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Abstract: Pseudomonas aeruginosa is a common human pathogen belonging to the ESKAPE group.
The multidrug resistance of bacteria is a considerable problem in treating patients and may lead
to increased morbidity and mortality rate. The natural resistance in these organisms is caused by
the production of specific enzymes and biofilm formation, while acquired resistance is multifacto-
rial. Precise recognition of potential antibiotic resistance on different molecular levels is essential.
Metabolomics tools may aid in the observation of the flux of low molecular weight compounds in
biochemical pathways yielding additional information about drug-resistant bacteria. In this study, the
metabolisms of two P. aeruginosa strains were compared—antibiotic susceptible vs. resistant. Analysis
was performed on both intra- and extracellular metabolites. The 1H NMR method was used together
with multivariate and univariate data analysis, additionally analysis of the metabolic pathways with
the FELLA package was performed. The results revealed the differences in P. aeruginosa metabolism
of drug-resistant and drug-susceptible strains and provided direct molecular information about P.
aeruginosa response for different types of antibiotics. The most significant differences were found
in the turnover of amino acids. This study can be a valuable source of information to complement
research on drug resistance in P. aeruginosa.

Keywords: Pseudomonas aeruginosa; metabolomics; antibiotic resistance; NMR spectroscopy

1. Introduction

Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen [1], which
causes infections in chronic wounds and in the urinary tract. Moreover, it is responsible for
respiratory tract infections in cystic fibrosis (CF), obstructive lung disease, or mechanically
ventilated patients [2]. As a part of the ESKAPE pathogens group (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter species), P. aeruginosa is a significant cause of nosocomial infections. In
some P. aeruginosa strains, antibiotic therapy is not successful, despite its sensitivity in
laboratory tests [3,4]. Due to the increasing number of multidrug-resistant (MDR) isolates,
the WHO has recognized P. aeruginosa as a priority pathogen for antibiotic research [5].
The development of new antibacterial therapies and understanding antibiotic resistance
mechanisms is crucial for clinical practice and finding new treatment possibilities [6–8].

Multidrug resistance of P. aeruginosa relies on several mechanisms: (i) antibiotic
molecules may be neutralized by specialized enzymes (β-lactams, aminoglycosides),
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(ii) therapeutic compounds may also be removed from the cell by efflux pumps (β-lactams,
quinolones, and some aminoglycosides), (iii) alteration of the antibiotic target molecule,
(iv) modifications in the penicillin-binding proteins (PBPs), and (v) changes in OPrD
porin [4,9–12].

An important factor affecting drug efficiency is drug accessibility for targeted microor-
ganisms. Biofilm produced by P. aeruginosa is a physical barrier protecting bacteria from
antibiotics [13]. Some P. aeruginosa strains exhibit decreased expression of genes encoding
the porins (outer membrane channel proteins) used by certain types of antibiotics (e.g.,
rifamycins and quinolones) to enter the cell [11]. Antibiotic intake may also be reduced due
to reduced membrane potential [14]. These P. aeruginosa attributes are important factors
that should be considered during the development of an efficient antibiotic therapy.

Bacterial cells can become antibiotic-resistant when stringent response (SR) is activated
due to the nutrient limitation resulting in reduced bacterial multiplication. The correct
activity of SR is also crucial for biofilm development and stability [15].

The drug resistance phenomenon is analyzed on many levels: genomic, transcriptomic,
proteomic, and metabolomics. The last link of this omics chain may provide information on
antibiotic resistance mechanisms [16]. Metabolomics is focused on the analysis and monitor-
ing of low molecular weight compounds involved in cell metabolism. Metabolomic studies
performed on microorganisms so far usually rely on chromatographic techniques coupled
with mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) [17,18].

Metabolomics experiments have enabled the identification of new metabolic path-
ways [18], the recognition of bacterial strain origin [19], the identification of microorganism
species [20,21], and the analysis of the influence of different external factors on bacteria [22].
Moreover, metabolomic and genomic analysis helped explain P. aeruginosa polymyxin resis-
tance [23]. Metabolome analysis techniques are also considered an advanced diagnostic
tool for bacterial infections [24].

The presence of some antibiotic resistance mechanisms may be correlated with changes
in metabolite concentration (inside and outside the cell). Resistance to some antibiotics is
associated with the presence and activity of proteins involved in the processing of certain
metabolites in the cell (oprD protein required for carbapenem uptake is an amino acid
transporter [10] and activator of SR, which results in changes in the expression of the
enzymes involved in the main metabolic pathways including amino acid synthesis [25]).
Metabolome analysis would give additional information alongside antibiotic sensitivity
tests. This may help in the choice of appropriate antibiotic therapy, as well as enabling
research in new therapeutic strategies [26].

The metabolomics comparison of strains with different antibiotic resistance could
give information about the differences in the phenotype of both strains and may show the
direction of further (more detailed) investigations. The analysis of intra- and extracellular
metabolites allows us to observe the differences in intracellular machinery of the bacteria,
but also the association with the bacterial environment. All these reasons can give addi-
tional information for transcriptomics and genomics studies and may enable the recognition
of more antibiotic resistance mechanisms in P. aeruginosa. This study aimed to delineate
metabolic differences between two P. aeruginosa strains isolated from CF patients: a strain
resistant to the majority of available antibiotics (except colistin and ciprofloxacin) and
an antibiotic susceptible strain, by use of metabolomics tools using the 1H NMR method
together with univariate and multivariate analysis of intra- and extracellular metabolites
and the application of bioinformatics metabolic pathway analysis software (FELLA).

2. Results
2.1. Antibiotic Resistance Test

The results of antibiotic resistance tests are presented in Table 1. In this experiment,
antibiotics from the following groups: aminoglycoside (disrupting protein synthesis by
binding to the 30S ribosomal subunit), beta-lactams (disrupting peptidoglycan biosynthe-
sis), quinolone (disrupting DNA replication), and polymyxin (disrupting cell membrane)
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were used. Strain PAW17 was susceptible to all tested antibiotics. Strain PAW23 was
susceptible only to two antibiotics: ciprofloxacin and colistin.

Table 1. Antibiotic resistance of Pseudomonas aeruginosa strains (S—susceptible, R—resistant).

Antibiotic Name Class PAW17 PAW23

amikacin aminoglycoside S R
gentamicin aminoglycoside S R
netilmicin aminoglycoside S R

tobramycin aminoglycoside S R
imipenem beta-lactam S R

meropenem beta-lactam S R
piperacillin beta-lactam S R

piperacillin/tazobactam beta-lactam S R
ticarcillin/clavulanic acid beta-lactam S R

ceftazidime beta-lactam S R
cefepime beta-lactam S R

ciprofloxacin quinolone S S
levofloxacin quinolone S R

colistin polymyxin (peptide) S S

2.2. Metabolites Identification
2.2.1. Intracellular Metabolites

In total, 32 intracellular metabolites were identified (5-aminopentanoate, acetate,
adenine, alanine, AMP, aspartate, betaine, ethanol, formate, glucose, glutamate, glycine,
histamine, histidine, homoserine, isobutyrate, isocitrate, isoleucine, lactate, leucine, me-
thionine, NAD+, oxypurinol, phenylalanine, pyruvate, sarcosine, succinate, threonine,
tyrosine, UMP, uracil, and valine). Information about the chemical shift for each metabolite
is available in Supplementary Materials (Table S1). The set of identified metabolites was
identical for both strains.

The representative 1H NMR spectrum of intracellular metabolites is presented below
(Figure 1).

Figure 1. The representative 1D 1H NMR spectrum of intracellular metabolites of drug-susceptible Pseudomonas aeruginosa
strain. (1—5-aminopentanoate, 2—acetate, 3—adenine, 4—alanine, 5—AMP, 6—aspartate, 7—betaine, 8—ethanol, 9—
formate, 10—glucose, 11 -glutamate, 12—glycine, 13—histamine, 14—histidine, 15—homoserine, 16—isobutyrate, 17—
isocitrate, 18—isoleucine, 19—lactate, 20—leucine, 21—methionine, 22—NAD+, 23—oxypurinol, 24—phenylalanine,
25—pyruvate, 26—sarcosine, 27—succinate, 28—threonine, 29—tyrosine, 30—UMP, 31—uracil, 32—valine).
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2.2.2. Intracellular Metabolites

In total, 27 extracellular metabolites were identified (6-hydroxynicotinate, acetate,
alanine, betaine, formate, glycine, histamine, histidine, imidazole, isobutyrate, glutamate,
aspartate, asparagine, pyroglutamate, isoleucine, leucine, lysine, methanol, methionine,
oxypurinol, phenylalanine, pyruvate, threonine, trehalose, tryptophan, tyrosine, and va-
line). Four metabolites were not present in the post-culture medium (glutamate, aspartate,
asparagine, and pyroglutamate). Information about the chemical shift for each metabolite
is available in Supplementary Materials (Table S2).

The representative 1H NMR spectrum of intracellular metabolites is presented in
(Figure 2).

Figure 2. The representative 1D 1H NMR spectrum of extracellular metabolites of drug-susceptible Pseudomonas aeruginosa
strain (1—6-hydroxynicotinate; 2—acetate; 3—alanine; 4—betaine; 5—formate; 6—glycine; 7—histamine; 8—histidine;
9—imidazole; 10—isobutyrate; 11—isoleucine; 12—leucine; 13—lysine; 14—methanol; 15—methionine; 16—oxypurinol;
17—phenylalanine; 18—pyruvate; 19—threonine; 20—trehalose; 21—tryptophan; 22—tyrosine; 23—valine; 24—glutamate;
25—aspartate; 26—asparagine; 27—pyroglutamate).

The total number of intra- and extracellular metabolites identified was 39. Among
these, 19 metabolites were common to intra- and extracellular environments (histidine,
aspartate, glutamate, histamine, alanine, pyruvate, valine, isoleucine, leucine, betaine,
methionine, formate, glycine, threonine, phenylalanine, tyrosine, isobutyrate, oxypurinol,
and acetate); 13 metabolites were identified in cell extracts (succinate, homoserine, lactate,
UMP, sarcosine, ethanol, isocitrate, adenine, glucose, NAD+, AMP, 5-aminopentanoate,
and uracil) and eight were identified only in the culture medium (imidazole, asparagine,
methanol, 6-hydroxynicotinate, pyroglutamate, tryptophan, lysine, and trehalose).

2.3. Multivariate Data Analysis

The performed PCA—multivariate unsupervised analysis between drug-resistant
and drug-susceptible isolates revealed the natural grouping between bacterial intra- and
extracellular metabolites (Figure 3). Direct comparison of intracellular metabolites revealed
a more similar metabolomics profile than between extracellular metabolites. The first three
principal components (PC) accounted respectively for 84.7%, 8.74%, and 2.56% of the total
variance in the data (R2X = 0.998). The obtained loading plots analysis showed three
metabolites differentiated between bacteria cells and medium, which are: glycine, betaine,
and pyruvate.
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Figure 3. PCA model plot and corresponding loading plot for of 1H NMR data of all metabolites of P. aeruginosa strains
(drug-resistant extracellular (green), drug-susceptible extracellular (yellow), drug-resistant intracellular (blue), and drug-
susceptible intracellular (red)). Symbols in the same color represent biological repetitions.

Supervised analysis OPLS-DA analysis provides the strain’s grouping. The CV-
ANOVA test of this model gave statistically important results (model with parameters are
available in Supplementary Materials (Figure S1)).

2.3.1. Intracellular Metabolites

PCA score plot revealed the clustering of bacterial isolates with and without antibi-
otic resistance (Figure 4). The first and second principal components (PC) accounted,
respectively, for 41.6% and 21.5% of the total variance in the data (R2X = 0.631).

Figure 4. PCA model plot and corresponding loading plot of 1H NMR data of intracellular metabolites of drug-resistant
(blue squares) and drug-susceptible (red circle) P. aeruginosa strains. Symbols in the same color represent biological
repetitions.

Supervised OPLS-DA analysis provides the strain’s grouping. The CV-ANOVA test
of this model gave statistically important results (model with parameters are available in
Supplementary Materials (Figure S2)).

2.3.2. Extracellular Metabolites

For the PCA extracellular metabolites analysis, in addition to two types of bacterial
strain isolates, a control group was also taken into consideration (the entire content of
medium before bacterial cultivation).

The PCA score plot showed the difference between sample distributions for bacteria
isolates with different antibiotic resistance, while the control group formed a separate
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data set. In a comparison of both P. aeruginosa strains with control, the first and second
principal components (PC) accounted for 56.0% and 19.7% of the total variance in the data,
respectively, (R2X = 0.996) (Figure 5A). The score plot showed the differences between
the amino acids (glycine, alanine, tryptophan, leucine, lysine, methionine, threonine, and
histidine), pyruvate, isobutyrate, acetate, tyrosine, and 6-hydroxynicotinate.

Figure 5. PCA model plots and corresponding loading plots for 1H NMR data of extracellular metabolites of P. aeruginosa
strains. (A) Both P. aeruginosa strains with control; (B) both P. aeruginosa strains. Drug-resistant extracellular (green squares),
drug-susceptible extracellular (yellow circle), control—LB medium (gray triangles). Symbols in the same color represent
biological repetitions.

The direct comparison between the P. aeruginosa strains showed a clear separation
between the studied groups. The first and second principal components (PC) accounted,
respectively, for 55.6% and 23.2% of the total variance. Differences were mainly observed
in amino acid levels (Figure 5B).

For each comparison, the supervised OPLS-DA analysis provides the strain’s group-
ing. The CV-ANOVA test of this model gave statistically important results (model with
parameters are available in Supplementary Materials (Figure S3)). Information concerning
an additional PCA single comparison of the drug-resistant P. aeruginosa strain with con-
trol and drug-susceptible P. aeruginosa strain with control is available in Supplementary
Materials (Figure S4).

2.4. Statistical Analysis
2.4.1. Intracellular Metabolites

Among all the identified metabolites, 20 showed a statistically significant difference
between susceptible and resistant strains (p < 0.05) (succinate, homoserine, histidine,
histamine, lactate, alanine, glutamate, pyruvate, UMP, valine, isoleucine, leucine, betaine,
methionine, formate, glycine, sarcosine, threonine, ethanol, and isocitrate).

In the same comparison, VIP scores greater than 1.00 were obtained for 16 overlapped
metabolites (all statistically important metabolites, without glycine, threonine, succinate,
and lactate). Detailed statistical data are shown in Table 2.
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Table 2. The VIP score for discrimination OPLS with univariate analysis results for quantified metabolites in comparisons for intracellular metabolites Pseudomonas aeruginosa strains.

Compound
Group Metabolite

VIP Score for
OPLS-DA

Model

Mean/Median *
Relative

Concentration R

Mean/Median *
Relative

Concentration S
RSD R [%] RSD S [%] Fold Change R/S p Value FDR **

Histidine 1.238 0.030 0.022 7.096 12.502 1.376 6.22 × 10−7 6.63 × 10−6

Alanine 1.282 0.206 0.152 11.021 8.278 1.358 3.23 × 10−6 1.72 × 10−5

Glutamate 1.247 0.308 0.371 10.271 5.964 0.830 6.48 × 10−5 2.71 × 10−4

Valine 1.246 0.185 0.140 13.759 9.833 1.323 1.06 × 10−4 3.40 × 10−4

Isoleucine 1.322 0.095 # 0.056 # 18.228 11.873 1.692 1.83 × 10−4 4.87 × 10−4

Leucine 1.359 0.383 # 0.203 # 18.323 8.907 1.887 1.83 × 10−4 4.87 × 10−4

Methionine 0.912 0.022 0.015 25.325 20.409 1.453 3.18 × 10−3 7.27 × 10−3

Glycine 1.029 0.202 0.229 10.051 7.502 0.881 4.38 × 10−3 8.76 × 10−3

Threonine 1.034 0.042 0.038 10.142 5.496 1.109 1.62 × 10−2 2.88 × 10−2

Aspartate 0.707 0.068 0.062 15.953 14.564 1.093 2.11 × 10−1 2.81 × 10−1

Phenylalanine 0.705 0.113 # 0.121 # 14.269 7.127 0.933 5.21 × 10−1 6.02 × 10−1

A
m

in
o

ac
id

s

Tyrosine 0.508 0.115 0.118 10.702 10.218 0.970 5.26 × 10−1 6.02 × 10−1

Homoserine 1.358 0.619 0.392 9.718 5.487 1.578 1.85 × 10−7 2.96 × 10−6

Histamine 1.300 0.016 0.009 16.267 16.722 1.725 1.50 × 10−6 1.13 × 10−5

Sarcosine 1.048 0.022 0.016 19.383 28.508 1.386 5.94 × 10−3 1.12 × 10−2

A
m

in
o

ac
id

m
et

ab
ol

is
m

5-aminopentanoate 0.786 0.266 0.279 11.883 8.474 0.954 3.22 × 10−1 3.96 × 10−1

Succinate 1.382 0.669 0.401 9.236 7.523 1.669 1.43 × 10−8 4.57 × 10−7

Pyruvate 1.231 0.199 0.238 10.392 5.611 0.834 7.63 × 10−5 2.71 × 10−4

Isocitrate 0.885 0.169 0.193 16.536 3.586 0.873 2.18 × 10−2 3.51 × 10−2

M
ai

m
m

et
ab

ol
is

m

Glucose 0.602 0.031 0.036 25.176 14.910 0.864 1.22 × 10−1 1.77 × 10−1

Cofactor NAD+ 0.559 0.031 0.034 7.776 11.658 0.938 1.71 × 10−1 2.38 × 10−1

UMP 1.104 0.009 0.012 13.476 6.289 0.799 7.52 × 10−5 2.71 × 10−4

Adenine 0.54 0.011 # 0.010 # 8.239 13.275 1.103 1.21 × 10−1 1.77 × 10−1

AMP 0.797 0.067 0.072 12.569 12.192 0.932 2.21 × 10−1 2.83 × 10−1

N
uc

le
ot

id
e

pr
oc

es
si

ng
pa

th
w

ay
s

Uracil 0.364 0.010 0.010 26.399 19.769 0.964 7.31 × 10−1 8.06 × 10−2

Lactate 1.284 0.274 0.186 12.175 11.863 1.471 1.76 × 10−6 1.13 × 10−5

Betaine 1.083 8.428 7.200 11.685 7.209 1.171 2.63 × 10−3 6.47 × 10−3

Formate 0.908 0.009 0.007 13.181 16.178 1.237 4.33 × 10−3 8.76 × 10−3

Ethanol 0.991 0.075 0.065 14.898 6.110 1.153 2.19 × 10−2 3.51 × 10−2

Isobutyrate 0.711 0.018 # 0.017 # 19.107 12.686 1.078 8.50 × 10−1 9.07 × 10−1

Oxypurinol 0.1 0.034 # 0.034 # 9.793 9.363 0.997 9.10 × 10−1 9.39 × 10−1

O
th

er
s

Acetate 0.59 0.066 0.065 13.588 25.511 1.006 9.48 × 10−1 9.48 × 10−1

R—drug-resistant P. aeruginosa strains. S—drug-susceptible P. aeruginosa strains; VIP (variable importance in projection) > 1.00 and statistically important metabolites are marked on the grey background;
* mean—samples with normal distribution; median (marked with #)—samples without normal distribution; ** FDR—Q values from false discovery rate control by Benjamini–Hochberg procedure.
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Among the differentiating metabolites the relative concentration of succinate, homoser-
ine, lactate, alanine, valine, isoleucine, leucine, betaine, histidine, histamine, methionine,
formate, sarcosine, threonine, and ethanol were upregulated in the group of drug-resistant P.
aeruginosa, while only five metabolites were at the higher-level for drug-sensitive samples—
glutamate, pyruvate, UMP, glycine, isocitrate (Figure 6).

Figure 6. Boxplots for intracellular metabolites with VIP (Variable Importance in Projection) scores
above 1.00 are statistically important after p-value adjustment (q < 0.05). Red bars—S—drug-
susceptible strain; blue bars—R—drug-resistant strain.



Int. J. Mol. Sci. 2021, 22, 10820 9 of 19

2.4.2. Extracellular Metabolites

The comparison of the drug-resistant P. aeruginosa strain with the drug-susceptible
strain enabled the identification of 16 statistically significant metabolites (p < 0.05) (acetate,
alanine, betaine, glycine, formate, histidine, imidazole, isobutyrate, isoleucine, leucine,
lysine, methanol, phenylalanine, pyruvate, threonine and 6-hydroxynicotinate), while a
VIP scores greater than 1.00 were found for nine metabolites (acetate, glycine, imidazole,
isobutyrate, isoleucine, leucine, phenylalanine, pyruvate, and threonine).

The comparison of the drug-resistant P. aeruginosa strain with the control (LB medium)
enabled the identification of 17 statistically significant metabolites (p < 0.05) (acetate,
alanine, betaine, glycine, isobutyrate, leucine, lysine, methanol, methionine, phenylalanine,
pyruvate, trehalose, threonine, tryptophan, tyrosine, valine and 6-hydroxynicotinate). In
this case, VIP scores greater than 1.00 were obtained for 15 metabolites (all statistically
important metabolites, without acetate, and threonine).

The comparison of the drug-susceptible P. aeruginosa strain with the control (LB
medium) identified 19 statistically significant metabolites (p < 0.05) (acetate, alanine,
betaine, glycine, histidine, isobutyrate, isoleucine, leucine, lysine, methanol, methion-
ine, phenylalanine, pyruvate, trehalose, threonine, tryptophan, tyrosine, valine and 6-
hydroxynicotinate). 14 metabolites had VIP score greater than 1.00 (all statistically sig-
nificant metabolites, without isoleucine, histidine, methionine, imidazole, and betaine).
Detailed statistical data are available in Table 3.

Among the differentiating metabolites, the relative concentration of alanine, formate,
imidazole, isoleucine, leucine, lysine, pyruvate, and threonine was upregulated in the
group of drug-resistant P. aeruginosa vs. drug-susceptible strains. Eight metabolites were at
a higher level in drug-susceptible samples—6-hydroksynicotinate, acetate, betaine, glycine,
histidine, isobutyrate, methanol, and phenylalanine. The relative concentration of three
metabolites was lower in bacterial culture media than the control medium—glycine, leucine,
and pyruvate. The concentrations of isobutyrate and acetate were higher in cell culture
media than in control samples (Figure 7).

2.5. Bioinformatics Analysis

Bioinformatics analysis was used to produce a graphical representation of compounds,
enzymes, reactions, modules, and pathways with information on how the input metabolites
found in the statistical analysis reach the suggested pathways and on how these pathways
cross-talk. An interactive version of the graphic for analysis is also available. For this
analysis metabolites with statistical importance and VIPs greater than 1.00 were chosen.

2.5.1. Intracellular Metabolites

The graphical representation of compounds, enzymes, reactions, modules, pathways,
with information on how the input metabolites reach the suggested pathways, and on how
these pathways cross-talk for intracellular metabolites is shown in Figure 8.

The main pathways connected with these compounds are ABC transporters, van-
comycin metabolism pathway, and amino acids pathways, especially glycine, serine, threo-
nine, alanine, and pyruvate metabolism.
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Table 3. The VIP score for discrimination OPLS with univariate analysis results for quantified metabolites in comparisons for extracellular metabolites Pseudomonas aeruginosa strains (RC
-relative concentration).

Group Metabolites
Mean/

Median RC
R *

Mean/
Median RC

S *

Mean/
Median RC

C *

RSD R
[%]

RSD R
[%]

RSD K
[%]

R vs. S C vs. R C vs. S

VIP
Score

Fold
Change

R/S
p Value FDR

**
VIP

Score

Fold
Change

C/R
p Value FDR

**
VIP

Score

Fold
Change

C/S
p Value FDR

**

Threonine 6.583 4.868 6.128 3.623 5.620 1.900 1.197 1.352 1.37 × 10−11 8.24 × 10−11 0.886 0.931 1.57 × 10−3 2.22 × 10−3 1.083 1.259 2.49 × 10−7 7.46 × 10−7

Leucine 8.607 6.050 10.65 2.352 8.221 5.513 1.201 1.423 4.14 × 10−9 1.99 × 10−8 1.133 1.237 1.03 × 10−3 1.54 × 10−3 1.118 1.76 6.48 × 10−80 2.22 × 10−9

Isoleucine 2.676 2.191 2.516 4.134 8.724 8.159 1.115 1.221 1.75 × 10−6 6.00 × 10−6 0.584 0.94 6.76 × 10−2 8.54 × 10−2 0.881 1.148 9.65 × 10−3 1.22 × 10−2

Glycine 0.093 0.138 1.155 16.681 11.456 1.660 1.080 0.678 5.93 × 10−6 1.78 × 10−5 1.203 12.363 5.73 × 10−21 4.93 × 10−20 1.14 8.387 1.10 × 10−20 1.78 × 10−19

Phenylalanine 2.015 2.407 2.352 2.981 8.182 2.468 1.078 0.837 9.95 × 10−5 2.39 × 10−4 1.146 1.167 1.22 × 10−7 2.94 × 10−7 0.696 0.977 4.31 × 10−1 4.50 × 10−1

Histidine 0.155 0.195 0.142 14.571 11.601 4.770 0.944 0.796 9.54 × 10−4 1.76 × 10−3 0.376 0.916 1.19 × 10−1 1.36 × 10−1 0.947 0.729 2.15 × 10−5 4.68 × 10−5

Alanine 1.993 1.835 6.954 3.342 5.546 1.453 0.974 1.086 2.20 × 10−3 3.78 × 10−3 1.204 3.489 6.17 × 10−21 4.93 × 10−20 1.139 3.79 6.66 × 10−4 9.40 × 10−4

Lysine 10.993 10.17 11.918 2.894 6.608 1.520 0.949 1.081 4.00 × 10−3 6.00 × 10−3 1.042 1.084 4.71 × 10−5 8.69 × 10−5 1.026 1.172 8.28 × 10−6 1.99 × 10−5

Valine 3.985 4.177 # 3.493 3.649 5.396 4.115 0.752 0.954 8.90 × 10−2 1.19 × 10−1 1.038 0.877 3.23 × 10−5 6.45 × 10−5 1.031 0.836 6.66 × 10−4 9.40 × 10−4

Methionine 0.949 0.202 # 1.205 5.045 97.014 1.313 0.943 4.706 1.40 × 10−1 1.61 × 10−1 1.154 1.27 2.82 × 10−9 9.66 × 10−9 0.943 5.977 1.27 × 10−2 1.52 × 10−2

Tryptophan 0.078 0.026 # 0.212 6.533 97.715 2.961 0.752 2.959 1.40 × 10−1 1.61 × 10−1 1.200 2.719 1.31 × 10−15 7.85 × 10−15 1.041 8.046 6.66 × 10−4 9.40 × 10−4

A
m

in
o

ac
id

s
(A

A
)

Tyrosine 0.861 0.861 # 0.599 4.827 15.001 0.640 0.817 1.000 4.73 × 10−1 4.73 × 10−1 1.160 0.696 6.50 × 10−9 1.73 × 10−8 1.022 0.696 6.66 × 10−4 9.40 × 10−4

AA
metabolism Histamine 0.283 0.167 # 0.273 4.487 38.007 2.369 0.900 1.700 1.40 × 10−1 1.61 × 10−1 0.518 0.965 1.30 × 10−1 1.42 × 10−1 0.809 1.641 2.54 × 10−1 2.78 × 10−1

Imidazole 0.078 0.047 0.055 # 3.930 5.241 72.63 1.221 1.672 1.63 × 10−15 3.91 × 10−14 0.463 0.712 5.94 × 10−1 5.94 × 10−1 0.681 1.19 6.66 × 10−4 9.40 × 10−4

Oxypurinol 0.096 0.100 0.226 # 3.293 11.458 52.044 0.768 0.961 3.22 × 10−1 3.52 × 10−1 0.690 2.347 5.94 × 10−1 5.94 × 10−1 0.662 2.255 5.94 × 10−1 5.94 × 10−1

Isobutyrate 0.436 0.692 0.204 6.416 3.999 19.06 1.221 0.630 5.94 × 10−14 7.12 × 10−13 1.164 0.468 5.73 × 10−9 1.72 × 10−8 1.134 0.295 4.70 × 10−13 2.82 × 10−12

Acetate 3.486 10.284 2.589 32.191 7.080 2.005 1.200 0.339 4.04 × 10−12 3.23 × 10−11 0.522 0.743 3.24 × 10−2 4.32 × 10−2 1.135 0.252 6.94 × 10−11 2.77 × 10−10

Pyruvate 0.184 0.153 0.256 5.221 5.938 1.400 1.131 1.203 7.16 × 10−7 2.86 × 10−6 1.178 1.388 7.05 × 10−10 2.82 × 10−9 1.129 1.669 3.91 × 10−12 1.88 × 10−11

Betaine 5.167 5.667 6.108 4.576 4.925 1.544 0.970 0.912 4.17 × 10−4 9.10 × 10−4 1.111 1.182 1.26 × 10−6 2.74 × 10−6 0.818 1.078 4.91 × 10−3 6.55 × 10−3

Formate 0.048 0.017 0.092 # 40.445 24.975 49.725 0.989 2.816 6.25 × 10−4 1.25 × 10−3 0.58 1.924 7.53 × 10−2 9.03 × 10−2 0.94 5.419 7.53 × 10−2 8.60 × 10−2

Trehalose 0.121 # 0.084 0.317 27.213 7.319 3.308 0.744 1.444 3.85 × 10−1 4.01 × 10−1 1.174 2.613 6.66 × 10−4 1.07 × 10−3 1.137 3.773 8.92 × 10−17 7.14 × 10−16

Methanol 0.035 0.043 0.062 6.492 13.301 2.112 0.859 0.826 2.45 × 10−3 3.92 × 10−3 1.193 1.741 5.12 × 10−12 2.46 × 10−11 1.03 1.439 9.90 × 10−7 2.64 × 10−6

O
th

er
s

6-Hydroxynicotinate 0.113 0.126 0.054 # 3.153 10.280 35.106 0.813 0.899 1.28 × 10−2 1.80 × 10−2 1.078 0.478 6.66 × 10−4 1.07 × 10−8-3 1.038 0.43 6.66 × 10−4 9.40 × 10−4

R—drug-resistant P. aeruginosa strains. S—drug-susceptible P. aeruginosa strains; VIP (variable importance in projection) > 1.00 and statistically important metabolites are marked on the grey background;
* mean—samples with normal distribution; median (marked with #)—samples without normal distribution; ** FDR—Q values from false discovery rate control by Benjamini–Hochberg procedure.
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Figure 7. Boxplots for extracellular metabolites with VIP (Variable Importance in Projection) scores
above 1.00 and statistically important after p-value adjustment (q < 0.05). Yellow bars—S—drug-
susceptible strain. green bars—R—drug-resistant strain, gray bars—C—control (medium LB).
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Figure 8. Results of the node prioritization by FELLA in the Pseudomonas aeruginosa strain (intracellular analysis).

2.5.2. Extracellular Metabolites

The graphical representation of compounds, enzymes, reactions, modules, pathways,
and information on how the input metabolites reach the suggested pathways, and on how
these pathways cross-talk for extracellular metabolites is shown in Figure 9.

The main pathways connected with these compounds are ABC transporters, van-
comycin metabolism pathway, and amino acids pathways.

The interactive versions of Figures 8 and 9 are available in Supplementary Materials
(Files S1 and S2).
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Figure 9. Results of the node prioritization by FELLA in the Pseudomonas aeruginosa strain (extracellu-
lar analysis).

3. Discussion

Increasing antibiotic resistance leads to the development of alternative chemother-
apeutics dedicated to treating bacterial infections. In the case of P. aeruginosa infections,
treatment with β-lactams, fluoroquinolones, and aminoglycosides is widely used. In multi-
drug resistant strains, ceftolozan/tazobactam and colistin could also be administered, but
these can cause toxic and adverse side effects [3,4,12]. New therapeutic strategies may
involve the addition of compounds improving the activity of traditional antibiotics [27].
Understanding the exact mechanisms of action of currently used drugs could support this
process, which is why it is so important to perform analyses at various molecular levels [8].
Insights about differences between drug-resistant and drug-sensitive strains can be given
by metabolomics studies, where the differences in the low-molecular-weight compounds’
regulation reflect the changes in biochemical pathways [28]. This approach may be helpful
for the delineation of molecular targets and drug design [29]. In addition, bacteriostatic
compounds based on new structures and mechanisms of action are being designed [30].
Information regarding the prevalence of antibiotic resistance mechanisms would support
the development process.

However, these strategies will probably not be universal. In such a situation, selection
of effective therapy should be based on a detailed analysis of resistance mechanisms present
in an individual clinical strain. Treatment of antibiotic-resistant bacteria is likely to require
an individual approach. Therefore, the development of a fast and accurate diagnostic tool
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seems to be necessary. Our results show that the metabolomics approach with the use of
1H NMR spectroscopy may establish new horizons in this area [29].

The analysis of all accessible sources of data may provide an interesting insights into
the evolutionary adaptation of P. aeruginosa. Among intracellular metabolites there is
an interesting relationship between pyruvate and its reduction product—lactate. In the
antibiotic resistant strain, the level of pyruvate was decreased while the level of lactate
is increased, in comparison to antibiotic-susceptible strain. This may be the result of a
more intense reduction reaction of pyruvate in the drug-resistant strain since none of the
strains secreted these compounds to the culture medium. However, research in cystic
fibrosis (CF) patients’ samples shows that lactate is a major component in sputum, and
could be an important infection factor [31]. Pyruvate seems also to be associated with
BCAA biosynthesis (valine, leucine, and isoleucine), which were upregulated in the drug-
resistant strain [32]. Moreover, significant differences were observed in the intracellular
concentrations of isocitrate (lower in the resistant strain) and succinate (higher in the
resistant strain).

In the majority of cases, the identified intracellular amino acids were at the higher
level in the case of the antibiotic-resistant strain. The exceptions were glycine, glutamate,
and tyrosine whose concentrations were significantly higher in the antibiotic-resistant
strain. According to literature data, the amino acid conversion pathways are more efficient
in antibiotic-resistant strains [33]. Our results have shown clearly changes in amino acids
in both strains. Furthermore, the metabolic modification to amino acids as carbon sources
is essential in antibiotic resistance [14,34,35].

In the antibiotic resistance strain, the relative concentration of UMP was lower. The
synthesis of UMP has been shown to play an important role in sustaining virulence,
biofilm formation, and antibiotic resistance in P. aeruginosa [14,27]. The production of
biofilm in bacteria creates a physical barrier and reduces the effectiveness of treatment with
various antibiotics. Furthermore, biofilm-formation is a critical mechanism of adaptive
resistance [2]. Our results seem to confirm this observation.

Analysis of culture media revealed that the tested strains differed in amino acid
turnover patterns. Both strains used all available glutamate, aspartate, asparagine, and
pyroglutamate. However, for the susceptible strain, some of metabolites were taken from
the medium at a higher level: alanine, leucine, lysine, and methionine, while threonine,
histamine, and isoleucine were mostly utilized only by the antibiotic susceptible strain.
The common metabolite for both types of isolates is glycine which was drained from the
cultivation medium and seems to be one of the crucial nutrients. Different amino acid
utilization patterns may result from reduced expression of transport proteins. The FELLA
analysis results suggest that amino acid uptake may be interrupted. The KEGG database
includes only information regarding amino acid ABC-transporters localized in the inner
membrane [36]. These proteins are not considered antibiotic transporters; however, their
activity depends on the presence of porins transporting amino acids from the environment
into the periplasmatic space (these relations are not included in KEGG). Porins (such as
OprD) are recognized as structures necessary for antibiotic uptake. Our results suggest
that resistance of a strain to some β-lactams may depend on the reduced expression of
porin, also resulting in reduced amino acid uptake. Elevated glycine uptake in the case of
the antibiotic-resistant strain may result from a lack of threonine absorption. To satisfy the
cell threonine demand, the antibiotic-resistant strain probably synthesizes this amino acid
from glycine [35,37]. Moreover, in P. aeruginosa enzymes required for sarcosine synthesis
from glycine were identified [38]. The different amino acid metabolism could originate for
three reasons: different protein turnover, influx–outflux equilibrium, or bacteria amino acid
biosynthesis. This last phenomenon can be caused by all the bacterial organism biochemical
machinery for proteinogenic amino acid synthesis [33,37].

In the culture medium, acetate and isobutyrate were also present. The concentration
of both compounds was higher in the case of the antibiotic-susceptible strain. These com-
pounds are products of the catabolic metabolism of amino acids. Increased concentration
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of acetate and isobutyrate may indicate more intense metabolic activity of the antibiotic
susceptible strain. The concentration of acetate in the cultivation medium showed a nega-
tive correlation with infection length in CF patients [34]. Reduced production of acetate is
considered a sign of adaptation of a pathogen to the environment in the respiratory tracts
of CF patients.

Observed metabolic differences between examined strains may result from starvation
response (SR) activation in the drug-resistant strain. SR relies on the presence of the
ppGpp molecule produced by two enzymes relA and spoT. RelA becomes active when
the cell suffers amino acid limitation. SpoT produces ppGpp in response to sugar, iron,
and fatty acid deficiency. Both proteins were identified in P. aeruginosa [15]. SR activation
influences gene expression involved in glycolysis, the TCA cycle, and the amino acid
synthesis pathway. In E. coli, expression of the majority of enzymes for amino acid synthesis
is upregulated [25]. Moreover, the expression of glyoxalate-producing enzymes is also
increased. On the other hand, expression of enzymes producing oxalacetate from succinate
is reduced. If SR mechanisms in P. aeruginosa cause a transcriptional response similar to the
one observed in E. coli, altered enzyme expression may explain the observed changes in
intracellular metabolite concentration.

4. Conclusions

The treatment of bacterial infections is a significant problem, especially when in
pathogens form biofilm structures. Despite novel pharmacotherapy restoring CFTR func-
tionality being available, CF patients still suffer from bacterial infections [39]. Therefore,
research focused on the treatment of bacterial lung infections is still needed.

Our results show that the metabolic differences between antibiotic-resistant and
antibiotic-susceptible bacteria strains may be linked with the activity of antibiotic resistance
mechanisms. Comparison of intracellular and extracellular metabolite profiles showed
differences between drug-resistant and drug-susceptible P. aeruginosa strains within the
intracellular amino acid pool. The intracellular free amino acid concentration results from
the balance between different processes: protein synthesis, uptake from the environment,
and their biosynthesis and degradation. This information may be helpful in the selection
of the most effective therapy and targets for future drugs.

5. Materials and Methods
5.1. Bacterial Strains and Culture Conditions

In this study, two P. aeruginosa strains were analyzed: PAW17 (antibiotic susceptible)
and PAW23 (antibiotic resistant). The strains were isolated from patients suffering from CF
in the Mother and Child Institute in Warsaw. For long-term storage, strains were kept as
glycerol preserved suspensions at −80 ◦C.

After thawing from −80 ◦C, the bacteria were grown on Miller’s LB Broth agar
(BioShop) overnight at 37 ◦C. In the next step, pre-culture was prepared. 5 mL of liquid
LB medium in a test tube was inoculated with a single colony from the agar plate and
incubated for 24 h at 37 ◦C with shaking (180 r.p.m.). After that, 100 mL of the culture in a
300 mL conical flask was prepared (initial OD600nm = 0.1) and incubated for 24 h under the
same conditions. The strains’ breeding for metabolomics analysis was performed without
antibiotic treatment. After 24 h of cultivation, both strains were in the stationary phase.

To collect bacterial cells the culture was centrifuged (19,000 r.c.f., 5 min, 4 ◦C) (sigma
3–18 KS, Polygen), and the bacterial pellet was washed with 0.9% NaCl solution. Culture
medium samples were stored at −80 ◦C. The bacterial pellets were lyophilized (Scanvac-
Coolsave, Labogene) and stored at −80 ◦C. Before extraction, each sample was weighted
in tubes (Eppendorf). The entire protocol was repeated for each strain in ten biological
repetitions. Additionally, to compare the levels of extracellular metabolites with fresh
medium, five technical repetitions of fresh LB medium samples were analyzed.
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5.2. Antibiotic Resistance

The susceptibility of P. aeruginosa strains to most antibiotics was determined by the
disc diffusion method. The bacterial suspension with a density equal to 0.5 McFarland was
inoculated with a swab on Mueller–Hinton II Agar. The following antibiotic discs were
placed on the seeded medium: amikacin (30 µg), netilmicin (10 µg), tobramycin (10 µg),
gentamicin (10 µg), ceftazidime (10 µg), cefepime (30 µg), imipenem (10 µg), meropenem
(10 µg), levofloxacin (5 µg), piperacillin (30 µg), piperacillin / tazobactam (30/6 µg), ticar-
cillin / clavulanic acid (75/10 µg) (all Emapol antibiotic discs). The cultivation was carried
out for 18 ± 2 h at 35 ◦C ± 1 ◦C under aerobic conditions. The results were interpreted
following the current recommendations of the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) [40].

5.3. Extraction and Samples Preparation
5.3.1. Intracellular Metabolites

20 mg of lyophilized cells were suspended in 600 µL of methanol and samples were
disrupted for 5 min in TissueLyser (Tissue Lyser II, Qiagen, Venlo, Netherlands). Then
600 µL of water was added to each sample and again vortexed for 10 min. After the
disintegration, samples were centrifuged for 10 min, at 12000 rpm at 4 ◦C (Micro 220R,
Hettich), and 0.9 mL of clarified upper phase was transferred into a new tube. The
extracts were evaporated in a vacuum centrifuge (WP-03, JW Electronic, United States)
(40 ◦C, 1500 rpm, 10 h). In the next step, 600 µL of PBS buffer (0.1 M,10% D2O, pH = 7.0,
TSP = 0.3 mM) was added to each sample and mixed for 1 min and 550 µL was transferred
into NMR-tubes (SP, 5mm, Armar Chemicals, Germany) for measurements. Until the
measurements were taken, the samples were stored at 4 ◦C.

5.3.2. Extracellular Metabolites

After breeding, 1.5 mL medium were evaporated in a vacuum centrifuge (40 ◦C,
1500 rpm, 12 h). In the next step, 600 µL of PBS buffer (0.1 M (NaH2PO4/Na2HPO4),10%
D2O, pH = 7.0, TSP = 0.5 mM) was added to each sample and mixed for 3 min and
550 µL was transferred into 5-mm NMR-tubes (5SP, Armar Chemicals, Germany) for
measurements. Until the measurements were taken, the samples were stored at 4 ◦C.

5.4. 1H NMR Spectroscopy Analysis of the Bacterial Metabolites

Standard 1H NMR experiments were performed on a Bruker AVANCE II 600.58 MHz
spectrometer (Bruker, GmBH, Germany) equipped with a 5 mm TBO probe at 298 K.
All one-dimensional 1H NMR spectra were carried out using the cpmgpr1d (in Bruker
notation) pulse sequence by suppression of water resonance by presaturation. Acquisition
parameters were as follows: spectral width, 10 ppm; the number of scans, 128; acquisition
time, 2.72 s per scan; relaxation delay, 3.5 s; and time-domain points, 64 K. The spectra
were referenced to the TSP resonance at 0.0 ppm and manually corrected for phase and
baseline (MestReNova v. 11.0.3, Qingdao, China).

5.5. Data Processing and Multivariate Statistical Data Analysis

All spectra were exported to Matlab (Matlab R2014a, v. 8.3.0.532, Natick, MA, USA)
for preprocessing. Regions affected by solvent suppression were excluded (4.55–5.10 ppm
for intracellular analysis and 4.58–4.90 ppm for extracellular analysis) and alignment
procedures involving the correlation of optimized warping (COW) and interval correlation
shifting (icoshift) algorithms were applied [41,42]. The spectra consisted of 8910 data points
and were normalized using the probabilistic quotient method to overcome the issue of
dilution [43].

The multivariate and statistical data analysis was performed on a set of the 32 assigned
metabolites for intracellular metabolites and 27 metabolites for extracellular metabolites.
All assignments were verified using the following databases: KEGG Pathways, PubChem,
PAMDB, and ChenomX software (Chenomx Inc., Edmonton, AB, Canada). The concen-
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tration of metabolite measured by NMR was obtained as the sum of the intensities of the
no overlapping resonances (or a part of partly overlapping resonances). The input for
SIMCA-P software was a transformed data matrix (v 15.02, Umetrics, Umeå, Sweden).
For additional analysis, Matlab was used. The data sets were unit variance scaled before
the chemometric analysis. For bacteria strain classification, principal component analysis
(PCA), and partial least square analysis (OPLS) were carried out. The multivariate data
visualization marked an ellipse with Hotelling’s T2 range (95%). The OPLS-DA model
reliability was tested with CV-ANOVA at the level of significance of α < 0.05. The most
important variable was discrimination between comparisons, which was selected based on
the variable importance in projection (VIP) value with a cutoff value of 1.00. Univariate
analysis was performed using MATLAB software with Student’s t-test (equal/unequal vari-
ance) for data originating from a normal distribution and using Mann–Whitney–Wilcoxon
test for data that did not meet this requirement. Normality of distribution was assessed
by the Shapiro–Wilk test. The correction for multiple comparisons was preceded by the
Benjamini–Hochberg procedure (FDR). All univariate statistics were carried out at the level
of significance of α < 0.05.

5.6. Bioinformatics Analysis

After preprocessing, both, extra- and intracellular metabolite sets from two phenotyp-
ically different strains of Pseudomonas aeruginosa (antibiotic-resistant strain and antibiotic-
susceptible strain) were used to perform metabolic pathway enrichment in the FELLA pack-
age [26]. FELLA is an R-package (public software) available in under the GPL-3 license [44].
To perform pathways, metabolites with statistical importance and VIP value > 1.00 were
used. Firstly, KEGG-based hierarchical representations of biochemistry (knowledge graph)
were built using P. aeruginosa PAO1 (T00035, Release 97.0+/03–04, Mar 21). Later, a list
of metabolites from examined strains was separately mapped to the internal representa-
tion, creating an enriched object, and then subsequently the propagation algorithm was
run using the diffusion method (undirected heat diffusion model) to score graph nodes.
Additionally, the parametric z-score was computed using normality approximations for
statistical normalization.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms221910820/s1. Table S1: 1H NMR signal assignments for intracellular metabolites. Table S2:
1H NMR signal assignments for extracellular metabolites. Figure S1: OPLS-DA score plot of 1H
NMR data of P. aeruginosa strains. Drug-resistant extracellular (green), drug-susceptible extracellular
(yellow), drug-resistant intracellular (blue), drug-susceptible intracellular (red). Figure S2: OPLS-
DA score plot of 1H NMR data of intracellular metabolites of drug-resistant (blue squares) and
drug-susceptible (red circle) P. aeruginosa strains. Figure S3: OPLS-DA models for 1H NMR data
of extracellular metabolites of P. aeruginosa strains. (A) both P. aeruginosa strains with control;
(B) both P. aeruginosa strains; (C) drug-resistant P. aeruginosa strain with control; (D) drug-susceptible
P. aeruginosa strain with control. (drug-resistant extracellular (green squares), drug- susceptible
extracellular (yellow circle), control—LB medium (gray triangles)). Figure S4: PCA model plots and
corresponding loading plot for 1H NMR data of extracellular metabolites of P. aeruginosa strains.
(A) drug-resistant P. aeruginosa strain with control (the first and second principal component (PC)
accounted respectively for 67.6% and 11.8% of the total variance in the data (R2X = 0.864)); (B) drug-
susceptible P. aeruginosa strain with control (the first and second principal component (PC) accounted
respectively for 69.9% and 14.5% of the total variance in the data (R2X = 0.845)), (drug-resistant
extracellular (green squares), drug- susceptible extracellular (yellow circle), control—LB medium
(gray triangles)). File S1: Interactive version of results of the node prioritization by FELLA in the
Pseudomonas aeruginosa strain (intracellular analysis). File S2: Interactive version of results of the
node prioritization by FELLA in the Pseudomonas aeruginosa strain (extracellular analysis).
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