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Pan-cancer analysis of genomic scar patterns caused by
homologous repair deficiency (HRD)
E. Rempel1,9, K. Kluck1,9, S. Beck1,2,9, I. Ourailidis 1, D. Kazdal 1,3, O. Neumann 1, A. L. Volckmar1, M. Kirchner1, H. Goldschmid1,
N. Pfarr 4, W. Weichert4,5, D. Hübschmann 5,6,7, S. Fröhling2,5,6,7, C. Sutter 8, C. P. Schaaf2,8, P. Schirmacher1,5, V. Endris1,
A. Stenzinger 1,2,3,5,9✉ and J. Budczies 1,2,3,5,9✉

Homologous repair deficiency (HRD) is present in many cancer types at variable prevalence and can indicate response to platinum-
based chemotherapy and PARP inhibition. We developed a tumor classification system based on the loss of function of genes in the
homologous recombination repair (HRR) pathway. To this end, somatic and germline alterations in BRCA1/2 and 140 other HRR
genes were included and assessed for the impact on gene function. Additionally, information on the allelic hit type and on BRCA1
promoter hypermethylation was included. The HRDsum score including LOH, LST, and TAI was calculated for 8847 tumors of the
TCGA cohort starting from genotyping data and for the subcohort of ovarian cancer also starting from WES data. Pan-cancer,
deleterious BRCA1/2 alterations were detected in 4% of the tumors, while 18% of the tumors were HRD-positive (HRDsum ≥ 42).
Across 33 cancer types, both BRCA1/2 alterations and HRD-positivity were most prevalent in ovarian cancer (20% and 69%). Pan-
cancer, tumors with biallelic deleterious alterations in BRCA1/2 were separated strongly from tumors without relevant alterations
(AUC= 0.89), while separation for tumors with monoallelic deleterious BRCA1/2 alterations was weak (AUC= 0.53). Tumors with
biallelic deleterious alterations in other HHR genes were separated moderately from tumors without relevant alterations (AUC=
0.63), while separation for tumors with such monoallelic alterations was weaker (AUC= 0.57). In ovarian cancer, HRDsum scores
calculated from WES data correlated strongly with HRDsum scores calculated from genotyping data (R= 0.87) and were slightly
(4%) higher. We comprehensively analyzed HRD scores and their association with mutations in HRR genes in common cancer types.
Our study identifies important parameters influencing HRD measurement and argues for an integration of HRDsum score with
specific mutational profiles.
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INTRODUCTION
Defective DNA repair is as a hallmark of cancer1,2. One core DNA
repair mechanism fixing double stranded DNA breaks and
interstrand cross-links is homologous recombination repair
(HRR). Defective HRR, termed homologous recombination defi-
ciency (HRD), is observed in several common cancer types
including ovarian, breast, pancreatic and prostate cancer and
renders tumors more sensitive to platinum-based chemotherapies
as well as to PARP inhibition via synthetic lethality3,4. HRD is
caused by aberrations in genes encoding the HRR pathway, such
as BRCA1, BRCA2, ATM, ATR, BRIP1, PALB2, RAD51B/C/D, and others,
and may lead to genomic instability and characteristic patterns of
genomic scars, a phenomenon that can be diagnostically utilized.
In this context, BRCA1 and BRCA2 represent the most studies
genes showing impaired gene function by germline mutations,
somatic mutations or epigenetic modifications5–12. The role of
aberrations in other HRR genes and their association with
genomic instability is less well understood4. Diagnostic HRD
testing can focus on the interrogation of likely deleterious/
deleterious mutations in HRR genes13 or on evidence for genomic
instability. Several signatures of genomic instability associated
with the HRD phenotype have been identified, including loss of
heterozygosity (LOH)14, telomeric allelic imbalance (TAI)15, and

large-scale transitions (LST)16. Recent clinical research has
demonstrated their predictive potential by evaluating patients’
response to platinum-based therapies and PARP inhibitors in the
context of breast and ovarian cancer3,17. Using TCGA datasets, we
comprehensively analyzed major parameters influencing HRD
detection and the association of genomic instability with
aberrations in HRR genes within and across common cancer
types including ovarian cancer. Our study defines important
cornerstones of diagnostic HRD testing and contribute to a better
understanding of complex biomarkers.

RESULTS
We performed a pan-cancer and tumor type specific analysis of
HRD-induced genomic scar patterns in a total of 8847 tumors from
the TCGA project with whole exome sequencing (WES) and
genotyping data available. The study covered 33 cancer types
which are referred to by acronyms (Supplementary Table 1).

Mutation status of BRCA1/2 and other HRR pathway genes
Germline and somatic alterations in BRCA1/2 were the primary
criterion, alterations in other HRR genes were the secondary

1Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany. 2Center for Personalized Medicine (ZPM) Heidelberg, 69120 Heidelberg, Germany. 3German
Center for Lung Research (DZL), Heidelberg site, 69120 Heidelberg, Germany. 4Institute of Pathology, TUM School of Medicine, Technical University of Munich, 81675 Munich,
Germany. 5German Cancer Consortium (DKTK), 69120 Heidelberg, Germany. 6Division of Translational Medical Oncology, NCT Heidelberg and DKFZ, 69120 Heidelberg, Germany.
7NCT Molecular Diagnostics Program, NCT Heidelberg and DKFZ, 69120 Heidelberg, Germany. 8Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg,
Germany. 9These authors contributed equally: E. Rempel, K. Kluck, S. Beck, A. Stenzinger, J. Budczies. ✉email: albrecht.stenzinger@med.uni-heidelberg.de;
jan.budczies@med.uni-heidelberg.de

www.nature.com/npjprecisiononcology

Published in partnership with The Hormel Institute, University of Minnesota

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-022-00276-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-022-00276-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-022-00276-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-022-00276-6&domain=pdf
http://orcid.org/0000-0001-6783-5617
http://orcid.org/0000-0001-6783-5617
http://orcid.org/0000-0001-6783-5617
http://orcid.org/0000-0001-6783-5617
http://orcid.org/0000-0001-6783-5617
http://orcid.org/0000-0001-8187-3281
http://orcid.org/0000-0001-8187-3281
http://orcid.org/0000-0001-8187-3281
http://orcid.org/0000-0001-8187-3281
http://orcid.org/0000-0001-8187-3281
http://orcid.org/0000-0003-2684-9187
http://orcid.org/0000-0003-2684-9187
http://orcid.org/0000-0003-2684-9187
http://orcid.org/0000-0003-2684-9187
http://orcid.org/0000-0003-2684-9187
http://orcid.org/0000-0002-5977-5375
http://orcid.org/0000-0002-5977-5375
http://orcid.org/0000-0002-5977-5375
http://orcid.org/0000-0002-5977-5375
http://orcid.org/0000-0002-5977-5375
http://orcid.org/0000-0002-6041-7049
http://orcid.org/0000-0002-6041-7049
http://orcid.org/0000-0002-6041-7049
http://orcid.org/0000-0002-6041-7049
http://orcid.org/0000-0002-6041-7049
http://orcid.org/0000-0003-4051-5888
http://orcid.org/0000-0003-4051-5888
http://orcid.org/0000-0003-4051-5888
http://orcid.org/0000-0003-4051-5888
http://orcid.org/0000-0003-4051-5888
http://orcid.org/0000-0003-1001-103X
http://orcid.org/0000-0003-1001-103X
http://orcid.org/0000-0003-1001-103X
http://orcid.org/0000-0003-1001-103X
http://orcid.org/0000-0003-1001-103X
http://orcid.org/0000-0002-6668-5327
http://orcid.org/0000-0002-6668-5327
http://orcid.org/0000-0002-6668-5327
http://orcid.org/0000-0002-6668-5327
http://orcid.org/0000-0002-6668-5327
https://doi.org/10.1038/s41698-022-00276-6
mailto:albrecht.stenzinger@med.uni-heidelberg.de
mailto:jan.budczies@med.uni-heidelberg.de
www.nature.com/npjprecisiononcology


criterion for tumor classification with respect to HRR status
(Supplementary Fig. 1). As potentially deleterious alteratiuons,
substitutions, indels and homozygous deletions were considered.
For the second criterion, 140 HRR genes from the list in Lord and
Ashworth18 including ATM, ATR, BAP1, BRIP1, FANCA/C/D2/E/F,
PALB2, and RAD51B/C/D were analyzed. As a result, we obtained a
5-tier classification scheme separating tumors with deleterious
BRCA1/2 alterations (class H1a, 4% of all tumors), tumors with
deleterious alterations in other HRR genes (class H1b, 26%),
tumors with VUS in BRCA1/2 (class H2a, 2%), tumors VUS in other
HRR genes (class H2b, 26%) and tumors not affected by relevant
genetic alterations (class H3, 43%). The percentage of tumors in
class H1a varied strongly between cancer types, OV: 20% (by far
the highest percentage), UCEC: 9%, BRCA: 7%, STAD: 6%, CESC and
COAD: about 5%, BLCA, LUSC, PAAD, and PRAD: about 4%, and
less than 3.5% in the other cancer types (Fig. 1a).

Genomic scar signatures
The level of HRDsum varied markedly within and between cancer
types (Fig. 1b). Using the cutpoint HRDsum ≥42, a total of 1552
tumors (17.5%) were HRD-positive and the following ten cancer
types included the highest percentage of HRD-positive tumors: OV
(68.7%), LUSC (51%), ESCA (44.1%), UCS (41.2%), SARC (40.1%),
LUAD (35.8%), STAD (31.6%), BLCA (31.4%), BRCA (25.5%), and
HNSCC (23%). Five of these cancer types (OV, LUSC, STAD, BLCA,
and BRCA) overlapped with top ten cancer types in the list
ordered by the frequency of BRCA1/2 alterations.
In addition to HRDsum, the levels of specific mutational

signatures (single base substitution signatures SBS3 and SBS8)
and the number of deletions with microhomology (included in
the indel signatures ID6 and ID8) have been suggested as
alternative markers for HRD19,20. In most cancer types, less HRD-
positive tumors where identified by SBS3 > 0 than by HRDsum ≥
42. By contrast, in BRCA, 301 (34%) tumors were SBS3-positive,
while 228 (26%) tumors were HRDsum-positive and 135 (15%)
were both. Using WES data compared to WGS data is associated
with a lower sensitivity for detection of SBS and ID signatures: In
the study cohort, only 31 (0.4%) of the tumors had SBS8 > 0 and
only 340 (3.8%) of the tumors had TIB ≥ 50, the threshold setting
used by Nguyen et al.20 for the HRD-classification based on WGS
data. However, the median TIB was 4 and 3, respectively, in OV
and BRCA showing that HRD-classification based on deletions
with microhomology is not feasible using WES data, but requires
WGS data.
We calculated the percentage of HRD-positive (HRDsum ≥ 42)

cases in the mutation classes H1a-H3 (Fig. 1c). In the pan-cancer
analysis, significantly more tumors were HRD-positive in the classes
H1a, H1b, H2a, and H2b (49%, 19%, 28% and 23%) compared to
class H3 (10%). In OV, BRCA, BLCA, LUSC, and PAAD, significantly
more tumors were HRD-positive in class H1a (99%, 81%, 73%, 69%
and 50%) compared to class H3 (55%, 18%, 18%, 39% and 5%). In
ESCA, LUSC, LUAD, BLCA, BRCA, and HNSC, significantly more
tumors were HRD-positive in class H1b (55%, 54%, 49%, 33%, 31%,
and 27%) compared to class H3 (31%, 39%, 18%, 18%, 18%, and
16%). In LUSC, and BLCA, significantly more tumors were HRD-
positive in class H2a (71%, and 53%) compared to class H3 (39%,
and 18%). In STAD, LUAD, BLCA, and ACC, significantly more
tumors were HRD-positive in class H2b (45%, 38%, 30%, and 22%)
compared to class H3 (21%, 18%, 18%, and 2%).

Relation of HRD with TMB, mutational signatures and dMMR
We analyzed the correlation of TMB, TIB and the SBS mutational
signatures with HRDsum (Supplementary Fig. 2). In about half of
the cancer types (16/33) we detected positive correlations
between TMB and HRDsum, including PAAD, BRCA, OV, and PRAD
(R= 0.6, 0.52, 0.43, and 0.43). Simultaneously with positive
correlations between TMB and HRDsum we often observed

positive correlations between TIB and HRDsum as well as between
specific mutational signatures and HRDsum. These included the
clock-like signatures SBS1 and SBS5, the APOBEC-related muta-
tional signatures SBS2 and SBS13, as well as SBS3 which correlated
significantly with HRDsum in BRCA, OV, and BLCA (R= 0.4, 0.26,
and 0.17). These observations are consistent with a scenario in
which HRR-defective tumors simultaneously accumulate genomic
scars contributing to HRDsum and mutations according specific
mutational signatures, TMB, and TIB.
In UCEC, COAD, and STAD we detected negative correlations of

TMB, TIB, and specific mutational signatures with HRDsum. These
included the clock-like signatures SBS1 and SBS5, the dMMR-
related signatures SBS15, SBS20, and SBS44, as well as the POLE-
mutation-related signatures SBS10a and SBS10b. In line with these
negative correlations, HRDsum was significantly lower in micro-
satellite unstable or deleterious POLE/D1-mutated tumors com-
pared to tumors without these alterations (Supplementary Fig. 3).
Only 4 (1.2%) of the tumors showing these alterations compared
to 175 (21.5%) tumors without these alterations had HRDsum ≥ 42.
These results are consistent with the theory that—while defects in
single DNA repair systems are a hallmark of cancer2—simulta-
neous defects in more than one DNA repair system are
unfavorable for cancer cell viability. Here, we observed mutual
exclisivity of defects affecting single strand repair (dMMR) and
defects affecting double strand repair (HRD).

Association of BRCA1/2 status and genomic scar signatures
HRDsum, TAI, LST, LOH, TMB, TIB, and SBS3 were analyzed for the
power to distinguish between deleteriously BRCA1/2-altered
tumors and tumors without relevant alterations in HRR genes
(H1a vs. H3, Fig. 2). By HRDsum, significant separation was
achieved pan-cancer and within the eleven cancer types BRCA,
BLCA, PAAD, OV, PRAD, GBM, LUSC, SARC, LGG, HNSC, and LUAD.
Pan-caner, an AUC= 0.71 was reached, while AUCs were greater
than 0.8 for three of the listed cancer types. By SBS3, significant
separation was achieved pan-cancer and within BRCA, BLCA, OV,
and CESC (AUC= 0.82, 0.58, 0.57, and 0.54). By TMB, significant
separation was achieved pan-cancer and within the seventeen
cancer types UCEC, COAD, PAAD, BLCA, SKCM, LUAD, BRCA, LGG,
READ, STAD, OV, PRAD, SARC, GBM, HNSC, CESC, and LUSC (AUC
= 0.98 to 0.67). Among these, UCEC, COAD and STAD were known
to include dMMR and POLE/D1-mutated tumors and SKCM and
LUAD were known to harbor high TMB connected with exposure
to ultra-violet light and tobacco smoke, respectively. It is possible
that parts of the correlations between TMB levels and BRCA1/2
alterations are induced by monoallelic (MA) BRCA1/2 mutations
that act as passengers and do not cause HRD. To test this
hypothesis, we separated BRCA1/2 and other HRR gene alterations
with respect to the hit type.

Biallelic versus monoallelic HRR gene mutations
Separation of biallelic (BA) and MA hits represents an important
subclassification of mutations in tumor suppressor genes, as the
former hit type is associated with loss of function, while the
latter one is associated with retained function according to
Knudson’s second hit hypothesis21. Applying the approach to
separate between BA and MA alterations developed in the
Methods section, we found that the percentage of BA alterations
of all BRCA1/2 alterations varied across cancer types (Fig. 3a).
While a high percentage of BA alterations was detected in OV,
SARC, BRCA, and PAAD (93%, 83%, 69%, and 67%), it was lower
in CESC, LUSC, BLCA, and PRAD (46%, 44%, 27%, and 25%) and
very low in UCEC, STAD, COAD, SKCM, and LUAD (18%, 17%,
13%, 11%, and 9%).
Next, we separately analyzed tumors with class H1a, BA and

tumors with class H1a, MA alterations and the power of HRDsum
to separate these from class H3 tumors (Supplementary Fig. 4).
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Restriction to BA alterations considerably improved the classifica-
tion results, especially for BLCA, PAAD, BRCA and PRAD with a
close to perfect separation (AUC= 0.98, 0.97, 0.95 and 0.94). Vice
versa, restriction to MA alterations worsened the classification
results and a significant separation was only obtained for BLCA,
BRCA, PRAD, and LUSC. Together, these results support the validity
of the second hit hypothesis in context of HRD and thus underline

the importance to include the hit type in the classification of
BRCA1/2 alterations.

HRR pathway genes beyond BRCA1/2
The genes that were most frequently affected by deleterious
alterations varied across the cancer types (Fig. 3b). PTEN, ATM,
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and BAP1 were the most frequently affected genes pan-cancer
(34%, 7%, and 4% of all H1b cases). Furthermore, PTEN was the
most frequently affected gene in BRCA and PRAD (34% and
59%), while CDK12 was the most frequently affected gene in
OV (16%) and ATM was the most often affected gene in
PAAD (7%).
For 142 HRR genes including BRCA1/2, we analyzed the association

of the level of HRDsum with mutation status pan-cancer and in each

of the cancer types (Supplementary Fig. 5). Pan-cancer, signifi-
cantly higher HRDsum scores were detected in tumors with
alterations in 24 genes including BRCA1, BRCA2, RAD51B, and
RAD51C. Within specific cancer types, significantly higher HRDsum
scores were detected in BRCA1-mutated OV and BRCA; in BRCA2-
mutated OV, BRCA, PRAD, BLCA, and GBM; in PTEN-mutated OV
and PRAD; in ATM-mutated THCA and LUAD; in BAP1-mutated
KIRC and KIRP and in others.
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BRCA1 promotor hypermethylation
The relevant CpG sites and thresholds for the detection of BRCA1
hypermethylation were determined in correlation analyses of
beta-values and gene expression levels (Supplementary Fig. 6).
Pan-cancer, we detected 111 (1.3%) BRCA1 hypermethylated
cases, whereof 50 were strongly hypermethylated and 61 were
moderately hypermethylated (Fig. 4a). The largest proportions of
BRCA1-hypermethylated cases were detected in OV (16%), TGTC
(11%), BRCA (2.5%) and UCEC (1.6%). BRCA1-hypermethylation was
associated with high HRDsum (Fig. 4b, Supplementary Fig. 7): All
of the strongly BRCA1-hypermethylated tumors were positive for
HRD (HRDsum ≥ 42), while 43% of the moderately BRCA1-
hypermethylated tumors were HRD-positive. The latter proportion
was much higher when restricting to OV, for which all excluding a
single exception (98%) of the moderately BRCA1-hypermethylated
tumors were HRD-positive.

Integration of HRR gene mutations, hit type and BRCA1
methylation
We split mutation classes H1a and H1b by hit type (BA vs. MA
mutations) and formed a combined class “H1a, BA/HM” by
combing the tumors with deleterious, BA BRCA1/2 alterations
with the BRCA1-hypermethylated tumors. The separation of the six
resulting classes from H3 by HRDsum was investigated using ROC
curves (Fig. 5).

Pan-cancer, all six other classes could be significantly
separated from class H3. The by far best separation was
obtained for tumors with BA deleterious BRCA1/2 alterations
(class H1a, BA/HM; AUC= 0.89), while separation of tumors with
BA deleterious mutations in other HRR genes was inferior (class
H1b, BA; AUC= 0.63) and not better than the separation of
tumors with VUS in BRCA1/2 (class H2a, AUC= 0.69) and VUS in
other HRR genes (class H2b, AUC= 0.67). For separation, the hit
type (BA or MA) did matter strongly for class H1a mutations and
less strongly for class H1b mutations.
In OV, BRCA, PAAD, and PRAD the class “H1a, BA/HM” showed

the by far strongest and most significant separation from H3 (all
AUC ≥ 0.9). Out of the other H1 classes, all three classes “H1a, MA”,
“H1b, BA” and “H1b, MA” were significantly separated in BRCA and
PRAD, while only “H1b, BA” was significantly separated in OV and
PAAD. These results underline that the classification of HHR gene
alterations by can be improved the inclusion of the hit type and
BRCA1 hypermethylation.
We repeated the analyses for the H-classification based on a

more concise gene list of 20 genes involved in HRR instead of
the 140 genes included so far (Supplementary Figs. 8, 9). Using
the short gene list, 72.7% of the tumors were assigned to class
H3 without any relevant alteration, considerably more than
42.6% of the tumors that were assigned to this class using the
long gene list. By contrast, class H1b, MA was separated from
H3 in a similar way (AUC= 0.64 and AUC= 0.63), while class
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H2b separated from H3 slightly better for the long gene list
(AUC= 0.61 and AUC= 0.67). Thus, the strength of separation
did not improve by shortening of the gene list supporting the
view that there are genes involved in HRD beyond the 20 genes
in the short list.
Optimal cutpoints for HRDsum were determined by maximizing

Youden’s index for the separation of class H1a BA/HM from class
H3 (Supplementary Table 2). In the analysis across cancer types an
optimal cutpoint of 43 was obtained. In the analysis of the nine
cancer types with significant separation of the two classes,
cutpoints were higher in BLCA, OV, LUSC, and BRCA (66, 54, 49 and
45) compared to SARC, HNSC, STAD, PAAD, and PRAD (39, 39, 37,
37, and 21). Leave-one-out cross-validation (loocv) resulted in
higher Youdens’s indices for the optimal cutpoint compared to
the cutpoint of 42 for BRCA, OV, STAD, PRAD and SARC.

Explanations for high HRD scores
Out of the 1552 tumors with HRDsum ≥ 42 in the pan-cancer
analysis, 9% and 3% had BA and MA deleterious BRCA1/2 alterations
(class H1a), 14% and 13% had BA and MA deleterious alterations in
other HRR genes (class H1b) and 5% were BRCA1-hypermethylated
(Supplementary Fig. 10). Furthermore, 3% and 31% had VUS in
BRCA1/2 (class H2a) or other HRR genes (class H2b), while a large
remainder of 23% of tumors did not have any detected genetic or
epigenetic alteration associated with HRD (class H3). Considering the
250 ovarian carcinoma with HRDsum ≥ 42, larger proportions of 27%
and 18% had BA deleterious BRCA1/2 alterations and BRCA1-
hypermethylated promoters, while the proportion of tumors in the
other mutation classes was lower. The percentage of the remaining
tumors without relevant alterations (22%) was similar to the pan-
cancer analysis.
To uncover further genetic causes of high HRD scores, we

analyzed the association of HRDsum ≥ 42 with mutations in the
subcohort of class H3 tumors. The analysis was carried cancer
type specific and for each cancer type all mutations with a
prevalence of at least 5% were included. For TP53, we found a
significantly higher mutation rate of 68% compared to 24% for
the tumors with high HRD scores compared to the tumors with
low HRD scores after summary over the 33 cancer types (p= 1.7E
−50). Analyzing specific cancer types, TP53 was significantly (p <
0.05) associated with high HRD scores in BLCA, BRCA, ESCA, OV,
PRAD, STAD and UCEC. Summarizing the significances across
cancer types and taking into consideration multiple testing,
mutations of no other genes were associated with high HRD
scores of H3 tumors. In summary, a high percentage of tumors
with HRDsum ≥ 42 had TP53 mutations for both for the subcohort
of class H3 tumors (68%) and for the entire cohort (75%).

Whole exome sequencing for the extraction of HRD scores
Starting from the WES data of paired tumor and normal samples,
allele-specific copy numbers and subsequently TAI, LST, LOH, and
HRDsum were calculated in the ovarian cancer subcohort (TCGA-
OV). A strong and highly significant correlation (R= 0.87) was
observed between HRDsum scores calculated from WES data and
the ones calculated from SNP array data (Fig. 6a). WES data
resulted in slightly higher (4%) HRDsum scores compared to SNP
array data.
We analyzed the capacity of HRDsum to separate between

ovarian cacinomas showing genetic and epigenetic alterations
related to HRD from tumors not showing these alterations
(Supplementary Table 3). Based on WES data, using the cutpoint
42, sensitivity and specificity to separate tumors of class “H1a BA/
HM” from tumors not in this class were 100% and 40.2%. Using a
higher cutpoint 50, sensitivity and specificity changed to 97.8%
and 54.4%. PPV was 43.3% when using cutpoint 42 and 49.5%
when using cutpoint 50. Results obtained based on the
genotyping data were similar.

Finally, we analyzed the influence of tumor purity on the
determination of HRDsum by WES. In the TCGA project, tumor
samples were preselected for high tumor purity and most of the
tumor samples included had tumor purity of at least 60% or even
80% (Supplementary Fig. 11). In a correlation analysis of HRDsum
and tumor purity, we detected significant correlations only for two
of 21 cancer types (BRCA: R= 0.11, p= 0.0015; PRAD: R= 0.15,
p= 0.0017). Using linear model, we estimated a downshift of
HRDsum of 1.8 and of 1.4 per 10% tumor purity for breast cancer
and for prostate cancer.
To systematically analyze the effect on tumor purity on

HRDsum, we generated an in silico dilution series including 10%,
…, up to 100% of the reads of tumors DNA samples and 90%, …,
down to 0% of the reads of the corresponding normal DNA
samples for 40 ovarian carcinomas (Supplementary Figs. 12, 13).
For each of the diluted samples, the HRDsum score was calculated
and displayed as percentage of the corresponding undiluted
sample (Fig. 6b). We observed a systematic downshift of the
HRDsum with increasing dilution that was moderate for dilutions
up to 40%. We also compared the HRDsum scores from the
dilution series to the corresponding scores derived from the SNP
array data of the undiluted samples (Fig. 6c). For dilutions
including at least 20% of tumor DNA, HRDsum correlated strongly
with the result from genotyping (R ≥ 0.8). However, only for
dilutions up to 40%, slopes obtained from linear regression were
close to one, but considerably lower than one for stronger
dilutions. The real-world TCGA data as well as out in silico dilution
analysis support the view that a close to unbiased determination
of HRDsum using WES is feasible for samples with tumor purity of
40% or more, while lower purity is connected with a systematic
downshift of the HRD scores.

DISCUSSION
Diagnostic detection of HRD in tumor samples will become
increasingly important in the next few years. HRD may be
measured by causal deleterious mutations in HRR genes, as
performed in a recent trial for prostate cancer patients13, or by the
consequence of such events resulting in genomic instability.
Recently, HRD was approved as a predictive biomarker that
identifies ovarian cancer patients benefiting from combinatorial
treatment with bevacizumab and olaparib17. In this context, HRD
was defined as a multiparametric genomic instability biomarker
interrogating LOH, LST, and TAI (HRDsum) and measured by a
commercially available assay.
Here, we analyzed the association between genetic and

epigenetic alterations in components of the HRR pathway and
the clinically approved HRDsum score. Furthermore, we investi-
gated several parameters influencing HRD detection. HRDsum
was most prevalent in ovarian cancer followed by squamous cell
carcinoma of the lung, esophageal carcinoma and uterine
carcinoma. HSRsum correlated positively with TMB and nega-
tively with microsatellite instability. The percentage of tumors
with high HRDsum was much lower in tumors with other HRR
gene alterations compared to tumors harboring deleterious/likely
deleterious BRCA1/2 alterations. In line with genetic considera-
tions21,22, our data also show that classification as BA or MA hit
also influences the probability of association with high HRD
scores. Notably, alterations in BRCA1/2 as well as in 140 other HHR
genes including were associated with higher HRDsum scores.
Significantly enhanced HRDsum scores were detected or
deleterious alterations in those genes, but also for alterations
presently annotated as VUS. Hypermethylated BRCA1 was
associated with high HRDsum and most abundant in ovarian
cancer (16%) and testicular germ cell tumors (11%). Collectively,
these data contribute to a better understanding of mixed results
in current clinical studies analyzing BRCA1/2 and sets of non-
BRCA1/2 HRR genes.
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The data presented here show that optimal cutpoints of
HRDsum are tumor-type dependent and that a cutpoint of 42 -
for the first time introduced in a study on triple-negative breast
cancer9 and employed in recent ovarian cancer trials23,24 - may
result in suboptimal patient classification in other cancer types.
This should be considered in future clinical trial designs and is in
line with data by Davies et al.19 who also noted different scores of
their HRDdetect tool when used outside its original detection
scope (breast cancer). Pan-cancer, 23% of the tumors (22% for
ovarian cancer) with HRDsum ≥ 42 belonged to the class H3
where no genetic or epigenetic explanation is available in line
with data presented by Davies et al.19. In line with Knijnenburg
et al.1, we found that TP53 were associated with higher HRD
scores. Specifically, 75% of all tumors with HRDsum ≥ 42 and 68%
of the H3-tumors with HRDsum ≥ 42 were TP53-mutated. A recent
study on BRCA1/2 alterations reported restriction of the selective
pressure for biallelic inactivation, zygosity-dependent phenotype
penetration and sensitivity to PARP inhibition to cancer types
associated with increased heritable cancer risk in BRCA1/2
carriers25. These results advocate to combine HRD scores (such
as HRDsum) and the analysis of alterations in specific genes of the
HRR pathway (for example using the H-classification system
developed in this study) for a sensitive and specific detection of
HRD across cancer types. Our comparative analysis of a 140- and a
20-gene list suggests usage of a broad gene inclusion criterium at
the present time compatible with the presently incomplete
knowledge on the mechanistic causes of HRD.
With the excepotion of SBS3 in breast cancer, mutational

signatures26 derived from WES data were not suited to support
the detection of HRD. A more accurate determination of
mutational signatures and better support of HRD detection
can be achieved by WGS instead of WES19,20. We found a high
correlation between HRDsum scores calculated from genotyping
datasets (SNP array) and WES implying that both technologies
can be employed for HRD detection when focusing on HRD sum.
WES additionally offers the opportunity to measure single genes
and other genomic biomarkers (e.g. TMB27) in a single assay. In
silico dilution experiments showed that HRDsum scores are
stable for tumor purity of 40% or more, while lower tumor purity
can influence HRDsum. A systematic downshift of HRD scores
was introduced by lower tumor purity which has clinical
implications for clinical samples of low tumor purity and a
HRDsum score below or close to the threshold of 42. Thus, tumor
purity needs to be carefully controlled in the clinical imple-
mentation of HRD analysis.
Our results complement and add to pioneering work by Davies

et al.19 who developed a multiparametric model, termed
HRDdetect, primarily for the detection of HR-deficient breast
cancer using whole genome sequencing data. While their
approach utilizes several mutational signatures identified and
conceptually developed by Alexandrov et al.26 to provide an
integrated view on the consequential genomic scar arising from
an unknown functionally abrogating event in an HRR gene, we
aimed at identifying parameters influencing HRDsum, a biomarker
which is now used in routine clinical practice, by looking at likely
causal mutational patterns shaping and influencing HRD sum
scores in several major cancer types. In line with the notion of
Davies et al.19, our clinic-centered work shows that a multilayered
approach, which reflects causes of HRD including the functional
diversity of the HRR pathway—in our case by integrating specific
mutational classes of HRR genes as well as biallelic vs. monoallelic
status—and consequences (e.g. HRDsum) is superior to a
monoparametric identifier solely using HRDsum. The relevance
of looking closer at the specific causes of HRD is also implicitly
reflected by data from the Profound trial13 showing that non-
BRCA HRR genes investigated in this trial are not equally
associated with significant clinical response to PARP inhibitors in
prostate cancer. According to our data, an integrated analysis

approach would likely have led to improved biology-driven
selection of patients that benefit from treatment. As we have
shown this would necessitate a different testing strategy that
includes parallel testing of tumor and germline DNA as well as
coverage of a broader genomic footprint.
A limitation of the study is the of use publicly available

molecular data, which do not allow to analyze wet-lab parameters
that may influence HRD results. Furthermore, for the pan-cancer
TCGA cohort analyzed here, WES but not WGS data were available
precluding a more accurate determination of mutational signa-
tures, quantification of the deletions with microhomology as well
as comprehensive downsampling experiments to compare WGS,
WES, and gene panels. Another limitation was the limited number
of cases with HRD for cancer types with low HRD prevalence. The
highest numbers of BRCA1/2-defective tumors (class H1a BA/HM)
were available for OV (n= 113), BRCA (n= 60), UCEC (n= 14),
TGCT (n= 14) and LUSC (n= 10), while less than ten BRCA1/2-
defective tumors were at hand for all other cancer types. For
cancer types with low HRD prevalence, HRD scores should be
further studied in larger cohort or cohorts enriched for HR-
deficient tumors.
Our study contributes to uncovering the genetic and

epigenetic underpinnings of HRD. For detection of HRD in
routine diagnostics, we suggest to combine the HRDsum score,
defined as sum of LOH, TAI, and LST, and the mutational status
of specific HRR genes, thereby integrating analysis of cause and
of consequence of HRD. Our proposed classification of HRR
genes and variant types supports the systematic evaluation of
alterations in HRR genes. In line with Kundson’s two hit
hypothesis and the strong dependence of HRD scores on the
allelic hit type observed in this study, biallelic but not
monoallelic alterations should be considered primarily for the
therapeutic exploitation of HRD. The comprehensive analysis of
HRD scores in 33 cancer types suggests that cutpoints for
HRDsum should be defined in a tumor-type specific manner. A
one-size fits all approach is unlikely to work according to our
analysis. Further studies are warranted to fix the cutpoints in
cancer types with low HRD incidence. Our study indicates that
determining HRDsum by WES of paired tumor and normal
samples is feasible and advocate to control for tumor purity as a
critical confounding factor of HRDsum measurement. Digital
image analysis might contribute to a more accurate determina-
tion of tumor cell content. Collectively, our results support the
implementation of HRD testing in a clinical setting and have
implications for the design of future clinical trials.

METHODS
Study cohort
The study cohort included tumors of 33 cancer types that were molecularly
characterized in the TCGA project. All analyzes were based on the data
generated in the TCGA project. Germline alteration calls were obtained
from Huang et al.28. Somatic alteration calls were obtained from the
PanCanAtlas web page29,30. For each tumor, tumor mutational burden
(TMB) was calculated as the total number of missense mutations and
tumor indel burden (TIB) was calculated as the total number of small
insertion and deletions (indels). Methylation data (beta-values) and gene
expression data prepared as described in Hoadley et al.31 were obtained
from the PanCanAtlas web page29. Single base mutational signatures (SBS)
extracted by SigProfiler32 were obtained from the Synapse portal33. Allele-
specific copy numbers estimated using the ASCAT algorithm and SNP array
data as input were obtained from the GDC Data Portal34. Aligned WES data
(BAM files) of ovarian cancer and paired normal samples (TCGA-OV cohort)
were obtained from the GDC Data Portal34 (data access approved by NIH,
project #15058). Estimates of allele-specific copy numbers from WES data
of paired tumor and normal samples were calculated using Sequenza35. A
total of 8847 tumors for which mutation data, allele-specific copy numbers
und SBS signature estimates were available, were included in the study.
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Variant classification
Germline and somatic variants in BRCA1/2 and 140 other HRR genes
(including ATM, ATR, BAP1, BLM, BRIP1, CDK12, CHEK1, CHEK2, FANCA,
FANCC, FANCD2, FANCE, FANCF, MRE11, NBN, PALB2, RAD51B, RAD51C,
RAD51D and WRN) listed in the Supplementary Material of Lord and
Ashworth18 were classified using a 5-tier classification system. As results,
variants were annotated as either “deleterious”, “likely deleterious”, “variant
of unknown significance (VUS)”, “likely polymorphism” or “polymorphism”.
As an alternative approach, we used the more concise list of 20 genes
(genes listed above) from the main text of Lord and Ashworth.
In detail, germline variants were classified as “deleterious” or “likely

deleterious” when listed as “pathogenic” or “likely pathogenic” in Huang
et al. 28. Homozygous deletions were called from the ASCAT calls of copy
number alterations, whenever the copy number calls of both alleles were
zero. In this case the alteration was classified as “deleterious”. Somatic
BRCA1/2 mutations were classified according to the database of the
ENIGMA consortium36. In case the variant could not be found in this
database, we used a combination of the following five databases for
classification: ClinVar37, the University of Utah Department of Pathology
and ARUP Laboratories mutation database38,39, the Breast Cancer
Information Core (BIC) database40, Leiden Open Variation Database
(LOVD)41 and our in-house ionLIMS database. Variants were classified as
“VUS” case of conflicting assessments by the databases. Somatic mutations
in other HRR genes were classified according to the annotations in ClinVar.
Variants, that could not be found in any of the above six databases were

classified as follows: Frame shift, nonsense, or splice site mutations were
classified as “likely deleterious”. Intronic or synonymous mutations were
classified as “polymorphisms”. All other variants were classified as “VUS”.

Tumor classification according to HHR gene variants
Integrating information on germline and somatic mutations of BRCA1,
BRCA2 and the 140 other HRR pathway genes we classified the TCGA
tumors according to the following 5-tier classification scheme (Supple-
mentary Fig. 1):

● H1a: (likely) deleterious alteration in BRCA1/2
● H1b: (likely) deleterious alteration in another HRR gene
● H2a: VUS in BRCA1/2
● H2b: VUS in another HRR gene
● H3: wildtype status or alteration with retained function for all

HRR genes.

Primarily, the classification depended on mutations of BRCA1/2: In case
of a deleterious mutation, likely deleterious mutation or a homozygous
deletion in BRCA1/2 tumors were assigned to class H1a. Secondarily,
mutations in the other HRR genes were taken into consideration: In case of
a deleterious mutation, likely deleterious mutation or a homozygous
deletion in one of these genes, tumors were assigned to class H1b. Thirdly,
in case of VUS in BRCA1/2 or in one of the other HRR genes, tumors were
assigned to classes H2a or H2b. Finally, the remaining tumors that did not
harbor relevant alterations in any of the 142 HRR genes were assigned to
class H3.

Biallelic versus monoallelic alterations
According to the second hit hypothesis21, tumor suppressor genes require
inactivation of both alleles to drive cancer. Thus, dependent if a single
allele or both alleles were affected, we classified hit type of a mutation as
either biallelic (BA) or monoallelic (MA). From the ASCAT data, we extracted
the total copy number CN= A+ B as well as the copy number of the major
and minor alleles, A and B. Assuming that at least half of the reads of the
corresponding alleles included the mutations, we used the thresholds α=
A/(2 × CN) and β= B/(2 × CN) for the variant allele frequency (VAF). Prior to
comparison with the thresholds, VAFs were corrected for tumor purity by
dividing the original VAFs by the histopathological determined tumor cell
content. Alterations were classified as BA if one of the following criteria
was fulfilled:

1. Homozygous deletion, i.e. CN= 0
2. LOH and germline mutation
3. LOH and deleterious somatic mutation with VAF ≥ α
4. Germline and deleterious somatic mutation with VAF ≥ β
5. Two deleterious somatic mutations (VAF1 ≥ VAF2) with VAF1 ≥ α and

VAF2 ≥ β

Alterations classified as MA if none of the above criteria was fulfilled.

BRCA1 methylation
Methylation levels of four out of eight interrogated CpG sites in the BRCA1
promotor (cg04658354, cg08993267, cg10893007 and cg19531713)
showed strong negative correlation with BRCA1 mRNA expression
(Supplementary Fig. 6). Thus, BRCA1 methylation status was determined
based on these four indicative sites. Tumors were classified as strongly
BRCA1-hypermethylated, if at least one of the CpG sites had beta ≥ 0.6
(N= 50, 0.6%). Tumors were classified as moderately BRCA1-hypermethy-
lated, if at least one of the CpG sites had beta ≥ 0.2, but none of them had
beta ≥ 0.6 (N= 61, 0.7%). All other tumors were classified as BRCA1-
unmethylated.

Calculation of HRD scores
For the entire TCGA cohort, allele-specific copy numbers were estimated
from SNP array data using the ASCAT algorithm42. The ASCAT estimates
were downloaded from the GDC Data Portal29,34. For the ovarian cancer
subcohort (TCGA-OV) allele-specific copy numbers were additionally
estimated from WES data using Sequenza35. To this end, BAM files of
paired tumor and normal samples of TCGA-OV were downloaded from
the GDC Data Portal34. The HRD scores TAI15, LST16, LOH14, and HRDsum9

(= TAI+ LST+ LOH) were calculated from allele-specific copy numbers
using HRDscar43.

In silico dilution experiment
Tumor purity was high in TCGA-OV (median: 90%, 95% CI 83% - 99%,
Supplementary Fig. 11). To simulate ovarian cancer samples with a lower
tumor purity, we replaced 10%, 20%, …, 90% of the reads in the tumor
DNA BAM file by randomly drawn reads of the corresponding normal DNA
BAM file. In case there were not enough reads in the normal DNA BAM file,
we doubled each read prior to the random draw.

Statistical analysis
Correlations between genomic signatures were analyzed using Spearman’s
rho and two-sided testing for statistical significance. Association of the
levels of genomic signatures with BRCA1/2 mutation status was analyzed
using receiver operator characteristic (ROC) curves, areas under the ROC
curves (AUC) and assessed for significance using the one-sided Wilcoxon
test. ROC curves and AUC were calculated using the R-package ROCR44.
AUCs of different ROC curves were compared using the DeLong test45.
Optimized cutpoints for the genomic signatures in each of the cancer
types were calculated by maximizing Youden’s index46. Fold changes of
HRDsum between HHR gene mutated and unmutated tumors were
assessed for statistical significance using the one-sided Wilcoxon test.
Heatmaps were the preferred way to present results for a multiplicity of

genomic signatures in a multiplicity of cancer types. For control of the false
discovery rate (FDR), p-values corresponding to the displayed statistics
were corrected for multiple testing using the Benjamini-Hochberg
method47 including both heatmap dimensions (signatures × cancer types).
Only significant results (FDR < 10%) were displayed as boxes in heat colors.
Heatmaps were generated using the function heatmap.2 in the R package
gplots48. Hierarchical clustering was performed using the Euclidean
distance as dissimilarity measure and the average linkage method to
calculate the distance between clusters.
The association of mutations and HRDsum ≥ 42 was analyzed separately

in each of the 33 cancer types and assessed using Fisher’s exact test. Only
1200 genes that were mutated in at least 5% of the 8847 samples were
included in the analysis. The p-values were combined to pan-cancer p-
vales using Fishers method49. P-values for the genes included in the
analyses were corrected using the Benjamini-Hochberg method and the
FDR was controlled at 10%.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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