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Abstract: Antibiotic misuse in pediatric intensive care units (PICUs) can lead to increased antimi-
crobial resistance, antibiotic-triggered side effects, hospital costs, and mortality. We performed a
multicenter, prospective study, analyzing critically ill pediatric patients (≥1 month to ≤18 years)
admitted to 26 Spanish PICUs over a 3-month period each year (1 April–30 June) from 2014–2019. To
make comparisons and evaluate the influence of AMS programs on antibiotic use in PICUs, the anal-
ysis was divided into two periods: 2014–2016 and 2017–2019 (once 84% of the units had incorporated
an AMS program). A total of 11,260 pediatric patients were included. Total antibiotic prescriptions
numbered 15,448 and, overall, 8354 patients (74.2%) received at least one antibiotic. Comparing the
two periods, an increase was detected in the number of days without antibiotics in patients who
received them divided by the number of days in PICUs, for community-acquired infections (p < 0.001)
and healthcare-associated infections (HAIs) acquired in PICUs (p < 0.001). Antibiotics were empirical
in 7720 infections (85.6%), with an increase in appropriate antibiotic indications during the second
period (p < 0.001). The main indication for antibiotic adjustment was de-escalation, increasing in
the second period (p = 0.045). Despite the high rate of antibiotic use in PICUs, our results showed a
significant increase in appropriate antibiotic use and adjustment following the implementation of
AMS programs.

Keywords: antimicrobial stewardship; antibiotics; resistant microorganisms; de-escalation; early
suspension; pediatric intensive care; children
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1. Introduction

Undoubtedly, antibiotic resistance has become one of the greatest threats of our time.
Not 100 years have passed since the discovery of antibiotics transformed healthcare prac-
tices, heralding an abrupt deceleration of mortality coinciding with the first clinical use of
sulfonamides in 1935 and penicillin in 1942 [1]. Nevertheless, we already feel threatened
by the rise of multi-resistant bacteria as a consequence of long-standing antibiotic misuse
and overuse [2]. Not long ago, this emerging problem seemed to have been solved with
the development of new antimicrobials, but these options, too, are quickly becoming less
effective. In 2008, over 25,000 people in Europe alone died as a result of serious infections
caused by multi-drug-resistant bacteria, and if this problem is not effectively remedied,
the situation is expected to worsen over the coming decades [3]. The problem is especially
evident in intensive care units, where, in dealing with critically ill patients, there is an exten-
sive use of broad-spectrum antibiotics during prolonged periods, use of invasive devices,
and, consequently, increases in the numbers of multi-drug-resistant bacteria causing severe
infections [4].

In recent years, antimicrobial stewardship (AMS) programs have become the corner-
stone of slowing the development of antimicrobial resistance, optimizing not only the
treatment of infections but also reducing adverse effects that result from the overuse of
antimicrobials, as well as reducing the associated costs [5,6]. Several strategies have been
implemented in PICUs in Spain since 2014 in order to ensure effective AMS programs,
including preauthorization, prospective audits, feedback interventions on antimicrobial
prescriptions, the development of empirical treatment and prophylaxis guidelines, as well
as physician education and consolidation of AMS teams with a continuous monitoring of
antimicrobial use [3,7].

In today’s challenging environment, with no immediate prospects for any new broad-
spectrum antibiotics, especially against enterobacteria, and an aging and/or compromised
patient population, the implementation of AMS practices has shown to decrease antimicro-
bial use by 22–36%, as observed in both large and small community hospitals [8]. In Spain,
a nationwide PROA was launched in 2012 as part of the National Antibiotic Resistance
Plan [9] in an effort to preserve the effectiveness of antimicrobial agents and in response to
the increasing bacterial resistance in hospital environments associated with poorer clinical
outcomes as well as elevated healthcare costs.

Furthermore, with a view to developing a surveillance system for healthcare-associated
infections (HAI), a multicenter registry of HAIs in Spanish Pediatric Intensive Care Units
(PICUs) was created in 2007 [10]. This was consolidated in 2013 as the National Nosocomial
Infections Surveillance System (ENVIN, in Spanish) within the HELICS (Hospitals in
Europe Link for Infection Control through Surveillance) project [11,12].

The data included in this far-reaching registry provide important information not only
about the overall rates of HAI but also about the use of antibiotics, the microorganisms
isolated, and the resistance profile. It is considered a national and international benchmark
for HAIs in PICUs. This study offers novel information for use in the field, data on the
use of broad-spectrum antibiotics and HAIs being scarce in the literature [13,14], as are
data regarding the influence of AMS programs in national PICUs. In this study, we aimed
to describe the use of antibiotics in the PICUs participating in the Pediatrics-ENVIN-
HELICS multicenter registry and then compared their evolution over time, considering the
hypothesis that the implementation of AMS programs may have improved antibiotic use.

2. Materials and Methods

A prospective, multicenter observational study was conducted in 26 PICUs in Spain,
over a 3-month period each year (from 1 April to 30 June, as per ENVIN-HELICS surveil-
lance criteria) from 2014 to 2019. The reason for choosing these particular months was
that it is a time of the year with a medium workload, so it is estimated that the data are
more accurate.
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The subjects included were hospitalized pediatric patients (≥1 month and ≤18 years
of age) who required admission to the PICU during the study period. All patients were
admitted before the study period began (1 April) and those who were hospitalized in the
PICUs after 30 June were excluded.

Patients registered by all of the PICUs participating in the National Nosocomial
Infections Surveillance System were included in this study. However, at the beginning of
the data collection period, not all of the PICUs had implemented an AMS program. We
conducted a recurring survey among these 31 units in order to determine exactly when
they did implement an AMS program. By the end of the study period, 16% (n = 5) of them
had not yet done so. By 2016, only 55% (n = 17) of the units had established one of these
programs. However, by 2019, 84% (n = 26) of the PICUs had incorporated an AMS program.
To test the hypothesis that AMS programs may influence antibiotic use, the analysis was
divided into two 3-year periods, 2014–2016 and 2017–2019, for comparison.

2.1. Definitions

Comorbidities: These were considered as the presence of any of the following under-
lying diseases: diabetes, kidney failure, immunosuppression, neoplasia, cirrhosis, chronic
obstructive pulmonary disease, malnutrition, and transplantation.

Healthcare-associated infections [15,16]: HAIs were differentiated between those
contracted outside and inside the PICU, depending on where the infection started. We
express the rate of HAI as HAIs/1000 patient-days. Patient-days, as their name suggests,
are defined as the number of days that patients spent in PICUs.

A device-related HAI was considered in a patient with a device (endotracheal tube,
central line, or indwelling urinary catheter) that was used within the 48 h period be-
fore the onset of the infection, even if it was only used intermittently [17,18]. Table 1
includes the different definitions of infections: ventilator-associated pneumonia (VAP),
central line-associated bloodstream infection (CLABSI), and catheter-associated urinary
tract infection (CAUTI).

2.2. Outcome

The primary outcome was to determine changes in the use of antibiotics over time,
considering the influence of the implementation of AMS programs. The antibiotic use
indicators considered were:

Outside-PICU antibiotic use: Antibiotics prescribed for infections diagnosed once the
patient was hospitalized for more than 48 h in a hospital ward.

Inside-PICU antibiotic use: Antibiotics prescribed for infections diagnosed once the
patient was hospitalized for more than 48 h in the PICU.

Antibiotic-free days: The difference between the duration of the antibiotic course(s)
and the length of stay in the PICU.

Antibiotic use ratio: The number of patients who received antibiotics with respect to
the total number of patients included in the study.

Antibiotic-free days ratio: The number of days without antibiotics in patients who
received them divided by the number of days these patients spent in the PICU.

Global antibiotic-free days ratio: The number of days without antibiotics, considering
all the patients with respect to the overall number of days they were in the PICU [11].
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Table 1. Definitions of healthcare-associated infections according to ENVIN-Ped and based on CDC
definitions [11,12].

Type of Infection Definition

Central line-associated
bloodstream
infection (CLABSI)

Primary blood stream infection (no other apparent source of infection) and positive blood cultures, all
involving the same microorganism, fulfilling one of the following situations:
Quantitative central venous catheter (CVC) culture ≥103 CFU/mL;
Quantitative blood culture ratio CVC blood sample/peripheral blood sample >5;
Differential delay in positivity of blood cultures: CVC blood sample culture positive two hours or more
before peripheral blood culture;
Positive culture with the same microorganism found in pus at insertion site.

Ventilator-associated
pneumonia (VAP)

A. Clinical diagnosis:
Presence of a new and persistent pulmonary infiltrate on one chest X-ray or CT scan in a previously
healthy patient; OR
Two or more images suggestive of pneumonia in patients with underlying heart or lung disease;
AND at least one of the following:
Fever ≥ 38 ◦C with no other discernable cause;
Leukopenia (<4000 WBC/mm3) or leukocytosis (≥12,000 WBC/mm3);
AND at least one of the following (or at least two, if clinical pneumonia only):
Increased respiratory secretions, change in previous characteristics of sputum, or sputum with
purulent appearance;
New onset of cough, dyspnea, and/or tachypnea;
Abnormal lung sounds, such as crackles, bronchial breath, wheezing;
Increased oxygen requirements or ventilatory demand;
AND, depending on the diagnostic method used:
B. Bacteriological diagnosis:
(PN1). Positive quantitative culture from a minimally contaminated specimen:
Bronchoalveolar lavage (BAL) with a threshold of ≥1 × 104 colony-forming units (CFU)/mL or ≥5% of
BAL-obtained cells containing intracellular bacteria upon direct microscope exam;
Protected specimen brush or protected distal aspirate, with a threshold of ≥1 × 103 CFU/mL;
(PN2). Positive quantitative culture from a possibly contaminated specimen:
Quantitative culture from an endotracheal aspirate with a threshold of ≥1 × 106 CFU/mL;
(PN3). Alternative microbiological methods: Positive blood culture not related to another source
of infection;
Positive growth in pleural fluid culture;
Pleural or pulmonary abscess, with positive needle aspiration;
Histological evidence of pneumonia;
Positive detection of viral antigen or antibodies in respiratory secretions;
Seroconversion; or Detection of viral antigen in urine;
(PN4). Positive sputum culture or non-quantitative specimen culture;
(PN5). No positive microbiology.

Catheter-associated
urinary tract
infections (CAUTI)

Defined in a patient who has at least one of the following symptoms, with no other recognized cause:
Fever >38 ◦C, increased urgency and/or frequency, dysuria, or suprapubic tenderness;
Pyuria in urine specimen, with ≥10 WBC/mL or ≥3 WBC/high-power field of unspun urine;
AND
Positive urine culture with a threshold of ≥1 × 105 CFU/mL with no more than two species of
microorganisms in a patient that is not receiving antibiotic treatment; OR
A threshold of <1 × 105 CFU/mL of one single microorganism in patients receiving antibiotic treatment.

2.3. Variables

Physicians at the participating hospitals entered all the clinical data for each patient
admitted to the PICU during the study period into a standardized online registry. The
parameters collected for this analysis included demographic characteristics, pediatric risk
of mortality (PRISM) score and Glasgow score at admission, comorbid medical conditions,
predisposing factors for infections, diagnosis at admission, community-acquired infections,
HAIs acquired outside and inside the PICU, device-associated HAIs, microbiological data,
length of stay (LOS), antibiotics used, and antibiotic susceptibility profile [10,11].
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2.4. Statistical Analysis

The statistical analysis was performed using SPSS 25.0 Statistics®, IBM (1 New Orchard
Road Armonk, New York 10504-1722 United States). Categorical variables were indicated
as frequency (n) and percentage (%), while continuous variables were summarized as
median and interquartile range (IQR) because they were not normally distributed. The
comparison of qualitative variables was performed using the χ2 test or Fisher’s exact test.
Continuous variables were compared using the Mann–Whitney U test when not normally
distributed. Probability values of less than 0.05 were considered statistically significant.

3. Results
3.1. Patients and Clinical Characteristics

A total of 11,260 pediatric patients were included in the registry from 2014 to 2019.
Among them, 56.6% (n = 6368) were males and the median age was 43.2 months (IQR
10–115 months). Table 2 includes a general description of the sample by year and also data
regarding the evolution. Of the patients included, 2.8% (n = 317) presented at least one
device-related HAI during their stay in the PICU. The total number of HAIs was 390, and
the overall rate of HAI was 6.3 per 1000 patient-days. The most frequent device-related
HAI was VAP, with 110 episodes, followed by CAUTI, with 105 episodes, and CLABSI,
with 90 episodes.

Table 2. Description of the sample.

Variables Global 2014 2015 2016 2017 2018 2019 2014–2016 2017–2019 p-
Value

Hospitals (n) 33 27 27 25 24 29 26 79 79 -

Total admissions (n) 11,260 1724 1748 1877 1983 2176 1752 5349 5911 -

Stays (days) 69,512 11,743 11,635 10,972 11,556 12,880 10,726 34,350 35,162 -

LOS in days,
median (IQR) 3 (6–2) 4 (3–7) 4 (3–6) 3 (2–6) 3 (2–6) 3 (2–5) 3 (2–6) 4 (2–7) 3 (2–6) <0.001

Age in months,
median (IQR)

43
(10–115)

42.3
(9.6–104.9)

40
(8–111)

47.7
(11–118)

42
(9–115)

42
(10–121)

46
(11–120.3)

43
(10–111)

43
(10–119) 0.096

Gender (male), n (%) 6368
(56.6%)

971
(56.3%)

1019
(58.3%)

1057
(56.3%)

1121
(56.5%)

1242
(57.1%)

958
(54.7%)

3047
(57%)

3321
(56.2%) 0.404

PRISM score,
median (IQR) 2 (0–5) 3 (0–7) 3 (0–7) 2 (0–5) 2 (0–5) 2 (0–6) 2 (0–5) 3 (0–6) 2 (0–5) <0.001

Comorbidity, n (%) 2317
(20.6%)

396
(23%)

380
(21.7%)

377
(20.1%)

419
(22.1%)

388
(17.8%)

357
(20.4%)

1153
(21.6%)

1164
(19.7%) 0.015

New AMS
programs, n (%)

26
(84%)

9
(29%)

4
(12.9%)

4
(12.9%)

1
(3.2%)

6
(19.4%)

2
(6.4%)

17
(54.8%)

9
(29%) -

HAI/1000
patient-days (‰) 6.3 7.3 5.9 6.7 5.1 5.4 7.5 6.6 6 -

Deaths, n (%) 213
(1.9%)

44
(2.6%)

35
(2%)

45
(1.8%)

35
(2%)

30
(1.4%)

24
(1.4%)

124
(2.3%)

89
(1.5%) 0.002

3.2. General Use of Antibiotics

The total number of antibiotic prescriptions was 15,448 and, overall, 8354 patients
(74.2%) received at least one antibiotic during their PICU stay. The ratio of antibiotics
per patient prescribed antibiotics, meaning the average number of antibiotic prescriptions
given to each patient who required them, showed a progressive decrease until 2019, when
it skyrocketed to 2014 levels (Figure 1).

Surgical prophylaxis was the main indication for antibiotics, with a total of 5024 (32.5%)
antibiotics used. Community-acquired infection was the second most common antibiotic
indication, with 4690 (30.4%) antibiotic prescriptions. The suspicion of a HAI acquired
inside the PICU was the third most common reason for prescribing antibiotics (n = 2201,
14.2%), followed by the suspicion of a HAI acquired outside the PICU (n = 2122, 13.7%),
other non-surgical prophylaxis (n = 1299, 8.4%), and unknown reason for prescription
(n = 112, 0.70%). Upon comparing these antibiotic indications between the time periods
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(2014–2016 vs. 2017–2019), the only statistically significant differences detected were among
HAIs acquired outside the PICU (14.1% vs. 13.3%, p < 0.001) and unknown reasons for
prescription (0.99% vs. 0.47%, p < 0.001). The detailed results regarding the number of
antibiotics prescribed for each indication are included in Table 3.
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Table 3. Comparison between the two periods regarding the different reasons for antibiotic indications.

Type of Antibiotic Indication, n (%) 2014–2016
n = 7597

2017–2019
n = 7851 p-Value

Suspicion of community-acquired
infection 2328 (30.6%) 2362 (30.1%) 0.451

Suspicion of outside-PICU-acquired HAIs 1075 (14.2%) 1047 (13.3% <0.001

Suspicion of inside-PICU-acquired HAIs 1059 (13.9%) 1142 (14.5%) 0.281

Surgical prophylaxis 2447 (32.2%) 2577 (32.8%) 0.416

Non-surgical prophylaxis 613 (8.1%) 686 (8.7%) 0.134

Unknown reason for prescription 75 (0.99%) 37 (0.47%) <0.001

Figure 2 represents the different ratios regarding the general use of antibiotics: antibi-
otic use ratio, antibiotic-free days ratio, and global antibiotic-free days ratio.

Table 4 summarizes the details by type of suspected infection, with a comparison
between the two data groups. As shown, in the second period, a statistically significant
increase was detected for the number of antibiotics per patient prescribed antibiotics for
inside-PICU-acquired HAIs. In addition, statistically significant differences were globally
detected in terms of the antibiotic use ratio between the two groups, although these
differences were not confirmed for community-acquired infections, outside-PICU-acquired
HAIs, or inside-PICU-acquired HAIs. Moreover, a statistically significant increase was
detected for the antibiotic-free days ratio and the global antibiotic-free days ratio in the
second period for community-acquired infections and inside-PICU-acquired HAIs.
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Table 4. Use of antibiotics by suspected infection indication.

Ratios 2014 2015 2016 2017 2018 2019 2014–2016 2017–2019 p-Value

No. of antibiotics per patient
prescribed antibiotics

All indications 1.96 1.83 1.82 1.81 1.75 1.96 1.87 1.84 0.632

Community-acquired infections 1.95 1.81 1.90 1.82 1.83 1.87 1.89 1.84 0.425

Outside-PICU-acquired HAIs 2.35 2.52 2.59 2.55 2.28 2.32 2.49 2.38 0.111

Inside-PICU-acquired HAIs 2.51 2.84 2.59 2.49 2.54 3.64 2.65 2.89 <0.001

Antibiotic use ratio

All indications 0.79 0.77 0.73 0.74 0.71 0.73 0.76 0.73 <0.001

Community-acquired infections 0.24 0.24 0.22 0.20 0.21 0.24 0.23 0.22 0.137

Outside-PICU-acquired HAIs 0.09 0.08 0.08 0.08 0.06 0.09 0.08 0.08 1.000

Inside-PICU-acquired HAIs 0.09 0.07 0.06 0.07 0.07 0.07 0.07 0.07 1.000

Antibiotic-free days ratio

All indications 0.22 0.23 0.22 0.26 0.24 0.26 0.22 0.25 <0.001

Community-acquired infections 0.15 0.21 0.28 0.24 0.28 0.29 0.21 0.27 <0.001

Outside-PICU-acquired HAIs 0.33 0.28 0.25 0.26 0.29 0.36 0.29 0.30 0.173

Inside-PICU-acquired HAIs 0.47 0.46 0.45 0.53 0.47 0.49 0.46 0.50 <0.001

Global antibiotic-free days ratio

All indications 0.33 0.35 0.37 0.39 0.39 0.40 0.35 0.39 <0.001

Community-acquired infections 0.70 0.78 0.80 0.83 0.78 0.79 0.76 0.80 <0.001

Outside-PICU-acquired HAIs 0.88 0.89 0.90 0.89 0.93 0.89 0.89 0.90 0.043

Inside-PICU-acquired HAIs 0.84 0.85 0.86 0.87 0.86 0.49 0.85 0.74 <0.001

3.3. Types of Antibiotics Prescribed

Table 5 summarizes the antibiotics most commonly used for the different indications.
An increase was observed in the use of cefazoline for surgical prophylaxis between the
two periods, this antibiotic being the most frequently used for this indication. The most
widely used antibiotic in community-acquired infections was cefotaxime, followed by
amoxicillin–clavulanate, with no differences between the two periods of time compared.
In the case of suspected outside-PICU-acquired HAIs, a statistically significant increase in
the use of vancomycin and teicoplanin was observed, with a parallel decrease in the use of
piperacillin–tazobactam. The empirical prescription of antibiotics for inside-PICU-acquired
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HAIs was similar between the two periods, except for the increase in the prescription of
teicoplanin in the 2017–2019 period.

Table 5. Summary of the most commonly used antibiotics for the different indications.

Total
n, %

2014–2016
n, %

2017–2019
n, % p-Value

Surgical prophylaxis 5024 2447 2577

Cefazolin 2457 48.9 1119 45.7 1338 51.9 <0.001

Amoxicillin–clavulanate 788 15.7 381 15.6 407 15.8 0.828

Community-acquired infections 4690 2328 2362

Cefotaxime 1097 23.4 548 23.5 549 23.2 0.810

Amoxicillin–clavulanate 510 10.9 251 10.8 259 11.0 0.840

Vancomycin 368 7.8 187 8.0 181 7.7 0.638

Outside-PICU-acquired HAIs 2122 1075 1047

Meropenem 313 14.8 157 14.6 156 14.9 0.739

Vancomycin 230 10.8 86 8.0 144 13.8 <0.001

Piperacillin–tazobactam 167 7.9 109 10.1 58 5.5 <0.001

Amikacin 139 6.6 68 6.3 71 6.8 0.928

Teicoplanin 90 4.2 29 2.7 61 5.8 <0.001

Inside-PICU-acquired HAIs

Vancomycin 346 15.7 164 15.5 182 15.9 0.772

Piperacillin–tazobactam 340 15.4 162 15.3 178 15.6 0.851

Meropenem 273 12.4 131 12.4 142 12.4 0.964

Teicoplanin 166 7.5 64 6.0 102 8.9 0.010

Amikacin 135 6.1 71 6.7 64 5.6 0.282

Categorical variables expressed as frequencies (percentages) and compared using the χ2 test. PICU: pediatric
intensive care unit, HAI: healthcare-associated infection.

Meropenem represented 5.4% of the total antibiotics prescribed. The global use of
meropenem remained stable over time, but the indication of meropenem for suspected
inside-PICU-acquired HAIs varied, as shown in Figure 3. The indication of meropenem for
outside-PICU-acquired HAIs remained stable until 2018, when an increase was observed,
and it subsequently decreased, reaching its lowest value in 2019.

3.4. Empirical Use of Antibiotics in Suspected Infections

There was a total of 9013 courses of antibiotics prescribed due to suspected infections.
The indication of antibiotic therapy was empirical in 7720 suspected infections (85.6%) and
in 1219 (13.5%) cases was pathogen-targeting therapy, with no differences between the two
periods (p = 0.147 and p = 0.230, respectively). Regarding suspected community-acquired
infections, 4310 antibiotics (92.7%) were empirical and 340 (7.3%) were pathogen-targeting.
As for suspected outside-PICU-acquired HAIs, 1726 (82.1%) of the prescriptions were
empirical and 375 (17.8%) were pathogen-targeting. Finally, as regards suspected inside-
PICU-acquired HAIs, 1684 (77%) of these antibiotics were empirical and 504 (23%) were
pathogen-targeting therapies. There were statistically significant differences between the
three groups and the empirical or pathogen-targeting therapies, with all p-values < 0.001.

Empirical therapy was considered appropriate when microorganisms were susceptible
in vitro to antibiotics. In this sample, the empirical prescriptions were appropriate in 24.9%
of cases (n = 1972) and the distribution was similar in community-acquired infections
(24.7%), outside-PICU-acquired HAIs (23.4%), and inside-PICU-acquired HAIs (26.7%).
Empirical antibiotic therapy was considered inappropriate in 12.1% of all cases (n = 957):
11.3%, 12.3%, and 13.8%, respectively, for the aforementioned groups. No statistically sig-
nificant differences were observed as regards the appropriate or inappropriate prescription
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and the type of suspected infection (community-acquired, outside-PICU-acquired, and
inside-PICU-acquired HAIs), p = 0.231. In 45.7% of the indications (n = 3621), negative
cultures were found: 45.5% in community-acquired infections, 47.9% in outside-PICU-
acquired HAIs, and 43.8% in inside-PICU-acquired HAIs, with statistically significant
differences between them (p = 0.011).
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An increase in appropriate antibiotic indications was detected when comparing the
two periods, as shown in Figure 4 (Plot 1), with statistically significant differences (p < 0.001)
and a parallel significant decrease in negative cultures (p < 0.001). No statistically significant
differences were detected for inappropriate indications (p = 0.162).

In up to 65.7% of the antibiotics indicated for empirical treatment (n = 5512), no
modifications were made and 20.2% were suspended early, while an antibiotic adjustment
was made in 14.2% of the prescriptions. No statistically significant changes were detected
over time regarding antibiotic adjustment, early suspension, or absence/presence of a
change in antibiotics. Figure 3 (Plot 2) details the evolution of these parameters over
time. Antibiotic adjustments were more frequent for inside-PICU-acquired HAIs (20.4%)
than for outside-PICU-acquired HAIs (15.5%) and community-acquired infections (10.7%),
with p < 0.001. Early suspension was more frequent in suspected community-acquired
infections (21.8%) than in inside-PICU-acquired HAIs (20.5%) and outside-PICU-acquired
HAIs (16.1%), with p < 0.001.

The main indication of the 1,189 antibiotic adjustments was reducing the antibiotic
spectrum in favor of a narrower one (n = 485, 40.8%), followed by a poor clinical evolution
(n = 349, 29.4%) and a need to increase the antibiotic spectrum (n = 159, 13.4%). Figure 5
represents the evolution over time regarding the different reasons for switching antibi-
otics. Upon comparing the two periods, statistically significant differences were detected
regarding the reduction of the antibiotic spectrum (2014–2016, 37.6% vs. 2017–2019, 43.3%;
p = 0.045), without clear differences regarding the other items: increasing the spectrum,
13.7% vs. 12.9%, p = 0.696; poor clinical outcome, 31.9% vs. 27%, p = 0.062; new resistances,
1.6% vs. 0.8%, p = 0.227; and toxicity, 3.5% vs. 4.4%, p = 0.426.
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indications between the two time periods (2014–2016 vs. 2017–2019). It includes the proportion of
appropriate antibiotic indications, inappropriate indications, and cases with negative cultures. Plot 2
represents the evolution over time of the need for antibiotics to be adjusted and suspended early in
empirical indications.

Reducing the antibiotic spectrum was more frequent for inside-PICU-acquired HAIs
(44%) than for community-acquired infections (39.9%) and outside-PICU-acquired HAIs
(37.7%), with p = 0.049.

Out of the 9013 antibiotic courses prescribed for a suspected infection, de-escalation
was practiced in 5.4% (n = 485) of the cases. Antibiotic adjustment due to poor clinical
evolution was more frequent in community-acquired infections (32.9%) and outside-PICU-
acquired HAIs (32.8%) than in inside-PICU-acquired HAIs (22.8%), with p = 0.004. The
increase of the antibiotic spectrum was more frequent in inside-PICU-acquired HAIs (17.5%)
and outside-PICU-acquired HAIs (14.9%) than in community-acquired infections (8.7%),
with p = 0.001.
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4. Discussion

To the best of our knowledge, this is the first prospective multicenter study conducted
in PICUs that provides an in-depth evaluation of the total antibiotic consumption for both
community-acquired infections as well as HAIs. Our results demonstrate a significant
increase in appropriate antibiotic use and also a reduction in antibiotic utilization, either
by early suspension or antibiotic treatments being adjusted to target a narrower spectrum,
attributable to the implementation of AMS programs.

Despite efforts to control antimicrobial use, the number of antibiotic prescriptions
written for hospitalized children continue to increase. In 2008, Gerber et al. [19] reported,
using a retrospective cohort from 40 independent children’s hospitals in the US, that 60%
of children received at least one antibiotic during their hospitalization, with an average of
468/1,000 inpatient-days spent on antibiotics. Similarly, in 2016, the Global Point Prevalence
Survey showed that at least 37% of children were given an antibiotic in pediatric inpatient
settings, with the highest antimicrobial use being up to 61% in the PICU [20–22]. This was
also reflected in the European Surveillance of Antimicrobial Consumption point prevalence
survey in 2008, which demonstrated that at least 32% of children received one or more
antimicrobials, with third-generation cephalosporins as the leading therapeutical group in
pediatric units [23].

Notably, in our sample, up to 74.2% of patients admitted to PICUs received at least one
antibiotic. The leading indication was surgical prophylaxis; therefore, an effort needs to
be made to decrease the duration of this antibiotic prescription, according to international
guidelines. Nevertheless, it is likely that the higher proportion of antibiotic use that we
detected may be influenced by the high complexity of the care centers included in our study.

Upon evaluating the impact of AMS programs on antibiotic use over 6 years, compar-
ing the first period in which only a small proportion of the PICUs had an AMS program with
the second period in which 84% had adopted one, in our study we have seen a statistically
significant decrease in the antibiotic use ratio and an increase both in the antibiotic-free
days ratio and the global antibiotic-free days ratio. Di Pentima et al. [24], lauding the
benefits of AMS programs, reported a total decrease of 38% in the use of antibiotics over
3 years in a 180-bed tertiary care pediatric hospital. While this demonstrated the significant
impact these programs can have as regards reducing antimicrobial use, this study did not
specify the impact on PICUs. Another study by Renk et al. [25] assessed the effect and
safety of a once-weekly ward round carried out by pediatric infectious disease physicians,
looking at antibiotic consumption in a 14-bed multidisciplinary PICU in Germany, mea-
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suring antimicrobial utilization by days of therapy (DoT) per 1000 patient-days (PDs); it
reported an 18% reduction of DoT/1000 PD in the period following the implementation of
the AMS program.

As regards the use of broad-spectrum antibiotics, we found that cefotaxime was the
most commonly used antibiotic to treat community-acquired infections because of its broad
coverage for invasive bacterial disease. Regarding HAIs, the fact that meropenem was
more commonly used for outside-PICU-acquired HAIs than for inside-PICU-acquired HAIs
(for which the most-used antibiotics were piperacillin–tazobactam and vancomycin) was
surprising, as this is mostly used for serious nosocomial infections that are more likely to
be contracted in ICUs. This is probably attributable to a greater effort to implement AMS
programs in PICUs than in general wards.

The number of antibiotics prescribed empirically was very high (85.6%). Pathogen-
targeting therapy was greater for HAIs, most likely due to the poor performance of blood
cultures in pediatric patients infected in the community. In fact, when analyzing the rates
of appropriate antibiotic use, in 45.7% of the prescriptions it was impossible to detect
whether antibiotic therapy was actually appropriate because of negative cultures, with a
significantly lower percentage of negative cultures shown for inside-PICU-acquired HAIs.

Comparing the two different periods, we saw a significant increase in terms of ap-
propriate antibiotic use, with a decreasing trend in the use of antibiotics in patients with
negative cultures.

An important finding in our study was that up to 20.2% of the antibiotics were
discontinued early. In addition, modifications were made to the antibiotic therapy in up to
14.2% of the cases where these were prescribed. The main cause for this adjustment (40.8%)
was de-escalation in favor of a narrower spectrum, which was significantly more frequently
seen with inside-PICU-acquired HAIs. Ying Guo et al. [26] performed a meta-analysis that
reported a de-escalation rate of 39.5% for the antibiotics used in adult patients with severe
sepsis and this did not have a detrimental impact on mortality. Furthermore, in a recent
publication, Battula et al. [27] reported a de-escalation in 59% of the episodes of sepsis
admitted to PICUs and concluded that this strategy appears to be safe.

We also found a statistically significant increase in de-escalation being carried out dur-
ing the second period, attributable to AMS interventions in physicians’ prescriptions. In line
with our observations, Al-Omari et al. [28] stated that just one year after the implementation
of AMS programs at four tertiary hospitals, the use of broad-spectrum antibiotics trended
downward. García-Rodríguez et al. [29], in a descriptive pre–post interventional study on
the use of meropenem, observed that the appropriateness of meropenem prescriptions and
the de-escalation from meropenem treatment to narrower-spectrum antibiotics improved
progressively over time after an AMS intervention [30–32], leading to a significant decrease
in meropenem consumption. In our experience, the implementation of comprehensive
AMS strategies does modify physicians’ behavior and understanding of the importance of
early antibiotic de-escalation and withdrawal as one of the tenets of AMS [25].

We acknowledge that our study has some limitations. We report a progressive increase
in the number of PICUs that implemented AMS programs; by 2016, 55% of these centers
had established such programs. We expect the effects of these programs on antibiotic
policies to be less remarkable for those units with a short trajectory.

Another limitation was the fact that we did not assess the impact that maximum PICU
occupancy may have on antibiotic prescription, as this phenomenon occurs during the
winter season. On the other hand, the sample is very homogeneous because we compared
the same months during each year and the healthcare centers included were of the same
complexity, with no major changes in staff and patient structure in the PICUs included.

There is a clear association between antibiotic use and antibiotic resistance, but there is
much less evidence to support the concept that reducing antibiotic use actually leads to im-
provements in antibiotic susceptibilities [33]. The clearest and strongest evidence regarding
the impact of AMS on antimicrobial resistance is in Clostridium difficile-associated diar-
rhea [34,35], but there is also increasing evidence suggesting that appropriate antibiotic use
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can decrease the incidence of resistant Gram-negative bacilli, such as vancomycin-resistant
enterococci [36,37].

Antibiotics exert selection pressures on bacterial populations, thus contributing to
the development of antibiotic-resistant bacteria. Removing this pressure, however, does
not guarantee that the resident microflora will lose the antibiotic-resistance genes. Cook
et al. [33] reported the successful implementation of an AMS program, reducing the use of
broad-spectrum antibiotics, but saw very little change in the antimicrobial susceptibilities
of common Gram-negative pathogens. The assessment of the effect that AMS programs
have with respect to changing bacterial susceptibilities remains a challenge for us to tackle
in the future.

AMS programs may be considered as pivotal contemporary healthcare policies which
have some of the greatest impacts on both patient outcomes and healthcare costs. They
should thus be a top priority for all healthcare providers, otherwise there may be serious
long-term impacts whose ramifications we cannot currently comprehend. In today’s
clinical environment, especially in pediatric areas, antimicrobials are being unnecessarily
prescribed to treat mainly viral infections, which implies not only an unnecessary cost but
a risk to patients as well as to public health.

We have already emphasized the importance of antibiotic stewardship programs in
PICUs. Our results show that AMS programs are related to prescribing appropriate antibi-
otics and also to reducing the use of broad-spectrum antibiotics, which could be the key to
slowing the development of antimicrobial resistance. Moreover, after the implementation
of AMS programs, we found a statistically significant increase in the number of antibiotics
that were adjusted to target a narrower spectrum, which is a practice that has consequences
for public health.

5. Conclusions

Our study highlights the importance of implementing AMS programs, which have
been shown to be effective in reducing antimicrobial utilization, altering prescribing be-
havior and encouraging the appropriate use of antibiotics. This will help our healthcare
systems better tackle both current and future challenges, such as controlling antimicrobial
resistance. Further studies are required on clinical outcomes, hospital costs, indirect ex-
penses such as antibiotic side effects, earlier transitions to oral therapy, length of hospital
stay, and readmissions. In addition, future long-term studies are needed that focus mainly
on mortality and antimicrobial resistance in the pediatric population.
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