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Abstract: This work reports a novel silicon on insulator (SOI)-based high quality factor (Q factor)
Lamé-mode bulk resonator which can be driven into vibration by a bias voltage as low as 3 V.
A SOI-based fabrication process was developed to produce the resonators with 70 nm air gaps,
which have a high resonance frequency of 51.3 MHz and high Q factors over 8000 in air and over
30,000 in vacuum. The high Q values, nano-scale air gaps, and large electrode area greatly improve
the capacitive transduction efficiency, which decreases the bias voltage for the high-stiffness bulk
mode resonators with high Q. The resonator showed the nonlinear behavior. The proposed resonator
can be applied to construct a wireless communication system with low power consumption and
integrated circuit (IC) integration.
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1. Introduction

Nowadays, wireless communication systems are developing towards higher frequency, narrow
channel, multiband and multimode [1,2], which requires high performance, high integration, and
low power consumption resonators as time reference devices [3,4]. So far, the quartz crystals
are widely used in wireless communications. However, the quartz crystals have difficulties
with miniaturization, on-chip integration, and impact resistance, which limit their application [5].
Silicon-based micro-electro-mechanical system (MEMS) resonators have attracted great attention
for their advantages in high performance, small size, low cost, good IC compatibility, and low
power consumption [6–8]. Enormous efforts have been made in recent years to demonstrate
the high-quality factors (Q) of the bulk acoustic wave (BAW) mode resonator in comparison to flexural
beam resonators [9]. However, the electrostatic actuation/detection of such stiff mechanical modes
requires considerably high bias voltages [10–17]. The high voltage limits the practical applications
of BAW resonators [18]. A typical Lamé-mode resonator with an extremely high Q factor of 7.5
× 105 at a resonance frequency of 12.9 MHz requires a driving voltage of 100 V [10]. Increasing
the capacitive area, shrinking the air gap between the resonator and the electrodes or utilizing different
detection methods were effective in reducing the bias voltage, but these routines were often restricted
by the fabrication technology [19,20]. A Lamé-mode resonator with thin air gap of 50 nm was excited
with a low voltage of 2.5 V into vibration at 17.6 MHz, but its Q factor was only 8000 in vacuum [19].
Additionally, a capacitively actuated and piezoresistively detected Lamé-mode resonator can vibrate
at 2.2 MHz with low bias voltage of 3 V, yet its Q factor is 6771 at atmosphere [20]. The comparison
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between state-of-the-art works and this work is presented in Table 1. Reducing the bias voltage while
maintaining high Q factor is essential for achieving an IC-integrable high-performance MEMS resonator.

Table 1. Comparison between state-of-the-art works and our Lamé mode resonator.

Reference Resonator f 0 Q VDC F × Q Gap

Khine, L. [10] Lamé-mode 12.9 MHz 7.6 × 105 100 V 9.80 × 1012 2 µm
Xereas, G. [13] Lamé-mode 6.89 MHz 3.24 × 106 40 V 2.23 × 1013 1.5 µm

Rodriguez, J. [16] Lamé-mode 10 MHz 2.65 × 106 30 V 2.69 × 1013 700 nm

Hamelin, B. [14] gyroscopic
mode SiC disk 5.3 MHz 1.8 × 107 25 V 9 × 1013 4.2 µm

Pourkamali, S.
[12]

Wine-glass
mode disk 149.3 MHz 45.700 17 V 6.82 × 1012 100 nm

Yang, J. [15] SiC Lamé-mode 6.27 MHz 2.0 × 107 15 V 1.25 × 1014 5 µm
Daruwalla, A.

[17]
Distributed
Lamé-mode 50.7 MHz 2.5 × 105 5 V 1.29 × 1013 270 nm

Lin, A.T. [20] Lamé-mode 2.2 MHz 6771 3 V 1.49 × 1010 2 µm
Chen, T.T. [19] Lamé-mode 17.6 MHz 8000 2.5 V 1.41 × 1011 50 nm

Our work Lamé-mode 51.3 MHz 34,200 3 V 1.75 × 1012 70 nm

In this work, a novel silicon on insulator (SOI)-based Lamé-mode bulk acoustic resonator vibrating
at a low bias voltage is presented. A reliable SOI-based fabrication process was developed to produce
the bulk mode resonator with 70 nm air gap between the resonators and the electrodes. The nano-scale
air gaps, high Q factor of the resonator, and large electrode area were favorable for achieving efficient
capacitive transduction with a low direct current (DC) bias voltage. The transmission performance
of the resonator operating in air and in vacuum indicates that the Q value is mainly determined
by air damping when the resonator is operating in air. The nonlinearities of the device were also
experimentally observed.

2. Design and Fabrication

The resonator is designed to vibrate in Lamé-mode. The simulated mode shape with COMSOL
is shown in Figure 1. Lamé-mode is a bulk acoustic wave (BAW) mode which has low air damping
and low thermal elastic damping losses, and therefore is expected to achieve high Q factor. In this
mode, the edges of the square plate deform in the antiphase, while the volume of the plate is preserved.
The length of the square is designed to be 75 µm. Capacitive transduction, which can offer better
frequency-Q products [21–23], is used for exciting and sensing the mechanical resonance signal of
the resonator. Four electrodes are placed parallel to the four sidewalls of the square plate for a large
transduction area, and four nano-scale air gaps are designed to enhance the mechanical-electrical
transduction efficiency. The anchor beams are located at the mode nodal points near each corner of
the plate for minimum energy losses through the anchors.
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The resonant frequency f 0 is determined by the effective spring constant keff and the effective
mass meff, which can be expressed using the following equation [24]:

f0 =
1

2π

√
keff

me f f
(1)

The effective spring constant and the effective mass of Lamé-mode can be approximated as [25]:

keff = π2Gh (2)

meff =
1
2
ρhL2 (3)

where G represents the shear modulus, h is the thickness of the resonator, ρ is the density of silicon,
and L is the length of the square. Equations (1)–(3) can be combined into the equation below [26]:

f0 =
1
√

2L

√
G
ρ

(4)

and the shear modulus can be expressed as:

G =
E

2(1 + ν)
(5)

for the single crystal silicon, where E = 180 GPa, ρ = 2330 kg/m3, and ν = 0.29; according to Equation
(4), the calculated resonance frequency of the square resonator with L = 75 µm is around 51.6 MHz,
which is verified by COMSOL simulation.
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The Q factor of a resonator is a dimensionless parameter and can be defined as the ratio between
the total stored energy and the average energy loss per cycle [16]. Several dissipation mechanisms
contribute to the total value of Q [27]:

1
Qtotal

=
1

Qanchor
+

1
QTED

+
1

Qsurface
+

1
Qair

+
1

QAkhiezer
+

1
Qother

(6)

For the Lamé-mode resonator, the most important dissipation mechanisms include air damping,
surface loss, thermo-elastic dissipation (TED), and anchor losses [28]. For resonators operating in
atmosphere, air damping is the dominant dissipation. When operated in vacuum, the losses due to air
damping can be significantly reduced. TED of the Lamé-mode resonator in very high frequency (VHF)
and ultra high frequency (UHF) range is also low, since the volume of the structure is conserved during
vibration [25]. Anchor loss is commonly understood to be determined by energy dissipation through
the anchor point structure to the substrate when the resonator vibrates [29,30]. Optimizing the structure
and size of the anchor beam can reduce the energy dissipation. Furthermore, the anchor loss can
be simulated with the perfectly matched layer (PML) method [31] by building an efficient model of
energy losses through the substrate in COMSOL, as shown in Figure 2. The anchor dimensions can be
optimized to reduce the anchor loss, and the quality factor is extracted as 7.06 × 105.
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The small-signal equivalent electrical model of Lamé-mode resonator can be expressed using
the Butterworth van Dyke (BVD) circuit model, as shown in Figure 3.
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The motional resistance Rm, motional inductance Lm, motional capacitance Cm, and
electromechanical coupling coefficient η for the Lamé-mode resonator can be expressed using
the following equations [32]:

Rm =

√
keffmeff

Qη2 , Lm =
meff

η2 , Cm =
η2

keff
(7)

η =
2ε0Lh

g2 VDC (8)

where ε0 is the permittivity, g is the spacing gap, and VDC is the bias voltage. Combining Equation (7)
and Equation (8), the equivalent output electrical resistance of the resonator can be expressed by [33]:

Rm =

√
keffmeffg4

Qε02L2h2VDC
2 ∝

g4

Q
(9)

It can be seen that ultra-small capacitive gaps and high Q are required to reduce the equivalent
motional resistance of the MEMS capacitive resonators.

For a parallel plate capacitor, the actuation force can be expressed by [24]:

F =
1
2
(
∂C
∂x

)V2 (10)

where V is the applied voltage, x is the displacement of resonator, C = ε0A/g is the capacitance of
the parallel plate, and A is the transduction area, respectively. For a two-port configuration, the input
voltage can be written as the sum of a DC bias VDC and an alternating current (AC) signal VAC = |VAC|

cos(ωt) at resonant frequency, and the actuator force can be expressed as [20]:

F = VDC|VAC|
ε0A
g2 cos(ω0t) = F0 cos(ω0t) (11)

The motional current is given by [19]:

im = VDC(
∂C
∂x

)
.
x (12)

and the maximum displacement at resonance can be expressed as [20]:

xmax =
F0Q

meffω02 (13)

Substituting Equation (10)–(12), the motional current can be expressed by [20]:

im =

∣∣∣VDC
2
∣∣∣|VAC|Qε0

2A2

meffω0g4
(14)

It can be seen from Equation (14) that in the capacitive resonator, the sensing of mechanical
vibration is limited by the transduction gap, transduction area, and Q factor. To reduce the bias
voltage while maintaining strong sensing signal, a small gap, high Q factor, and large transduction
area are needed.

A simple and reliable fabrication process was developed, as illustrated in Figure 4. The silicon
on insulator (SOI) wafer with a 2 µm-thick low-resistivity single-crystal-silicon (SCS) device layer,
a 1 µm-thick oxide layer, and a 300 µm-thick silicon handling layer was employed to batch fabricate
the proposed resonators; an approximately 1.2-µm-thick SiO2 layer is grown by plasma enhanced
chemical vapor deposition (PECVD) as the dielectric layer and the hard mask for silicon etching.
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Then, the resonators are patterned by inductively coupled plasma (ICP) dry etch, and a 70 nm gap is
defined by sacrificial thermal SiO2 layer. The grounding square hole arrays are fabricated by the ICP
etching and filled with polysilicon—this can ensure extremely low feedthrough signal in the device.
Subsequently, a 2 µm-thick heavily doped low pressure chemical vapor deposition (LPCVD) polysilicon
is deposited and patterned to form the electrodes. The Au/Cr electrode pads are produced by e-beam
evaporation and the lift-off process. Finally, the devices are released in a 49% concentrated HF solution.
Figure 5 demonstrates the SEM images of the fabricated resonator.Micromachines 2020, 11, x 6 of 15 

 

 
Figure 4. Fabrication process for the Lamé-mode resonator. 

(a) (b) 

Figure 5. SEM picture of the fabricated Lamé-mode resonator (a) and the cross-section of the 
capacitive 70 nm gaps (b). 

The frequency responses of the fabricated resonators are tested by the measurement setup 
shown in Figure 6. A radio frequency (RF) probe station was employed, a bias voltage VDC was 
directly applied to the resonator using the DC probe, and the substrate wafer was grounded to reduce 
the parasitic signal. A 0 dBm AC driving signal from the network analyzer was applied to the Cr/Au 
electrode pads using the AC probe of the RF probe station. A low pressure of 0.08 mbar was provided 
for measurement in vacuum. 

Figure 4. Fabrication process for the Lamé-mode resonator.

Micromachines 2020, 11, x 6 of 15 

 

 
Figure 4. Fabrication process for the Lamé-mode resonator. 

(a) (b) 

Figure 5. SEM picture of the fabricated Lamé-mode resonator (a) and the cross-section of the 
capacitive 70 nm gaps (b). 

The frequency responses of the fabricated resonators are tested by the measurement setup 
shown in Figure 6. A radio frequency (RF) probe station was employed, a bias voltage VDC was 
directly applied to the resonator using the DC probe, and the substrate wafer was grounded to reduce 
the parasitic signal. A 0 dBm AC driving signal from the network analyzer was applied to the Cr/Au 
electrode pads using the AC probe of the RF probe station. A low pressure of 0.08 mbar was provided 
for measurement in vacuum. 
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70 nm gaps (b).

The frequency responses of the fabricated resonators are tested by the measurement setup shown
in Figure 6. A radio frequency (RF) probe station was employed, a bias voltage VDC was directly applied
to the resonator using the DC probe, and the substrate wafer was grounded to reduce the parasitic
signal. A 0 dBm AC driving signal from the network analyzer was applied to the Cr/Au electrode
pads using the AC probe of the RF probe station. A low pressure of 0.08 mbar was provided for
measurement in vacuum.
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3. Results and Discussions

The frequency responses of the fabricated Lamé-mode resonator operating in air and in vacuum
are shown in Figure 7. The measured resonant frequency is around 51.3 MHz, which corresponds well
with the calculated value from Equation (4). The resonator was driven into vibration at a low bias
voltage of 3 V, and a high signal-to-noise ratio over 25 dB was obtained. The Lamé-mode resonator
exhibits a Q value of 8150 in air and 34,200 in vacuum. The dramatic enhancement of Q values in
vacuum indicates that the air damping is the dominant energy dissipation. The resonator can effectively
suppress feedthrough, which is convenient for the extraction of resonance signals.
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To better understand the effect of air damping on the Lamé-mode resonator, a finite element
simulation based on squeezed film damping is conducted [34]. A Reynold’s equation is used to model
the squeezed film between the resonator and electrodes [35]:

pa(
∂2(δp)
∂y2 +

∂2(δp)
∂z2 ) −

12ηeff

g2

∂(δp)
∂t

=
12ηeffpa

g3

∂(u(y, t))
∂t

(15)

where pa is the ambient pressure, u(y,t) represents the deformations of the sidewalls, δp is the pressure
changes inside the gap, and ηeff is the effective viscosity. y and z axes are defined along the length
and thickness of the resonator. The boundary condition δp = 0 is applied to the top and bottom
surfaces of the gap, since the pressure here is equal to ambient pressure [34]. At the side edges of

the gap, the pressure gradient should be zero due to the anchors position:
δp
∂x = 0 [34]. Then, δp can be

calculated with the boundary conditions described above, thus the energy loss Eair due to the squeezing
film damping can be computed. The maximum stored energy Estore can be obtained by integrating
the elastic potential energy over the resonator volume, the quality factor of the resonator due to the air
damping can be estimated as follows:

Q = 2π
Estore

Eair
(16)

The calculated Q factor due to air damping is 19,997 and 7.69 × 107 at atmosphere and at a low
pressure of 0.08 mbar, respectively, indicating that air damping dominates the resonant behavior of
the resonator vibrating in air, and a vacuum package is needed for high-end resonators. In addition,
the Q values measured at atmosphere and in vacuum are smaller than the simulated ones, indicating
that there are other sources of energy loss.

The electrical parameters of the resonator can be estimated based on the insertion loss using
the following equation [36]:

Rm = 50(10
ILdB

20 − 1), Lm =
QRm

ω0
, Cm =

1
ω0QRm

(17)

where ILdB is the insertion loss of the transmission and its unit is in decibels (dB). Table 2 summarizes
the calculated and measured electrical parameters for the Lamé-mode resonators. The measured Rm of
the Lamé-mode resonator with an applied bias VDC = 3 V in vacuum is 293.8 kΩ, which indicates that
both the nano-scale air gap and high Q factor contributes to the reduced motional resistance.

Table 2. Calculated and measured electrical parameters of the Lamé-mode resonator.

Items Rm Lm Cm

Measured 293.8 kΩ 31.2 H 3.09 × 10−19 C
Calculated 320.5 kΩ 33.8 H 2.81 × 10−19 C

For MEMS resonators, a nonlinear effect often occurs in the resonators with small stiffness, such as
a beam resonator vibrating in the flexural mode [37]. For the bulk mode resonators with high-stiffness,
such as the Lamé-mode resonator, nonlinear vibration seldom takes place. However, when a large
driving force is applied, large vibration amplitude will cause frequency hysteresis [38].

For the resonator devices, the nonlinear effect is not desired in many applications. However, for
some requirements, such as the MEMS oscillator, of which the power handling capabilities are limited
by the small size of the MEMS resonator, it is usually necessary to drive the device into a nonlinear
regime to achieve a sufficient signal-to-noise ratio and performance [39]. Therefore, an in-depth study
on the nonlinearity of the resonator is important.

The frequency responses of the Lamé-mode resonator driven by different bias voltages are
presented in Figure 8. When the driving voltage VDC is increased, the resonance frequency decreases
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due to the frequency tuning effect. The motional resistance and the Q factor are slightly improved.
However, the effect of nonlinearity is prominent when the bias voltage VDC goes beyond 7 V.
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In order to study the nonlinear effect, higher-order terms for the stiffness constant are introduced
and the dynamic response of nonlinear vibration is [40]:

meff
∂2x
∂t2 + γ

∂x
∂t

+ k1x + k2x2 + k3x3 = F0 cos(ω0t) (18)

where γ is the damping coefficient, k1, k2, and k3 are the equivalent linear, quadratic, and cubic spring
constants, respectively. In symmetrical structures such as the Lamé-mode resonator presented in this
work, k2 can be ignored [41]. The frequency change ∆f due to the nonlinearity of the stiffness constant
can be solved from Equation (18), and its approximate solution can be expressed by [42]:

∆ f = κx2
max (19)

where xmax is the amplitude of the resonator and κ is the coefficient associated with the nonlinear
spring constant [42]:

κ =
3k3

8k1
f0 −

5k2
2

12k2
1

f0 (20)
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It can be seen from Equation (19) that when the constant κ is positive, the nonlinearities cause
the resonance peak to bend towards a higher frequency, and when the constant κ is negative,
the resonance shifts to a lower frequency.

For electrostatic MEMS resonators, the equivalent stiffness is determined by both mechanical
stiffness and electrostatic stiffness, so that the stiffness constants can be expressed by: k1 = k1m + k1e,
k3 = k3m + k3e, where k1m, k1e represent the mechanical term and electrostatic term of linear stiffness
constant, k3m, k3e represents the corresponding terms of the cubic stiffness constant. Electrostatic
nonlinearities are caused by capacitive transduction, and often lead to a spring softening effect [43].
On the other hand, mechanical nonlinearities can be classified as two types: geometrical effects and
material effects. For bulk mode resonators, material effects dominate the mechanical nonlinearities [44].
A nonlinear shear modulus is introduced:

G = G0 + G1γ+ G2γ
2 (21)

where G0, G1 and G2 are the linear, first and second order correction terms of shear modulus, respectively.
The stiffness constants caused by material effects for the Lamé-mode resonator can be calculated using
the following expression [45]:

k1m = π2G0h, k2m = 0, k3m =
9π4G2h

4L2 (22)

Furthermore, the linear mechanical spring constant k1m can be obtained from the experimental
data. Ignoring the influence of the higher-order stiffness constant, the resonance frequency f 0 and bias
voltage VDC has the following relationship due to the electrical softening effect [45]:

f0 =
1

2π

√
k1m − k1e

meff
=

1
2π

√√√√
k1m −

V2
DCε0Atotal

g3

meff
(23)

where Atotal is the total area of the resonator electrodes, and the effective mass can be obtained by
Equation (3). By fitting the experimental data with Equation (23), the fitted linear mechanical stiffness
constant k1m is 1.38 ×106 N/m, coinciding with k1m calculated by Equation (22). The measured data
and fitted curve for the frequency change versus the bias voltage VDC are presented in Figure 9.Micromachines 2020, 11, x 11 of 15 
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The cubic spring constant k3 cannot be experimentally measured, yet it is related to the coefficient
κ by Equation (20). According to Equation (19), a linear fitting of ∆f versus xmax

2 measured with
AC driving voltage range from −3 dBm to 3 dBm was performed with the bias voltage VDC = 10 V.
The result is presented in Figure 10. The nonlinear parameter κ extracted was −1.44 × 1020 Hz/m−2.
Therefore, k3 can be calculated as −1.03 × 1019 N/m−3. For resonators with nano-scale gaps, since k3e is
inversely proportional to g5 [43], the electrical nonlinearity should play a more important role than
the mechanical nonlinearity and results in the spring soften exhibited by negative k3.
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According to Equation (22), the nonlinear shear modulus G0 and G2 values of the Lamé-mode
resonator can be extracted. Table 3 presents the comparison between extracted shear modulus and
the reported ones.

Table 3. Comparison of the extracted nonlinear shear modulus G0 and G2.

Resonator G0 (×1010 Pa) |G2| (×1011 Pa)

Zhu, H. [44] 5.11 2.85
Shao, L. C. [37] 8.73 1.85

Yang, Y. [45] 4.62 8.76
Our work 6.99 4.03

In the oscillator application of MEMS resonator, nonlinearity will affect its power handling
capability. For an ideal oscillator model, Leeson’s equation can be used to characterize the effect of
nonlinearity on phase noise [46]:

L(∆ f ) = 10 log(
kTQ

πEstored f0
+

kT f0
4πEstoredQ∆ f 2 ) (24)

where L(∆f ) is the phase noise-to-carrier ratio, k is Boltzmann’s constant, T is the ambient temperature,
Estored is the energy stored in the resonator. The second term in Equation (24) represents 1/f 2 noise,
which can be effectively reduced by increasing Estored and Q. For the Lamé-mode resonator described
in this work, the bulk mode with high stiffness ensures a large stored energy and high Q factor.
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Therefore, the impact of nonlinearity can be greatly reduced, and the high performance of
the oscillator can be achieved.

4. Conclusions

A novel Lamé-mode square resonator was developed in this work. The Lamé-mode resonators
have high Q factors: over 8000 in air and over 30,000 in vacuum. The high Q values, nano-scale
gaps, and large electrode area greatly improve the capacitive transduction, and make it possible to
drive the resonator into vibration at resonance frequency of 51.3 MHz with a voltage as low as 3 V.
The nonlinearity of the Lamé-mode square resonator was studied, and the nonlinear parameters were
extracted from the measured data to characterize. Such a high-Q resonator with low bias voltage has
the potential to be utilized in building high-end MEMS oscillators and filters.
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