A2), 5 mg/kg (A3) or 10 mg/kg (A4) ADC. N87 bearing mice were injected with a single intravenous
dose of 1 mg/kg (B2), 3 mg/kg (B3), or 10 mg/kg (B4) ADC. Tumor volumes were calculated based on
tumor length (L) and breadth (B) using the following formula: 1

2 × L × B2. Tumor volumes in all the
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groups were measured twice a week until either tumor volume exceeded the permissible limit or was
completely regressed for a prolonged duration of time (i.e., ~3 week).

2.7. Development of In-Vivo systems PK-PD Model for T-vc-MMAE ADC

2.7.1. Plasma PK Model for ADC

Systemic PK of T-vc-MMAE was characterized using our previously published plasma PK
model [10–12], a schematic that is described in Figure 1 and Figure S1. The biexponential profile of
total trastuzumab and T-vc-MMAE is characterized using a 2-compartment model with linear catabolic
clearance (CLADC) from the central compartment. The distribution of T-vc-MMAE to peripheral
tissues is characterized using a distributional clearance parameter, CLDADC. An additional first
order elimination rate constant (KP

dec), coined as ‘non-specific deconjugation rate’, is incorporated
in the central compartment to characterize non-specific deconjugation of MMAE from the ADC in
the systemic circulation. This rate also governs first order decline in average DAR value over the
time. Both elimination and deconjugation pathways (CLADC and KP

dec) releases free (unconjugated)
MMAE, and hence, becomes the formation pathways for MMAE. The disposition of free MMAE is also
characterized using a two-compartment model, which is parameterized with linear systemic clearance
(CLDrug) and distributional clearance (CLDDrug).
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Figure 1. A schematic diagram of the systems pharmacokinetics-pharmacodynamics
(PK-PD) model for antibody-drug conjugates (ADCs). Plasma PK: Disposition of
Trastuzumab-Valine-Citrulline-Monomethyl Auristatin E (T-vc-MMAE) in systemic and peripheral
spaces is characterized using a two-compartment model with linear clearance from the central
compartment. Processes associated with non-specific shedding of MMAE and catabolic clearance of
T-vc-MMAE contribute to the formation of unconjugated MMAE, which is also characterized using a
two-compartment model with distribution to peripheral tissues and linear clearance from the central
compartment. Tumor Distribution: the distribution of T-vc-MMAE and unconjugated MMAE was
assumed to be driven from their central compartment to tumor extracellular space using two diffusive
processes, i.e., surface and vascular exchange. Single Cell Disposition: once in the extracellular space,
T-vc-MMAE was assumed to bind to HER2 receptors and internalize into the endosomal/lysosomal
space of each cell. Upon enzymatic degradation and linker cleavage, unconjugated MMAE was
assumed to release in the cytoplasmic space and either bind to intracellular tubulin or efflux out in
the extracellular space. Single Cell Killing: occupancy of intracellular tubulin with MMAE drives the
killing of cells and shuttles the growing cells into non-growing phases. Upon the death of each cell,
the intracellular content becomes part of tumor extracellular space, which can distribute back into
other cells or diffuse out in the systemic circulation.
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2.7.2. Tumor Distribution Model for ADC

Distribution of T-vc-MMAE and released MMAE in solid tumor is characterized using a tumor
disposition model, of which the schematic is described in Figure 1 and Figure S2. Two distinct exchange
processes (i.e., surface and vascular exchange) were incorporated to describe the mechanism of
T-vc-MMAE and free MMAE distribution from systemic circulation to tumor extracellular space. Due to
high interstitial pressure and lack of functional lymphatic system within the tumor microenvironment,
it was assumed that the disposition of ADC and released drug in the tumor was limited to diffusive
processes. Diffusion across the tumor surface was termed as the surface exchange and permeability
across the tumor vasculature was termed as vascular exchange. It was assumed that size of
the tumor determined the rate and pathway of ADC/released drug exchange with the tumor,
where surface exchange predominates for smaller tumors and vascular exchange was more prominent
for larger tumors. Since our PK-PD model also accounted for ADC-induced tumor regression,
the relative contribution of these pathways towards sustaining ADC and released drug exposure
within extracellular space varied with time. The diffusivity and permeability parameters for ADC
and released drug were calculated using molecular size [18–20]. In addition, since the ADC/released
drug only distribute to certain fraction of the whole tumor, the effective higher concentrations of
ADC/released drug in the tumor were calculated using the “void volume (ε)” parameter, which is
unique for the ADC and the released drug [11–13].

2.7.3. Single Cell Disposition Model for ADC

Once in the tumor extracellular space, the disposition of T-vc-MMAE and released MMAE within
each tumor cell is characterized using our single-cell disposition model for ADCs [14]. The key
mechanistic components incorporated within the model includes T-vc-MMAE binding kinetics
(KADC

on and KADC
off ) to HER2 receptors on tumor cell, followed by internalization (KADC

int ) and intracellular
degradation (KADC

deg ) in the endosomal/lysosomal space, leading to the release of free (unconjugated)
MMAE in the cytoplasm. The released MMAE within the cytoplasmic space is assumed to either
bind to intracellular tubulin (KTub

on and KTub
off ) or exchange with the extracellular space using influx

(KDrug
in ) and efflux (KDrug

out ) processes. To conserve the mass-balance within the dynamic system of
growing tumor cells, a dilution factor is incorporated within the single cell equations which renders
dilution of intracellular content (either intact ADC or released drug) at the rate equivalent to the growth
rate (KTumor

g ) of each tumor-type. With an assumption of ~108 tumor cells per gram of tumor [21],
simultaneous interaction of T-vc-MMAE and free MMAE in the extracellular and intracellular space of
each tumor cell is accounted for. The equations pertaining to the growth of the tumor (TV, in L) in the
absence of any tumor growth inhibition are provided below (Equations (1) and (2)):

d(TVmm3)

dt
=

0.693
DTtumor · TVmm3IC = TVmm3 (0) (1)

TVmm3 = TV·106RTumor =

[
3· TV·1000

4π

]1/3
(2)

Equations associated with plasma PK and tumor distribution of T-vc-MMAE (in amounts) and
unconjugated MMAE (in concentrations) are provided below (Equations (3–7)):

d(X1ADC)
dt = −CLADC

V1ADC
·X1ADC − CLDADC

V1ADC
·X1ADC + CLDADC

V2ADC
·X2ADC − KP

dec·X1ADC

−
(

X1ADC
V1ADC

− ADCex
f

εADC

)
·TV·

(
2·PADC·RCap

R2
Krogh

+ 6·DADC
R2

Tumor

) (3)

d(X2ADC)

dt
=

CLDADC

V1ADC
·X1ADC − CLDADC

V2ADC
·X2ADC (4)
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d(C1Drug)
dt = − CLDrug

V1Drug
·C1Drug −

CLDDrug
V1Drug

·C1Drug +
CLDDrug
V1Drug

·C2Drug +
(KP

dec·X1ADC·DAR)
V1Drug

+
CLADC·DAR· X1ADC

V1ADC
V1Drug

−
(

C1Drug −
Drugex

f
(TV·εDrug)

)
·
(

2·PDrug·RCap

R2
Krogh

+
6·DDrug

R2
Tumor

) (5)

d
(
C2Drug

)
dt

=
CLDDrug

V2Drug
·C1Drug −

CLDDrug

V2Drug
·C2Drug (6)

d
(
DAR

)
dt

= −KP
dec·DAR (7)

The initial conditions for Equations (3) and (7) are DoseADC (injected intravenous dose of ADC)
and DAR(0) (initial average DAR value of the ADC in the formulation), respectively. The initial
conditions for the rest of equations are zero. Equations associated with the concentration of T-vc-MMAE
and amounts of unconjugated MMAE in the tumor extracellular space are listed below (Equations (8)
and (9)):

d(ADCex
f )

dt =
(

X1ADC
V1ADC

− ADCex
f

εADC

)
·
(

2·PADC·RCap

R2
Krogh

+ 6·DADC
R2

Tumor

)
+
(
−KADC

on ·ADCex
f

εADC ·
(

AgEx − ADCCell
b

)
+ KADC

off ·ADCCell
b

)
·NCTumor·SF

TV

−Kp
dec·ADCex

f

(8)

d(Drugex
f )

dt =

(
C1Drug −

Drugex
f

(TV·εDrug)

)
·TV·

(
2·PDrug·RCap

R2
Krogh

+
6·DDrug

R2
Tumor

)
+ Kp

dec·ADCex
f

·DAR·TV +
(

Kp
dec·ADCCell

b ·DAR + KDrug
out ·DrugCell

f

)
·NCTumor·SF

−KDrug
in ·NCTumor·

(
VCell

TV·εDrug

)
·Drugex

f

(9)

Equations associated with the cellular disposition of T-vc-MMAE and released MMAE in the form of
the number of molecules of each ADC species in a single tumor cell, are provided below (Equations (10–13)):

d(ADCCell
b )

dt = KADC
on ·ADCex

f
εADC ·

(
AgEx − ADCCell

b

)
− KADC

off · ADCCell
b −

(
Kp

dec + KADC
int

)
·ADCCell

b

− 0.693
DTTumor ·ADCCell

b

(10)

d
(

ADCCell
lyso

)
dt

= KADC
int ·ADCCell

b − KADC
deg ·ADCCell

lyso −
0.693

DTTumor ·ADCCell
lyso (11)

d(DrugCell
f )

dt = KADC
deg ·ADCCell

lyso·DAR − KDrug
out ·DrugCell

f − KTub
on ·DrugCell

f ·
(

TubTot − DrugCell
b

)
+KTub

off ·DrugCell
b + KDrug

in ·
(

VCell

TV·εDrug

)
·
(

Drugex
f

SF

)
− 0.693

DTTumor ·DrugCell
f

(12)

d
(

DrugCell
b

)
dt

= KTub
on ·DrugCell

f ·
(

TubTot − DrugCell
b

)
− KTub

off ·DrugCell
b − 0.693

DTTumor ·DrugCell
b (13)

The initial conditions for Equations (8–13) are zero.

2.7.4. Characterization of Intracellular Occupancy of Tubulin with MMAE

Upon integration of the tumor distribution model with a single cell PK model for T-vc-MMAE,
the percent occupancy of tubulin by MMAE inside each tumor cell can be calculated (Equation (14)) by
dividing the number of tubulin-bound MMAE molecules with the number of total tubulin molecules
inside each cell:

OccTub =

(
DrugCell

b

Tubtotal

)
·100 (14)
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2.7.5. Linking Intracellular Occupancy of Tubulin to Tumor-Growth Inhibition

TGI data obtained at different ADC dose levels were utilized to develop the in vivo systems
PK-PD model shown in Figure 1. The integrated tumor distribution and cell-level PK model was
used to derive intracellular occupancy of tubulin by MMAE molecules released in the cytoplasm.
The intracellular occupancy was then utilized to drive the tumor growth inhibition using a non-linear
killing function, which shuttles the growing tumor cells into non-growing phases, eventually leading to
their death. This phenomenon is often depicted in the literature as ‘cell-distribution model’ [22]. It was
also assumed that among all different cell-distribution populations (growing or non-growing) of cells,
the cellular processing of ADC was active, and upon the death of tumor cells the intracellular content
(either intact T-vc-MMAE or free MMAE) comes out and becomes part of the tumor extracellular space.
The released intracellular content was allowed to re-distribute into other cancer cells or diffuse out of
the tumor into the systemic circulation via surface or vascular exchange processes (Figure 1).

The resulting equations characterizing tumor growth and killing are provided below (Equations
(15–21)):

Growth rate:

Kg =

(
0.693

DTtumor

)
(15)

Killing rate:

Kill =
{

Kmax·(Occtub)
γ

(KC50)γ + (Occtub)
γ

}
(16)

d
(

TV1
mm3

)
dt

= (Kg − Kill)·TV1
mm3 (17)

d
(

TV2
mm3

)
dt

= Kill·TV1
mm3 −

1
τ
·TV2

mm3 (18)

d
(

TV3
mm3

)
dt

=
1
τ
·
(

TV2
mm3 − TV3

mm3

)
(19)

d
(

TV4
mm3

)
dt

=
1
τ
·
(

TV3
mm3 − TV4

mm3

)
(20)

TVmm3 = TV1
mm3 + TV2

mm3 + TV3
mm3 + TV4

mm3 (21)

The equations for the concentration of T-vc-MMAE (Equation (8)) and amount of MMAE
(Equation (9)) in tumor extracellular space were updated to account for the input of intracellular
content from the dying cells in the last transit compartment (TV4

mm3). The resulting equations are
provided below (Equations (22) and (23)):

d(ADCex
f )

dt =
(

X1ADC
V1ADC

− ADCex
f

εADC

)
·
(

2·PADC·RCap

R2
Krogh

+ 6·DADC
R2

Tumor

)
+
(
−KADC

on ·ADCex
f

εADC ·
(

AgEx − ADCCell
b

)
+ KADC

off ·ADCCell
b

)
·NCTumor·SF

TV

−Kp
dec·ADCex

f + 1
τ ·TV4

mm3·105·
(

ADCCell
b + ADCCell

lyso

)
· SF

TV

(22)

d(Drugex
f )

dt =

(
C1Drug −

Drugex
f

(TV·εDrug)

)
·TV·

(
2·PDrug·RCap

R2
Krogh

+
6·DDrug

R2
Tumor

)
+ KP

dec·ADCex
f

·DAR·TV +
(

Kp
dec·ADCCell

b ·DAR + KDrug
out ·DrugCell

f

)
·NCTumor·SF

−KDrug
in ·NCTumor

(
VCell

TV·εDrug

)
·Drugex

f + 1
τ · TV4

mm3·105·(DrugCell
f

+DrugCell
b )·SF

(23)
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3. Parameter Estimation, Model Fitting and Simulations

The model development was conducted sequentially, where first plasma PK of T-vc-MMAE
and unconjugated MMAE was used to estimate the parameters for the systemic PK model of ADC
(Figure S1). Subsequently, the plasma PK parameters were fixed and the model was expanded
to include the tumor distribution and cellular disposition of T-vc-MMAE (Figure S2). The tumor
disposition model was validated using the tumor PK data, where only the parameter related to HER2
expression (Agex) in GFP-MCF7 and N87 tumors was estimated to account for in vivo evolution of
the tumor. The validated tumor distribution model was integrated with the tumor growth inhibition
(TGI) model, to facilitate the estimation of efficacy parameters (i.e., Kmax, KC50, τ and γ) for MMAE
induced cell killing, which were kept the same for both the cell lines. An inter-individual variability
(IIV) was estimated for the killing rate (Kmax) and transit-time (τ) parameters to account for the
considerable variability observed between the animals during the TGI experiments.

Model development and simulation was performed using Berkeley Madonna® (University of
California at Berkeley, Berkeley, CA, USA), and PK data fitting was performed using maximum
likelihood (ML) estimation method of ADAPT-5 software (BMSR, Los Angeles, CA, USA) [23].
The following variance model (Equation (24)) was used:

Var(t) =
(
σintercept + σslope·Y(t)

)2
(24)

The fitting of TGI data was obtained using the Stochastic Approximation Expectation
Maximization (SAEM) algorithm of Monolix version 8 (Lixoft®) [24], where log-normal distribution
was assumed for IIV in Kmax and τ parameters.

4. Results

4.1. Plasma and Tumor PK Studies:

Figure 2 depicts the PK profiles of total trastuzumab, unconjugated MMAE, and total MMAE,
in the plasma and tumor homogenates of GFP-MCF7 (2A) and N87 (2B) xenografts. The plasma PK
profiles of all three analytes were very similar between GFP-MCF7 and N87 xenografts (Figure 2A1
versus Figure 2B1). Based on the non-compartmental analysis (NCA), total trastuzumab eliminated
from the plasma with half-life of ~ 1.4 days in GFP-MCF7 bearing mice versus ~1.2 days in N87
bearing mice. The relatively higher clearance of antibody in SCID mice was attributed to the higher
Fcγ mediated elimination of humanized IgG1 in these mice [25]. Total MMAE (unconjugated +
mAb-conjugated) profiles in plasma eliminated with an approximate half-life of ~0.9 days in GFP-MCF7
bearing mice versus ~0.8 days in N87 bearing mice. The half-life of total MMAE was shorter than
total trastuzumab due to the loss of MMAE from the ADC because of the non-specific deconjugation
process. Unconjugated MMAE demonstrated a similar half-life of ~1.07 days versus ~1.14 days in
GFP-MCF7 and N87 bearing mice. The longer half-life of MMAE is consistent with the formation-rate
limited elimination of unconjugated MMAE.

In the tumor, the elimination half-life of total trastuzumab was ~2.14 days in GFP-MC7 bearing
mice versus ~1.58 days in N87 bearing mice. There was a strong retention of MMAE observed in
both the tumors when compared to the plasma. This retention mainly stems from intra-tumoral
binding of MMAE, which helps MMAE sustain in the tumor for longer duration of time compared
to the plasma. In fact, this observation is consistent with the findings from our previously published
cellular disposition studies of T-vc-MMAE [14], where it was found that MMAE binds to intracellular
tubulin and is retained within the cell for a prolonged period of time. When comparing the ratios
of overall tumor exposure (area under the curve, AUC7d

0 ) of all three analytes between high-HER2
and low-HER2 tumors (Figure 2C), it was observed that there was ~12-fold higher exposure of total
trastuzumab, ~1.6-fold higher exposure of unconjugated MMAE, and ~1.8-fold higher exposure of
total MMAE in N87 tumors compared to the GFP-MCF7 tumors. The diminished differential exposure
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for unconjugated and total MMAE in N87 tumors (compared to the total trastuzumab exposure) also
accentuated the contribution of saturable intracellular binding of MMAE with tubulin.
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Figure 2. Plasma and tumor pharmacokinetic data (mean ± standard deviation) for three analytes
(n = 3): unconjugated MMAE (green), total MMAE (purple), and total trastuzumab (red), after
10 mg/kg intravenous dose of T-vc-MMAE in GFP-MCF7 (A1 and A2) and N87 (B1 and B2) tumor
bearing mice. Comparative tumor pharmacokinetics of 10 mg/kg T-vc-MMAE in GFP-MCF7 (green)
and N87 (red) tumors for total trastuzumab (C1), total MMAE (C2) and unconjugated MMAE (C3).

4.2. Tumor Growth Inhibition Studies:

Figure 3 shows T-vc-MMAE induced tumor growth inhibition in GFP-MCF7 (Figure 3A) and N87
(Figure 3B) xenograft bearing mice, at doses ranging from 1–10 mg/kg. Overall, T-vc-MMAE was more
efficacious in N87 (HER2-high) tumors compared to GFP-MCF7 (HER2-low) tumors. In GFP-MCF7
tumor bearing mice, the highest dose of 10 mg/kg was able to induce tumor stasis for a prolonged
period. Time to achieve >1000 mm3 tumor volume for these mice was found to be 15, 33, and 48 days
for 3, 5, and 10 mg/kg dose groups, compared to nine days for the control group. In N87 tumor bearing
mice, there was an evident tumor regression at the higher dose-levels, and 10 mg/kg dose resulted in
complete regression of the tumor. Time to achieve >1000 mm3 tumor volume for these mice was found
to be 24 and 33 days for 1 and 3 mg/kg dose groups, compared to 24 days for the control group.
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Figure 3. Tumor growth inhibition (TGI) profiles (mean ± standard deviation) in GFP-MCF7 (A) and
N87 (B) tumors of either control (black, n = 7) or after single intravenous administration of T-vc-MMAE
at 1 mg/kg (green, n = 7)), 3 mg/kg (red, n = 7), 5 mg/kg (pink, n = 7), and 10 mg/kg (blue, n = 7).

4.3. Development of the Systems PK-PD Model for ADC:

4.3.1. Plasma PK Model for T-vc-MMAE:

Figure 4A shows the observed and model fitted PK profiles of all three analytes of T-vc-MMAE in
the plasma. The model was able to simultaneously characterize the PK of all three analytes reasonably
well, using a pooled dataset from GFP-MCF7 and N87 tumor bearing mice. Parameters associated
with the systemic disposition of unconjugated MMAE were fixed to previously reported values [11].
The rest of the parameters associated with the systemic disposition of T-vc-MMAE and non-specific
deconjugation of MMAE (KP

dec) were estimated with good precision (Table 1).
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Figure 4. Model fittings for plasma and tumor pharmacokinetics of 10 mg/kg of intravenous 10 mg/kg
T-vc-MMAE (A) Observed and model fitted profiles for plasma pharmacokinetics of total trastuzumab
(red), total MMAE (purple), and unconjugated MMAE (green) in GFP-MCF7 and N87 tumor bearing
mice. (B and C) Observed and model fitted profiles for tumor pharmacokinetics of total trastuzumab
(B1 and C1), free MMAE (B2 and C2), and total MMAE (B3 and C3) in GFP-MCF7 (green) and N87
(red) tumor bearing mice.
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Table 1. A list of literature derived, or model estimated parameters used for the systems PK-PD model
of T-vc-MMAE.

Parameter Definition Value (CV %) Unit Source

Parameters associated with plasma pharmacokinetics of T-vc-MMAE

CLADC, CLDADC
Central and distributional clearances

of T-vc-MMAE
0.033 (4.8%), 0.0585

(12.6%) L/day/Kg Estimated

V1ADC, V2ADC
Central and peripheral volumes of

distribution for T-vc-MMAE
0.084 (7.3%), 0.051

(5.2%) L/Kg Estimated

CLDrug, CLDDrug
Central and distributional clearances

of free MMAE 18.40, 1.84 L/day/Kg [11]

V1Drug, V2Drug
Central and peripheral volumes of

distribution for T-vc-MMAE 0.136, 0.523 L/Kg [11]

KP
dec

Non-specific deconjugation of MMAE
from T-vc-MMAE 0.323 (8.8%) 1/day Estimated

Parameters associated with tumor distribution of T-vc-MMAE

RCap Radius of the tumor blood capillary 8.0 µm [18–20]

RKrogh
An average distance between

two capillaries 75.0 µm [18–20]

PADC, PDrug

The rates of permeability of
T-vc-MMAE and MMAE across the

blood vessels respectively
334, 21000 µm/day [18–20]

DADC, DDrug

The rates of diffusion of T-vc-MMAE
and MMAE across the blood vessels

respectively
0.022, 0.25 cm2/day [18–20]

εADC, εDrug
Tumor void volume for T-vc-MMAE

and MMAE 0.24, 0.44 Unitless [18–20]

RTumor

Radius of a spherical tumor
calculated based on varying tumor

volume (TV) where:
TV(t) = 4

3∗π ∗ R3
Tumor

Dynamic cm

Parameters associated with single cell disposition of T-vc-MMAE

KADC
on

Second order association rate constant
between T-vc-MMAE and HER2

receptor
0.03 1/nM/h [14]

KADC
off

First order dissociation rate constant
between T-vc-MMAE and HER2

receptor
0.014 1/h [14]

KADC
int

Internalization rate of HER2-ADC
complex inside the cell 0.11 1/h [14]

KADC
deg

Intracellular degradation of
T-vc-MMAE in endosomal/lysosomal

space
0.353 1/h [14]

KTub
on

Second order association rate constant
between cytoplasmic MMAE and

intracellular tubulin protein
0.0183 1/nM/h [14]

KTub
off

First order dissociation rate constant
between MMAE-tubulin complex 0.545 1/h [14]

Tubtot Total concentration of intracellular
tubulin in a single cell 65 nM [11,14]

KDrug
in

First order influx rate of MMAE from
extracellular to intracellular space 8.33 1/h [14]

KDrug
out

First order efflux rate of MMAE from
intracellular to extracellular space 0.046 1/h [11]

Agex
N87, Agex

MCF7

Model estimated HER2 receptor
count on each tumor cell in N87 and

GFP-MCF7 tumors in vivo

185,000 (2.8%),
22,400 (3.2%) Numbers/Cell Estimated
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Table 1. Cont.

Parameter Definition Value (CV %) Unit Source

Parameters associated with single cell killing of T-vc-MMAE in tumors

Kmax
First order killing rate of MMAE in

each tumor cell (either GFP-MCF7 or
N87)

1.03 (31.3%) 1/day Estimated

KC50
Percentage of intracellular occupancy
to tubulin by MMAE which leads to

50% of maximum killing
96.8 (13.2%) Percentage Estimated

τ
Transit time associated with the

killing 2.03 Day Estimated

IIVKmax, IIVτ
Inter-subject variability associated

with Kmax and ‘Tau’ values assuming
log-normal distribution

10.16 (47%), 19.4
(32%) Percentage Estimated

γ

Curve-fitting parameter associated
with sigmoidal tubulin

occupancy-killing relationship
15.02 (38.6%) Unitless Estimated

DTN87, DTMCF7 Doubling time of N87 and GFP-MCF7
tumors

13.5 (11.4%), 10.6
(18.7%) Day Estimated

4.3.2. Tumor Distribution Model for T-vc-MMAE

Figure 4B,C shows the observed and model fitted PK profiles of all three analytes of T-vc-MMAE
in GFP-MCF7 (Figure 4B) and N87 (Figure 4C) tumors. The model was able to capture the faster
degrading profile of total trastuzumab (Figure 4(B1,C1)), and prolonged retention of unconjugated
(Figure 4(B2,C2)) and total MMAE (Figure 4(B3,C3)) within the tumor reasonably well. Most of the
parameters associated with tumor and cellular disposition of ADC were fixed a priori, and only the
number of HER2 receptors on GFP-MCF7 and N87 tumor cells were estimated. These values were
found to be 22,400 and 185,000 for GFP-MCF7 and N87 tumors, respectively (Table 1).

4.3.3. Prediction of Intracellular Occupancy of Tubulin

Figure 5 shows model simulated profiles for intracellular occupancy of tubulin (OccTub) by MMAE.
These profiles were generated using the tumor distribution model validated for GFP-MCF7 (Figure 5A)
and N87 (Figure 5B) xenografts, at ADC doses ranging from 1–10 mg/kg. A dose dependent increase in
tubulin occupancy was observed in both xenograft models. At any given dose, the tubulin occupancy
for GFP-MCF7 cells was found to be lower than N87 cells, which was comparable to the trend observed
in the tumor growth inhibition studies. Of note, since plasma PK of all T-vc-MMAE analytes declined
notably at seven days, the extended occupancy of tubulin by MMAE in the tumor is more reflective
of the sustained efficacy of ADC compared to any plasma PK. Accordingly, the tubulin occupancy
(OccTub) values were used to build the systems PK-PD relationship.
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4.3.4. Linking Intracellular Tubulin Occupancy to Tumor Growth Inhibition

Figure 6 shows the observed and model fitted tumor growth inhibition profiles generated
following the treatment of GFP-MCF7 and N87 xenograft baring mice with various doses of
T-vc-MMAE. The observed data was fitted using the complete in vivo systems PK-PD model shown
in Figure 1, where all the parameters associated with plasma and tumor PK of ADC were fixed,
and only the parameters associated with tubulin occupancy induced tumor cell killing were estimated.
The model was able to capture tumor growth inhibition profiles of GFP-MCF7 and N87 xenografts
reasonably well and provided robust estimates of PD parameters (Table 1, Figure 6). The model
estimated KC50 value was 96.8%, which reflects intracellular occupancy of tubulin required to induce
half of the maximum cell killing. This value was very close to the value of 98.3% and 96.1% found for
N87 and GFP-MCF7 cells in our previous in-vitro experiments (i.e., KC50OCC

invitro) [15]. This consistency
validates our model-based hypothesis that a very high intracellular occupancy to tubulin by MMAE
is required to kill a tumor cell. in the in-vivo PK-PD model estimated value of maximum cell killing
rate (Kmax) 1.03 (± 0.1) 1

day was also similar to the value of 0.72 and 0.51 1
day estimated for N87 and

GFP-MCF7 cells in-vitro (KmaxCell
invitro) [15]. This consistency between in-vitro and in-vivo parameters

suggests that one should be able to incorporate the cell-level PK-PD model in the in-vivo setting
without significantly altering model structure and parameters.
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5. Discussion

While ADCs are promising anticancer agents, they are much more challenging to develop
compared to antibodies or small molecules due to their complex PK-PD characteristics [26,27]. Despite
their tremendous growth, failure rates of ADCs in the clinic remain high, especially for solid tumors.
According to a recent statistic, more than 95% of ADCs discontinued from the clinical development in
past few years were indicated for solid tumors [5]. Majority of these failures occur in Phase-I due to the
lack of efficacy or severe toxicity, which highlights the lack of a robust preclinical-to-clinical translation
framework for these molecules. While plasma concentrations of ADCs have been used to drive the
efficacy of ADC in the majority of PK-PD relationships published in the literature, ADC exposure in a
solid tumor is not in rapid equilibrium with systemic circulation [28,29]. In fact, intratumoral exposures
of different ADC analytes could be dramatically different than systemic circulation, suggesting tumor
exposure of ADCs should be used to drive the efficacy against solid tumors. Accordingly, we have
developed a systems PK-PD model for ADCs that creates a quantitative relationship between plasma
and tumor exposures of different ADC analytes and can serve as a robust mathematical tool for
successful preclinical-to-clinical translation of ADCs.

In the past we have demonstrated the utility of an ADC PK model to simultaneously characterize
plasma and tumor disposition of different ADC analytes, using several ADCs, such as SGN-35 [11],
T-DM1 [10,12], A1mcMMAF [13], and Inotuzumab-ozogamicin [30], which differ widely in their
linker, payload, and target properties. A detailed sensitivity analysis of this model has revealed that
accurate characterization of the disposition of ADC within the cancer cells is essential for a priori
predicting the PK of different ADC analytes within the tumor [12]. Consequently, we have recently
developed a single-cell systems PK model for ADCs using T-vc-MMAE as a tool compound. Using
in vitro experiments, we have validated this model, and have demonstrated that the model is capable
of accurately characterizing the relationship between extracellular concentrations of ADC and the
concentrations of different ADC analytes within a cell [14]. This cell-level PK model has also been
utilized to develop an in-vitro PK-PD model, where intracellular occupancy of the target by the released
drug was used to drive the cytotoxicity. With the help of this systems model, it was observed that
once the difference in cellular properties (e.g., antigen expression level) were accounted for, the model
estimated values for released drug potency and efficacy were very similar between different cell
lines [15]. This suggests that accurate characterization of ADC PK parameters leads to more robust
estimation of ADC PD parameters.

In this paper, we have expanded the in-vitro PK-PD model toward the in-vivo system. To support
the PK-PD model development, mouse xenograft models were developed using GFP-MCF7 and
N87 cell lines, and PK and TGI studies were conducted using T-vc-MMAE ADC in these animal
models. It was observed that plasma PK profiles for different ADC analytes (i.e., total trastuzumab,
unconjugated MMAE, and total MMAE) were identical in GFP-MCF7 and N87 tumor bearing mice.
This reflects the minimal contribution of target mediated disposition processes in these animal models
at the selected dose of the ADC. In addition, notably faster clearance of the antibody was observed in
these animals (Figure 2A1,B1), which could be attributed to Fc-gamma receptor mediated clearance
of the antibody in the SCID mice [25]. If desired, this effect can be mitigated by prior treatment
with intravenous immunoglobulin (IVIG, ~10 mg) or Fc block (~0.2 mg). Total MMAE profiles in
the plasma (Figure 2A1,B1) started with higher concentrations than the antibody, which reflects the
initial average DAR value of ~4 in the formulation. However, after ~1-day total MMAE and antibody
profiles crossed each other, suggesting average DAR value of the ADC declined below 1 at this time
point. The unconjugated MMAE profiles in the plasma (Figure 2A1 and 2B1) were found to be always
parallel to the total antibody profiles, validating the formation-rate limited nature of unconjugated
drug clearance from the plasma [9].

The tumor exposure of ADC analytes was considerably different than the plasma exposure,
and the exposure was also different between the two tumor models (Figure 2). There was a
>10-fold difference in the total trastuzumab exposure between the two tumors, which reflects
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antigen-mediated retention of the antibody in the N87 tumors compared to the GFP-MCF7 tumors.
This difference in antibody exposure was however lower than what was observed in the in vitro studies
(~ 100-fold) [14] using the same cell lines, which could be due to either altered antigen expression
between in vitro and in vivo tumor cells or because of the limited access of the antigen due to
heterogeneous distribution of the antibody in the tumor. When unconjugated and total MMAE
profiles were compared between the two tumors (Figure 2A2,B2), it was observed that the difference
in the exposure was only ~2-fold. A similar effect was also observed during our in vitro studies [14],
which is reflective of the saturable intracellular binding capacity of the tumor cells. Despite the higher
influx of MMAE molecules inside high antigen expressing cells, only the once bound inside the cell can
be retained, and the remaining molecules can quickly diffuse out of the cells. Thus, an enhanced influx
of MMAE inside a cell does not necessarily lead to a proportional increase in intracellular exposure
of MMAE.

TGI studies revealed that a single dose of 1-10 mg/kg T-vc-MMAE was much more efficacious
in N87 tumors compared to GFP-MCF7 tumors. A dose-dependent increase in tumor regression was
observed for HER2-high N87 tumors, whereas the effect of ADC was saturated at the higher doses
for HER2-low GFP-MCF7 tumors. The observed efficacy of ADC in both the mouse models was
considerably prolonged compared to the plasma exposure, and the effect was more synchronous with
MMAE exposure in the tumor. This observation underscores the need to use tumor exposure of ADC
to develop robust exposure-response relationships that can be successfully translated to the clinic.
Our proposed systems PK-PD model is designed to facilitate the development of these relationships.

Figure 1 describes the full in-vivo systems PK-PD model developed by us. The model was able to
effectively capture plasma PK of all three analytes of the tool ADC T-vc-MMAE. The model estimated
a relatively faster value of MMAE deconjugation rate from the ADC (KP

dec) [10], suggesting faster
decline in the DAR value of T-vc-MMAE over the time. The plasma PK model was extended to have
tumor distribution and single-cell disposition of T-vc-MMAE within the tumor. Majority of model
parameters were fixed to known values, and only the parameters related to HER2 receptors expression
were estimated via model-fitting. The number of HER2 receptors estimated for N87 and GFP-MCF7
cells were found to be 185,000 and 22,400, respectively. While these estimates reflect ~10-fold difference
in HER2 expression between the two cancer cells, the in-vivo estimated values were considerably
lower than the values measured in-vitro [14,16]. This could be due to several reasons highlighted
earlier, like differences in in-vitro and in-vivo systems and limited accessibility of antigen. The tumor
PK model was used to estimate intracellular occupancy of tubulin by MMAE, and this parameter was
used to develop a novel PK-PD relationship, where single-cell tubulin occupancy governed the killing
of tumor cells. To maintain the mass balance, upon the death of each cell the intracellular ADC content
was assumed to release outside the tumor cell, and it was allowed to distribute back into another cell
or diffuse out of the tumor in the systemic circulation. It was found that the same set of PD parameters
was able to capture MMAE induced cytotoxicity of GFP-MCF7 and N87 cells in vivo. Additionally,
the estimated single cell potency parameters from in-vivo modeling were very similar to the in-vitro
estimates [15]. This observation highlights the need and benefit of developing a systems PK-PD model
for ADC, which can account for the changes in the underlying system as the project transitioning from
discovery-to-preclinical and preclinical-to-clinical stage of drug development. Exposure-response and
dose-response relationships developed based on these models could be more robust and predictive
and can facilitate successful clinical translation of ADCs.

In sum, here, we have presented the development of a novel systems PK-PD model for ADCs,
which integrates single-cell PK and PD of ADC with a mechanistic tumor distribution model.
The presented model has several salient features that differentiate it from previously published
models [10,11,13]. The model accounts for a dynamic population of tumor cells and mass-transfer of
ADC species among each tumor cell. Additionally, the model also incorporates dilution of intracellular
drug content as a function of tumor growth and accounts for the mass-transfer of released drug
from dead cells into systemic circulation. Moreover, this model exemplifies the unprecedented
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utility of using occupancy of the pharmacological target (tubulin) at the site of action to drive the
pharmacodynamic effects. Going forward, the presented model could be expanded to account for
multiple tumor cell populations, which can help in better characterizing tumor heterogeneity and the
bystander effect of ADCs [16]. The presented model is also amicable to incorporation of immune cells,
which can help in characterizing the interaction between ADCs, immune-oncology drugs, and the
immune cells in the tumor.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/11/2/98/s1,
Figure S1. Schematic of the plasma PK model for ADC. Figure S2. Schematics of the tumor distribution model
for ADC.
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