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Abstract

Fistulifera sp. strain JPCC DA0580 is a newly sequenced pennate diatom that is capable of simultaneously growing and
accumulating lipids. This is a unique trait, not found in other related microalgae so far. It is able to accumulate between 40
to 60% of its cell weight in lipids, making it a strong candidate for the production of biofuel. To investigate this
characteristic, we used RNA-Seq data gathered at four different times while Fistulifera sp. strain JPCC DA0580 was grown in
oil accumulating and non-oil accumulating conditions. We then adapted gene set enrichment analysis (GSEA) to investigate
the relationship between the difference in gene expression of 7,822 genes and metabolic functions in our data. We utilized
information in the KEGG pathway database to create the gene sets and changed GSEA to use re-sampling so that data from
the different time points could be included in the analysis. Our GSEA method identified photosynthesis, lipid synthesis and
amino acid synthesis related pathways as processes that play a significant role in oil production and growth in Fistulifera sp.
strain JPCC DA0580. In addition to GSEA, we visualized the results by creating a network of compounds and reactions, and
plotted the expression data on top of the network. This made existing graph algorithms available to us which we then used
to calculate a path that metabolizes glucose into triacylglycerol (TAG) in the smallest number of steps. By visualizing the
data this way, we observed a separate up-regulation of genes at different times instead of a concerted response. We also
identified two metabolic paths that used less reactions than the one shown in KEGG and showed that the reactions were
up-regulated during the experiment. The combination of analysis and visualization methods successfully analyzed time-
course data, identified important metabolic pathways and provided new hypotheses for further research.
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Introduction

The search for sustainable and environmentally-friendly fuel is a

burgeoning field in biology because organic waste products and

organisms are abundant and renewable sources of biofuel

compounds. There is strong focus on producing biofuel from food

crops, such as corn and soy, as well as oleaginous algae, such as

Chlamydomonas reinhardtii and Nannochloropsis oceanica. One of

the big advantages of algae over terrestrial crops is that they

require less land to grow on while producing more biomass [1].

This characteristic is important in large-scale production to

minimize competition with the production of food or with the

preservation of neighboring habitats. Algae can be farmed in open

tanks or closed columns and does not deplete soil for agricultural

use. Most oleaginous algae accumulate biofuel compounds in low

nitrogen conditions at the expense of cell growth [2] [3] [4]. For

that reason, we have focused our analysis on a newly sequenced

strain of microalgae, Fistulifera sp. strain JPCC DA0580, which is

able to accumulate lipids while undergoing logarithmic growth [5].

Fistulifera sp. strain JPCC DA0580 is a pennate diatom that is

possibly an allodiploid, sharing many of its genes with the diatoms,

Phaeodactylum tricornutum and Thalassiosira pseudonana. It

demonstrates a high growth rate concurrently with achieving

high lipid content (40–60% w/w) [6]. There have been 20,618

genes sequenced from the nuclear, chloroplast and mitochondrion

genomes. Although the Fistulifera sp. strain JPCC DA0580

genome contains some genes that are homologous to the ones

involved in lipid metabolism, the cellular mechanisms for its ability

to simultaneously grow and accumulate lipids is unknown.

In our analysis, we utilized RNA-Sequencing (RNA-Seq) data

gathered from Fistulifera sp. strain JPCC DA0580 while it was

grown in oil accumulating and non-accumulating conditions at

four time points, from 0 to 60 hours. RNA-Seq is a high-

throughput sequencing method that produces a large amount of

data per experiment and can be used to investigate differences in

gene expression between several conditions. The method produces

count data of RNA sequences which can be normalized using

Reads Per Kilobase Per Million (RPKM). The normalization

corrects for the varying coverage a sequence may get due to its

length. Most analyses that involve comparisons in gene expression

focus on identifying differentially expressed genes, especially

methods that use linear modeling which take advantage of

preexisting microarray analyses [7] [8]. Another type of method
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that is less stringent is gene set enrichment analysis (GSEA), which

is more focused on relating the results with previous knowledge.

GSEA approaches the data analysis by looking for associations

between predefined groups of genes, a gene set, and a phenotype

of interest. This type of method is better at detecting small but

coordinated differences in gene expression than linear modeling

and is less interested in differentially expressed genes and more

focused on a group of genes being expressed differently from the

background expression. GSEA generally has simple requirements

for the data to be analyzed. The important elements are sets of

genes that can be compared to the data and data values that can

be distilled into one value per gene, usually gene expression or fold

change. This makes GSEA more suitable for analysing our data.

There are a variety of GSEA tools available for analyzing high-

throughput sequencing data from experiments investigating two

conditions with a robust number of replicates on a model organism

[9]. For example, online services such as DAVID [10] [11],

FuncAssociate [12] and GOEAST [13], statistical packages for R

such as SPIA [14] and standalone scripts such as PAGE [15].

Unfortunately, our data was not suitable for these methods. When

investigating multiple time points with a new organism, it is

sometimes not feasible to have enough replicates, even with the

decreasing cost of RNA-Seq experiments. There are some

methods that can accommodate these data but they still depend

on variance estimation which is inadequate for our data.

Therefore, we proposed a new approach to analyse data from a

new organism that takes into account the change in gene

expression through time in order to avoid reducing our data as

done by some existing tools.

We demonstrate a modified approach to GSEA that is able to

analyse one sampled data with multiple time points, and custom

annotations in an investigation on the difference in gene

expression between two conditions through four time points. We

then use the results to identify a sequence of reactions starting with

a compound such as glucose, and ending with a compound of

interest such as triacylglycerol. To create gene sets for a genome

with custom annotations, we associate our genes with known

KEGG pathways and make each metabolic pathway a gene set. In

order to fully utilize the time-course data, each time point is

treated as a variable so that GSEA is performed in multiple

dimensions, and gene expression variation across time can be

conserved. We use re-sampling to address the low replicate

number issue and create an empirical cumulative distribution that

is then used to calculate the enrichment p-value on multidimen-

sional data without the need to assume multivariate normality.

Finally, we visualize and interpret the results using graphs that join

the enriched gene sets. The graphs also let us calculate a

hypothesized pathway of reactions from one compound to

another. In the interest of learning about oil accumulation, we

chose to focus our demonstration on the reactions involved in

turning glucose into the target biofuel lipid, triacylglycerol (TAG).

Results and Discussion

Gene Set Enrichment Analysis
Using the modified GSEA method on our data, we identified 9

significantly enriched pathways (Table 1). These pathways contain

genes whose difference in gene expression was significantly

different, as a group, to the general background level of gene

expression of the whole data set.

The photosynthesis and photosynthesis antenna protein path-

ways were two related pathways that were significantly enriched

with p-values ,0.0001. The gene expression in the photosynthesis

pathway showed a positive relationship between log fold change

and time, indicating that there was increased energy synthesis via

photosynthesis during oil accumulation. Although a similar

relationship was present in the photosynthesis antenna proteins

pathway, the log fold change values at 60 hours was higher than in

the photosynthesis pathway. Further investigation reveals that the

values came from the expression of light-harvesting complex I

chlorophyll a/b binding proteins; LHCA1, LHCA2 and LHCA4.

Additionally, the general difference in expression of proteins in

light-harvesting complex II is lower than in light-harvesting

complex I. The preference of light-harvesting complex I may be

due to the highly efficient nature of photosystem I [16] even

though Fistulifera sp. strain JPCC DA0580 is using both systems

simultaneously in this case.

The other prominent pathways are related to cellular energy

metabolism; glycolysis, the pentose phosphate pathway and

oxidative phosphorylation were significantly enriched in our

analysis. The glycolysis and pentose phosphate pathways are

fundamental to the conversion of glucose to fatty acids while

oxidative phosphorylation is essential for providing the energy

needed to power metabolic reactions. Some of the proteins in the

oxidative phosphorylation pathway form the membrane protein

V-type ATPase. It is a proton pump responsible for ATP turnover

in mitochondria and was up-regulated in our data. There is some

evidence of a relationship between increased C16-C18 length fatty

acids, which are used in TAG production, and increased

hydrolytic activity of V-ATPase [17]. Along with a gradual

down-regulation of NADH dehydrogenase, it would seem that

Fistulifera sp. strain JPCC DA0580 focuses on recycling ATP

instead of reducing NADP+ for its energy requirements during oil

accumulation. Predictably, most glycolysis genes were up-regulat-

ed during the experiment, although there were notable exceptions;

phosphoglucomutase (PGM), phosphoglycerate kinase (PGK) and

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). PGM

transfers a phosphate group to and from the 1’ position to the 6’

position in a-D-glucose so its down-regulation suggests that

Fistulifera sp. strain JPCC DA0580 is getting its source of a-D-

glucose 6-phosphate elsewhere. PGK and GAPDH are used in two

reversible reactions to make glycerate 3-phosphate which is a key

molecule for TAG production [18]. However, this reaction can be

done in one irreversible step by glyceraldehyde-3-phosphate

dehydrogenase (NADP) which was up-regulated in our data.

The substrate for that reaction, glyceraldehyde 3-phosphate, is

used in the pentose phosphate shunt to make nucleic and amino

acids like deoxyribose, 2-Deoxy-D-ribose 1-phosphate and D-

ribulose 5-phosphate. The genes involved in those reactions were

found to be up- regulated in our data; they were ribokinase (rbsK),

phosphopentomutase (PGM2), 6-phosphogluconate dehydroge-

nase (PGD) and 3-hexulose-6-phosphate synthase (hxlA). So it

seems that Fistulifera sp. strain JPCC DA0580 relies on glucose to

produce TAG, and nucleic and amino acids to achieve accumu-

lation and growth at the same time while using a proton pump to

power the reactions under low nitrogen conditions.

The other significant pathways are related to synthesizing the

materials for TAG and growth; they are fatty acid biosynthesis and

amino sugar and nucleotide sugar metabolism. Expectedly, the

difference in gene expression in fatty acid biosynthesis shows a

general up-regulation of the genes in the pathway as Fistulifera sp.

strain JPCC DA0580 accumulates TAG and continues cell

growth. Gene expression in the amino sugar and nucleotide sugar

metabolism pathway also had a positive trend through time. The

up-regulation of genes in this pathway suggests that sugars are

being metabolised for growth during oil accumulation. Two of the

up-regulated genes are glucokinase (glk) and glucose-6-phosphate

isomerase (GPI) which are involved in reversible reactions that

Gene Set Enrichment Analysis on Time-Course Data
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convert glucose into fructose and eventually lead to the production

of nucleotide sugars. As the reactions are reversible, we are unable

to discern whether the forward or backward reaction was

dominant without further data but their up-regulation means that

there was a considerable amount of converting occurring.

The next significantly enriched pathway, carbon fixation in

photosynthetic organisms, has several genes that are also present

in pyruvate metabolism, glycolysis and the pentose phosphate

pathway. The genes that exhibit varied differences in gene

expression are the ones associated with pyruvate metabolism.

During the experiment, malate dehydrogenase (decarboxylating)

up-regulated the reaction that turns malate into pyruvate. In

contrast malate dehydrogenase (oxaloacetate-decarboxylating) was

down-regulated. The preference for the decarboxylating reaction

could be due to the reactant, NADP, being used in other reactions,

such as photosynthesis. Notably, the pyruvate metabolism pathway

was not significantly enriched as a gene set however it only shares

seven reactions with the carbon fixation in photosynthetic

organisms pathway and is directly linked to 13 other pathways.

It is likely that the process of oil accumulation uses the reactions in

the carbon fixation pathway as a whole, instead of pyruvate

specifically.

The remaining significantly enriched pathway was unexpectedly

the methane pathway. Upon further investigation, it was

discovered that many genes expressed in the methane pathway

were also expressed in other pathways. For example, both

glycolaldehyde dehydrogenase (ALDA) and 6-phosphofructoki-

nase 1 (pfkA) are in the pentose phosphate pathway while (2R)-3-

sulfolactate dehydrogenase (comC) is also found in the cystein and

methionine metabolism pathway where it takes part in reactions

that make pyruvate. The overlap of genes between gene sets can

cause problems with detection, especially if some of the genes has a

particularly strong signal. In this case, the genes in the pentose

phosphate pathway have strongly defined differences in gene

expression that may be masking the difference in gene expression

of other genes. Although it is fairly reasonable for some genes to be

present in multiple pathways, it should be checked if the

overlapping genes are making biased contributions. The effect is

further amplified in our data as the number of annotated genes are

few.

Enriched Pathway Plots
To better visualize the results from GSEA, we plotted the

enriched pathways as graphs (Figure 1). The graph’s nodes were

set up as compounds as we wanted to focus on compounds and

reactions instead of the usual approach using genes. As such, the

glycerolipid pathway was added so that the key compound, TAG,

was included. The graph consisted of 353 compounds and 661

reactions. Most compounds were unique to their pathway but

there were 18 compounds that were found in two pathways and 13

compounds that were found in three pathways. These included

pyruvate, oxaloacetate and ADP and were found in glycolysis,

pentose phosphate metabolism and other related processes.

Once the graph was constructed, the shortest path between

glucose and TAG was calculated. As the graph was created using

pathways that showed a significant relationship with oil accumu-

lation, it can be considered a hypothesized path of metabolic

reactions that metabolises glucose to produce TAG. We found two

shortest paths with a length of 11 compounds (Figures 2 and 3);

the conventional path found in KEGG contains 15 compounds.

Our two shortest paths were very similar to each other, mainly

differing between the use of glycerol or glycerone. Although it is

possible to produce TAG in a smaller number of steps, it is

unknown where the reactions take place in the cell. If the proteins

are located close to each other, the path that was identified could

be how Fistulifera sp. strain JPCC DA0580 produces TAG from

glucose. Future experiments on metabolite quantity could also

provide adequate evidence for the hypothesis.

In the final step, we showed that the genes along the

hypothesized paths were up-regulated by plotting the direction

of the difference in gene expression on the edges of the graph.

When viewed next to each other, the direction of the difference in

gene expression at each time point shows which reactions change

from up-regulation to down-regulation and vice versa (Figure 4).

We observed that genes along the identified shortest paths were

up-regulated during the 60 hours of the experiment. However, the

up-regulation occurs in sections along the path instead of being

concerted. This suggests that the gene expression of a phenotype

does not change for every gene along the reaction path at a single

time point. Instead, the change in gene expression occurs in

sections which eventually leads to the up-regulation of the full

path. This visual presentation also brings to attention the

possibility of time lag effects where there could be little difference

in expression in earlier time points and not others. As our method

does not address this issue directly, the testing may be

underpowered at detecting true signals. The testing could be

improved by applying a restriction on the difference in fold change

between time points or restricting time points to those where fold

Table 1. Results of GSEA Method.

Pathway Name P-value

Photosynthesis 0*

Photosynthesis - antenna proteins 0*

Pentose phosphate pathway 0*

Carbon fixation in photosynthetic organisms 0*

Fatty acid biosynthesis 0*

Amino sugar and nucleotide sugar metabolism 0.013

Methane metabolism 00680 0.013

Oxidative phosphorylation 0.026

Glycolysis 0.026

The enriched pathways identified using GSEA and their enriched p-values. There were 9 pathways enriched out of 39 pathways tested.
*P-value ,0.0001.
doi:10.1371/journal.pone.0107629.t001

Gene Set Enrichment Analysis on Time-Course Data
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change differences exist. However, this would require more

knowledge about the organism than we currently have available.

Conclusion

GSEA is a useful tool for exploring data when there is a

preconceived area of interest such as oil accumulation for our data.

The way it can be used to analyse data more broadly is a big

advantage when the data set is limited. As the cost of high-

throughput sequencing experiments is decreasing, investigations

with new organisms and time-course experiments can be utilized

more often. For our expression data, we wanted to include time as

a variable in our analysis so we modified GSEA to use it instead of

removing it by averaging them. Although the number of replicates

in our data caused issues with accurately isolating experimental

and biological effects, we were still able to extract meaningful

information through our use of resampling and GSEA. Being able

to keep the time variable is an important step for future

investigations. Drawbacks observed during our analysis included

overlapping elements between gene sets, the reliance on pre-

existing knowledge of our organism and as a consequence, the

inability to assign meaning to unannotated data and improve our

method’s accuracy.

The results from GSEA were then graphed to produce a clear

visualization of the results that is easier to interpret and grants

access to other approaches for understanding the data. By plotting

the direction of the difference in gene expression on our graph, we

were able to observe the change in direction of the difference in

gene expression as they occurred during the experiment. Using

graphs in this way makes existing graph tools available, extending

the investigation beyond the initial GSEA. In this analysis we

looked at the shortest path of reactions between two compounds

Figure 1. The graph of the significantly enriched pathways found using our GSEA method combined with the glycerolipid pathway.
The full network contains 307 compounds and 558 reactions but compounds without reaction data were not drawn to reduce clutter. The graph is
plotted with compounds drawn as nodes and reactions drawn as edges. The compounds are colored by their pathway membership; compounds
belonging to 2 or more pathways are a mixture of the pathway colors. There were 7 compounds belonging to three pathways, 15 compounds
belonging to two pathways and 117 compounds that were unique to their pathway. Many of the shared compounds are concentrated in the center
of the graph and are related to glycolysis and pentose phosphate metabolism.
doi:10.1371/journal.pone.0107629.g001

Gene Set Enrichment Analysis on Time-Course Data
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but betweenness indexes can also be investigated to identify

bottleneck compounds that are important in the network. These

methods can be used to help generate hypotheses as a basis for

further investigations.

Methods

Data preparation
The expression data was gathered from Fistulifera sp. strain

JPCC DA0580 grown in two substrates; the treatment substrate

was artificial sea water where oil accumulation took place, and the

control substrate was a 10 fold dilution of the treatment substrate

where oil was not accumulating [19]. The RNA-Seq data was

obtained at four time points (0, 24, 48 and 60 hours) when

Fistulifera sp. strain JPCC DA0580 was grown in the two

substrates. Sequences with RPKM values of 0 for all time points

were discarded leaving a remainder of 22,550 sequences. We used

Ssearch with MIQS [20] to annotate the sequences so that 7,822

sequences were annotated with a KEGG Orthology identifier (K

ID). The unannotated sequences either did not have a match in

the KEGG database or the match did not have a KEGG

Orthology identifier. The gene expression of the annotated

sequences were then averaged if their matching K ID was shared

among several sequences, by using the following equation

RPKMx~
SVivi

n
ð1Þ

where RPKMx is a vector of RPKM values at each time point for

K ID x, vi is the i th vector of RPKM values for K ID x and n is

the number of RPKM vectors with K ID x. For our data, this

resulted in 2,873 RPKMx’s where each vector had a length of four

that corresponded to the four time points, 0, 24, 48 and 60 hours.

As RNA-Seq data often have a disproportionate amount of

small RPKM values, they are usually not normally distributed,

even with the use of log transformation. The resulting fold changes

calculated from them can follow the same non-normality. We

corrected the RPKM values by implementing a threshold of 0.1 to

minimize the influence of small read numbers [21]. This was done

using the sRAP R package which also performed a log transform

during the normalization process [22]. The normalized RPKM

vectors, sRAPx, were then used to calculate the log fold change for

each K ID x by the following equation

FCx~sRAPxtreatment{sRAPxcontrol
ð2Þ

where FCx is the log fold change vector of K ID x, sRAPxcontrol
is

the vector of control RPKM values of K ID x and sRAPxtreatment

is the vector of treatment RPKM values of K ID x.

Gene Set Enrichment Analysis
We first established the gene sets which would be used in the

analysis. Generally, gene sets are lists of gene identifiers that share

an attribute of interest. For our analysis, these were K IDs divided

into each metabolic pathway in the KEGG database. The

Figure 2. The first shortest path found in our graph between glucose and triacylglycerol using breadth-first search. A. This is the
detailed view of the path showing the names of the compounds involved at each step. B. The shortest path is highlighted in green on the full graph
to show its location. In contrast, the path presented in KEGG is highlighted in orange. The shortest path contains 11 compounds while the KEGG path
contains 15 compounds.
doi:10.1371/journal.pone.0107629.g002

Gene Set Enrichment Analysis on Time-Course Data
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pathways we chose to investigate were associated with carbohy-

drate (15 pathways), energy (8 pathways) and lipid metabolism (17

pathways). The Secondary Bile Acid Biosynthesis gene set was

removed as our data contained no data for it, thus our analysis

used a total of 39 gene sets [23] [24]. Importantly, these 39 gene

sets included the glycolysis and glycerolipid metabolic pathways

which contains the compounds central to oil accumulation,

glucose and TAG.

The following steps of the algorithm were carried out for each

gene set which produces a test statistic and p-value that describes

the significance of the gene expression of the gene set compared to

the overal gene expression.

Step 1: Create a matrix of fold change data of genes
present in gene set s.

FCMs~
FCx,0 FCx,24 FCx,48 FCx,60

:: :: :: ::

� �
ð3Þ

where FCMs is a n x 4 matrix, s denotes gene set s, n is the

number of genes in the set and 4 is the number of time points in

our data. Each row of FCMs corresponds to a fold change vector

FCx (Equation 2). This vector consists of FCx,t which is the fold

change of K ID x at time t. In our data, t takes a value from time

point 0, 24, 48 or 60 (hours).

Step 2: Calculate the column mean of FCMs.

FCMs~
SViFCi,0

n

SViFCi,24
n

SViFCi,48
n

SViFCi,60
n

� �
ð4Þ

where FCMs is a column mean vector of matrix FCMs (Equation

3). This is used to represent the fold change of gene set s through

the 4 time points.

Step 3: Resample n rows from the whole fold change
data matrix to construct a new matrix, RSMi. The resulting

matrix, RSMi, is the ith matrix created from randomly resampling

fold change vectors without replacement [25]. It has the same

dimensions as FCMs (Equation 3) but the rows of RSMi do not

necessarily overlap with rows in FCMs.

Step 4: Calculate the column mean of RSMi. The

column mean RSMi is used to represent the background fold

change of n genes and is calculated in a similar manner as

equation 4.

Step 5: Repeat steps 3 and 4 6000 times. The RSMi from

iteration i are stored as rows in a 6000 x 4 matrix, ECD.

Step 6: Calculate the enrichment p-value of gene set s

by using an empirical cumulative distribution derived
from the 6000 x 4 matrix ECD. The empirical cumulative

distribution is defined by the following function

Figure 3. The second shortest path found in our graph between glucose and triacylglycerol using breadth-first search. A. This is the
detailed view of the path showing the names of the compounds involved at each step. B. The shortest path is highlighted in green on the full graph
to show its location. In contrast, the path presented in KEGG is highlighted in orange. The shortest path contains 11 compounds while the KEGG path
contains 15 compounds.
doi:10.1371/journal.pone.0107629.g003

Gene Set Enrichment Analysis on Time-Course Data
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F̂Fs(u)~

SVi (ECDi,0ƒu0,ECDi,24ƒu24,ECDi,48ƒu48,ECDi,60ƒu60)

n

ð5Þ

where F̂Fs is the empirical cumulative distribution of gene set s, u is

a fold change vector with a length equal to the number of columns

of ECD (Step 5), ut is a value in u at time t which takes the values

0, 24, 48 and 60 in our data, is the indicator matrix, ECDi,t is the

fold change value of the ith row at time t in the ECD matrix and n

is the size of gene set s.

The enrichment p-value of gene set s is calculated by

substituting u with FCMs (Equation 4).

The algorithm detailed above was implemented in R [22], and

the empirical cumulative distribution and enrichment p-value was

calculated using the mecdf package [26].

Enriched Pathway Plots
The significantly enriched gene sets selected from the GSEA

results are metabolic pathways which were plotted to display the

GSEA results and visualise reactions of the compounds within

them. The generic pathway and enzyme KGML files were

downloaded from KEGG and read into R. They were parsed

using the KEGGgraph package [27] using the default data

structure where nodes represent KEGG orthologs and edges

represent reactions. This was restructured so that the nodes

represent compounds and the edges represent KEGG orthologs.

The graphs were then merged into one and converted into an

igraph object for plotting and access to network analyses such as

get.all.shortest.paths [28]. Unconnected nodes were removed to

reduce clutter in the final plot.
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