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ABSTRACT Companion animals and humans are known to share extraintestinal path-
ogenic Escherichia coli (ExPEC), but the extent of E. coli sequence types (STs) that cause
extraintestinal diseases in dogs is not well understood. Here, we generated whole-genome
sequences of 377 ExPEC collected by the University of Melbourne Veterinary Hospital from
dogs over an 11-year period from 2007 to 2017. Isolates were predominantly from urogeni-
tal tract infections (219, 58.1%), but isolates from gastrointestinal specimens (51, 13.5%),
general infections (72, 19.1%), and soft tissue infections (34, 9%) were also represented.
A diverse collection of 53 STs were identified, with 18 of these including at least five
sequences. The five most prevalent STs were ST372 (69, 18.3%), ST73 (31, 8.2%), ST127
(22, 5.8%), ST80 (19, 5.0%), and ST58 (14, 3.7%). Apart from ST372, all of these are prom-
inent human ExPEC STs. Other common ExPEC STs identified included ST12, ST131,
ST95, ST141, ST963, ST1193, ST88, and ST38. Virulence gene profiles, antimicrobial resist-
ance carriage, and trends in plasmid carriage for specific STs were generally reflective of
those seen in humans. Many of the prominent STs were observed repetitively over an 11-
year time span, indicating their persistence in the dogs in the community, which is most
likely driven by household sharing of E. coli between humans and their pets. The case
of ST372 as a dominant canine lineage observed sporadically in humans is flagged for
further investigation.

IMPORTANCE Pathogenic E. coli that causes extraintestinal infections (ExPEC) in humans
and canines represents a significant burden in hospital and veterinary settings. Despite
the obvious interrelationship between dogs and humans favoring both zoonotic and
anthropozoonotic infections, whole-genome sequencing projects examining large numbers
of canine-origin ExPEC are lacking. In support of anthropozoonosis, we found that most STs
from canine infections are dominant human ExPEC STs (e.g., ST73, ST127, ST131) with
similar genomic traits, such as plasmid carriage and virulence gene burden. In contrast,
we identified ST372 as the dominant canine ST and a sporadic cause of infection in
humans, supporting zoonotic transfer. Furthermore, we highlight that, as is the case in
humans, STs in canine disease are consistent over time, implicating the gastrointestinal
tract as the major community reservoir, which is likely augmented by exposure to human
E. coli via shared diet and proximity.

KEYWORDS Escherichia coli, ExPEC, ST372, antimicrobial resistance, canine, dogs,
genomic epidemiology, infections, one health, virulence, whole-genome sequencing

Australia has one of the highest rates of ownership of dogs as companion animals
in the world, with about 40% of households owning at least one dog (1). Most dog

owners consider their dogs to be part of their family and often report high levels of physical
contact with them in addition to sharing food from the household. Human-dog relation-
ships are rooted in deep shared evolution and provide significant psychological benefits
from improved self-confidence and companionship (2, 3). There is a general perception that
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pets can improve their owners’ health, sense of psychological well-being, and longevity (4).
These benefits underpin calls to enable access of companion animals to health care facilities
(5). However, there is the wide variety of pathogens that may transfer between humans and
dogs, posing health risks to both (6). The benefits of dog ownership must therefore be
weighed with the possible zoonotic disease implications that may be associated with these
relationships (7–9).

Mammalian, avian, and reptilian species are colonized by commensal lineages of
Escherichia coli that perform important functions in the gut. However, some E. coli lineages
are known to cause severe intestinal and extraintestinal disease. Extraintestinal pathogenic
E. coli (ExPEC) is the most common cause of Gram-negative infections in humans, causing a
wide range of afflictions, including lower urinary tract infections, pyelonephritis, bacteremia,
sepsis, skin infections, and ventilator-associated respiratory infections (10–13). Similarly, ExPEC
is a leading cause of urinary tract infection in dogs and cats (14–16) and causes a range of
extraintestinal diseases in companion animals in general (17, 18). Many studies of ExPEC in
companion animals have focused on isolates with resistance to clinically important antimicro-
bials. For example, a recent study in New Zealand showed that humans living in a household
shared the same drug-resistant E. coli with their pet dogs (19). Although these studies are
clearly important, narrowing the scope of research to only antimicrobial-resistant isolates could
obscure a deeper understanding of the epidemiology of E. coli sequence types associated
with clinical disease in companion animals.

Despite its vast commensal and pathogenic range, deciphering the zoonotic and zooan-
throponotic potential of E. coli remains a challenge (20, 21). Addressing this issue requires a
deep understanding of genomic epidemiology of the dominant ExPEC sequence types (STs)
as well as emerging ExPEC STs in both humans and animals (7, 22–26). There are more than
11,000 E. coli sequence types, but the top 20 ExPEC sequence types are responsible for
more than 85% of ExPEC infections in humans (13). The remaining 15% of infections are
caused by strains that display remarkable diversity, a pool that presumably harbors both
clones which might emerge as novel pandemic lineages and others that might be less suc-
cessful. However, the ability to predict which clone is which, and where the true reservoirs
lie, currently remains outside our understanding.

There is an already-noted overlap in the STs that cause ExPEC infections in humans
and dogs, with both species sharing ST73, ST131, and ST12 among the dominant types (8, 13).
Among ExPEC infections in dogs, phylogroup B2 E. coli is highly prevalent, with ST372, ST73,
ST127, ST12, and ST131 (8), as well as drug-resistant E. coli in commensal phylogroup A, with
ST410 and ST683 the most common (18).

The role of plasmids in the evolution of ExPEC STs, their diversification into sublineages,
and dissemination in nonhuman niches is an emerging theme in the genomic epidemiology
of ExPEC. Despite the variety of plasmids that are found in E. coli, F plasmids dominate
among a proportion of major and emerging ExPEC STs. For example, carriage of F plasmids
is very common in ST131, ST95, ST58, and ST127, with separate plasmid lineages found to
be characteristic of ST sublineages (7, 22, 23, 25). F plasmids can be categorized genotypi-
cally by their accessory gene content, and plasmid lineages within those genotypes can be
approximated by their F replicon sequence types (RSTs). In terms of the categorical distinc-
tion, two major F plasmid genotypes, namely, ColV plasmids and ColIa/pUTI89-like plasmids,
are commonly found in ExPEC (27, 28). Both types carry genetically distinct, but functionally
similar, accessory gene loci that are primarily involved in iron acquisition. Iron acquisition
genes function as both intestinal fitness factors and extraintestinal virulence factors, under-
scoring their obvious utility to E. coli (29, 30). In contrast to pUTI89-like plasmids, which rarely
carry antimicrobial resistance genes (ARGs), ColV plasmids often carry ARG loci in association
with smaller mobile genetic elements (MGEs), such as insertion sequences and transposons
(28). Currently, little is known of their distribution within ExPEC in dogs.

Here, we have undertaken the largest whole-genome sequencing analysis of E. coli
from dogs. The collection comprises 377 isolates, collected over 11 years from a restricted
geographical area. Most isolates were from cases of extraintestinal diseases, such as urinary
tract, respiratory, and skin infections. A small number of isolates from gastrointestinal tract
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specimens are also represented in the collection. We have determined their phylogroups,
multilocus sequence types, e-serotypes, and fimH types. Furthermore, we have defined their
plasmid repertoire, noting carriage of important F plasmids, and we carried out a thorough
analysis of their virulence-associated gene (VAG) and antimicrobial resistance gene carriage.

RESULTS
Study collection. The study collection consisted of 377 E. coli genome sequences

originating from dogs presenting at veterinary hospitals in Melbourne, Australia. E. coliwas iso-
lated over an 11-year period from 2007 to 2017 (Fig. 1a). Most isolates were of extraintestinal
origin, and specimens were classified as urogenital tract (219, 58.1%), general (72, 19.1%), soft
tissue (34, 9%), and other (one isolate had conflicting source information) (Fig. 1a). Fifty-one
gastrointestinal tract isolates (13.5%), primarily from bile or feces, were also included.

B2 was the dominant phylogroup (225, 59.7%), followed by B1 (51, 13.5%), D (30, 8.0%),
and A (21, 5.6%) (Fig. 1b). A total of 53 distinct STs were identified, and 18 of these had five
or more representatives. STs with less than 5 representatives and isolates for which an ST
could not be identified were grouped as “other.” The five most prevalent STs were ST372
(69, 18.3%), ST73 (31, 8.2%), ST127 (22, 5.8%), ST80 (19, 5.0%), and ST58 (14, 3.7%). Apart
from ST58 (B1), these STs all belonged to phylogroup B2. Other well-recognized ExPEC STs
identified included ST12, ST131, ST141, ST963, ST1193, ST95, ST88, and ST38. The prominent
commensal ST10 and the avian-associated ST117 were also identified.

Among the 18 major STs, 17 were present in urogenital tract specimens, while 12 were
present in gastrointestinal tract specimens. While extraintestinal isolates were presumptively

FIG 1 Characteristics of the genome collection. (a) Counts of isolates by year of isolation, stratified by specimen type. (b) Counts of phylogroups, stratified
by ST. (c) Counts of specimen type, stratified by ST. (d) Counts of STs identified for each year of isolation.
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the etiological agent responsible for presentation, it is possible that a proportion of gastroin-
testinal tract isolates were actually commensals, not intestinal pathogens. The facts that (i)
ExPEC typically originates in the lower gastrointestinal tract, (ii) the ST distribution in gastro-
intestinal tract samples comprised most of the dominant urinary STs, and (iii) there was a
lack of classical intestinal virulence factors among gastrointestinal tract isolates suggest that
most gastrointestinal tract samples in the collection were intestinal commensals with the
potential to cause extraintestinal disease.

Temporal persistence of several major STs, including ST372 (observed every year),
ST127 (9 of 11 years), ST58 and ST73 (both 8 of 11 years), was detected (Fig. 1d). Only ST10
was seen in fewer than three sampling years. Despite the variable sample size each year, these
data generally indicate that certain lineages of canine pathogenic E. coli are consistently pres-
ent in the population over an extended period of time.

Phylogeny. A maximum-likelihood core gene phylogeny was clearly structured by
phylogroup and ST, as expected (Fig. 2). It did, however, reveal that the in silico phylogroup,
as determined by EZClermont, was occasionally inaccurate, as illustrated by the presence of
several sequences designated phylogroup A in the B1 clade, as well as two miscalls in the D
clade. Overlaid metadata did not reveal any clustering of specimen by phylogeny, reflecting
the previously described presence of STs across specimen types. Specific serotypes generally
corresponded to STs, but O4:H5 was found in both ST12 and ST961.

FIG 2 Core gene phylogeny, as shown by a maximum-likelihood phylogeny inferred by IQTree on the core gene alignment produced by Roary. Clades are
labeled on the outermost ring by consensus phylogroup (determined by EZCLermont), shown on tree tips. Metadata for specimen, ST, serotype, F plasmid
RST, ColV plasmid and pUTI89 plasmid presence are represented in bands around the phylogeny.
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F plasmids. Important F plasmid archetypes ColV (56/377, 14.9%) and pUTI89-like
(29/377, 7.7%) were identified in a proportion of isolates. ColV1 sequences carried a variety
of F RSTs including A-:B1:C4, F2:A-:B1, and F2:A-:B-, while all pUTI891 sequences carried the
F29:A-:B10 replicon (Fig. 2). These two plasmid types had different phylogenetic distributions.
ColV plasmids were found in eight major STs belonging to all phylogroups (Fig. 3a and b),
whereas pUTI89-like plasmids were present in seven STs restricted to phylogroups B2 and D
(one pUTI891 sequence was typed as cryptic but belonged to phylogroup D according to the
phylogenetic tree, indicating that it was not a true member of the cryptic clades). ST372 and
ST73 were the only STs that contained both ColV1 and pUTI891 sequences, but most mem-
bers of these STs carried neither plasmid. Consistent with principles of plasmid exclusion, no
sequence was found to contain both plasmid types.

Antimicrobial resistance. Antimicrobial resistance (AMR) to seven antimicrobial com-
pounds comprising six drug classes commonly used in veterinary medicine was tested for by
disk diffusion for 365/377 isolates (see Fig. S1 in the supplemental material). Antimicrobials
tested included ampicillin, amoxicillin plus clavulanate, cephalexin, enrofloxacin, tetracycline,
sulfamethoxazole, and trimethoprim. On average, isolates were only resistant to 1.26 com-
pounds, with a median of zero. Seventy-seven isolates (20.4%) were resistant to three or
more antimicrobial classes and were therefore considered multidrug resistant.

The class 1 integrase gene intI1, a common genetic proxy for multidrug resistance, was
found in 51 sequences (13.5% at 90% sequence identity over 95% of the length of intI1), 40 of
which were multidrug resistant (MDR). Truncated copies of intI1 were also detected, the most
common of which was a 746-bp fragment in ST1193 (7/8, 87.5%) and ST131 (3/10, 30%). A

FIG 3 F plasmid carriage. Inference of ColV plasmid carriage based on phylogroup (a) and ST (b) and of pUTI89-like plasmid carriage based on phylogroup (c) and ST (d).
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further 10 isolates carried truncated copies of intI1 ranging in size from 114 to 746 bp,
underscoring the ongoing evolution of the class 1 integron structure. All 20 sequences carry-
ing truncated copies of intI1 were classified as MDR, and 2 of them (MVC207 and MVC227)
also carried full copies of intI1 on other contigs. The total inferred carriage of class 1 inte-
grons was therefore 70/377 (18.6%).

Genotypic AMR in the collection was generally moderate and reflective of the phenotypic
data, with a mean 5.12 ARGs per sequence and a median of 4. Phylogroup B2 sequences dis-
played a low prevalence of ARGs (mean, 3.89), second only to cryptic phylogroup (mean,
3.15) (Fig. 4a; see also Fig. S1 in the supplemental material). Predominant phylogroups B1
(mean, 6.35) and D (mean, 7.8) showed moderate carriage, while phylogroup F, to which
only 12 sequences belonged, showed the highest prevalence (mean, 9). Common ARGs
included blaTEM-181 (98, 26%), sul2 (59, 15.6%), strA (aph-3-lb; 54, 14.3%), strB (aph-6-ld; 51,
13.5%), tetA (47, 12.5%), and sul1 (44, 11.7%).

The five most resistant STs in terms of the number of ARGs they contained were B2-
ST1193 (mean, 13.2), D-ST38 (mean, 10.5), A-ST10 (mean, 9.67), G-ST117 (mean, 8.67), and
B1-ST58 (mean, 8.29) (Fig. 4b). ST1193 was conspicuous as the only ST within phylogroup
B2 to have consistently high rates of ARG carriage. All five STs with high ARG carriage
showed evidence of integron carriage, including presence of characteristic components
intI1, ARG cassettes (dfrA and aadA variants), and qacED1.Within ST58 and ST117, intI1 car-
riage often co-occurred with ColV plasmid carriage.

Fluoroquinolone resistance mediated by point mutations was predicted for 66 sequences
(17.5%), only 33 of which were phenotypically resistant to enrofloxacin. All ST131 (10) and

FIG 4 Distribution of antimicrobial resistance genes (ARGs) and virulence-associated genes (VAGs). Boxplots show average total ARGs by phylogroup (a),
average total ARGs by ST (b), average total VAGs by phylogroup (c), and average total VAGs by ST (d).
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ST1193 (8) sequences were predicted to be fluoroquinolone resistant. Other notable STs pre-
dicted to be resistant included ST38 (5/8), ST58 (2/14), ST73 (2/31), ST127 (2/22), and ST10 (2/6).

Virulence. In contrast to AMR genotypes, VAG profiles were extensive—consistent
with the pathogenic status of the isolates under investigation. The dominant phylogroup B2
had the second highest average VAG count, with 102 VAGs per strain (Fig. 4c). Phylogroup E
had the highest average VAGs (mean, 111 per strain), but only contained three sequences
(MVC307, MVC681, and MVC73). Phylogroups D and C also had extensive VAG arrays, with
averages of 90.9 and 83.2 per strain, respectively. The sequence types with the most virulence
genes (mean VAGs are in parentheses) within phylogroup B2 were ST80 (118), ST127 (118),
ST95 (117), ST73 (116), ST12 (114), ST961 (111), and ST141 (107) (Fig. 4d). Sequences belonging
to ST1193 (87.1) and ST372 (89.1) carried fewer VAGs than their B2 counterparts, a notable ob-
servation given the extensive ARG carriage of ST1193 and the dominance of ST372 in the col-
lection. STs with high VAG carriage in other phylogroups included ST963 and ST38 (phy-
logroup D; means of 92.7 and 91.5, respectively) and ST88 (phylogroup C; 91.9). Generally, STs
with higher ARG carriage displayed more moderate VAG carriage.

VAGs in the collection overwhelmingly encoded functions associated with ExPEC.
Genes associated with intestinal pathotypes were very rare, with only two sequences
containing a toxin gene of any kind (MVC147-ST10 for estIa and MVC785-ST2700 for
toxB), and Shiga toxin genes were not detected in any sequence (see Table S1 in the
supplemental material).

As B2 sequences carried high average VAGs, numerous specific genes were predictably
clustered within this phylogroup (see Fig. S2 in the supplemental material). The hemolysin
operon hlyABCD was mostly found in B2 sequences (total hylA of 144, 38.2%). The heme
uptake operon chuASTUVWXY was present in all B2 sequences except for a single sequence
missing chuA (total of 227, 60.2%). The K1 capsule genes (kpsCDEFMSU) were typically found
as an operon in B2, G, F, D, and cryptic clades, whereas phylogroups B1, A, and C lacked
these genes (total kpsM of 185, 49%). Most ST372 sequences lacked kps genes, a rarity
among B2 sequences. P fimbriae encoded by genes of the pap operon were primarily
found in B2 sequences with variability in the presence/absence patterns of individual
gene carriage (total papC of 150, 39.8%). F1C fimbriae were only found in B2 sequences
(ST372 and ST73), except for a single B1-ST155 sequence (total focA of 99, 26.3%). Genes
of the sfa operon encoding S fimbriae were variably present, mostly within B2 sequen-
ces, though major subunit sfaA was mostly absent (13, 3.5%; total sfaB of 179, 47.5%).

Genes involved in iron acquisition that are typically found on ColV plasmids, such as iroN
(220, 58.4%), iucD (78, 20.7%), and iutA (77, 20.4%), were also identified in sequences that
did not carry a ColV plasmid, indicating chromosomal locations or carriage on other episo-
mal elements. In B2, iroN carriage did not usually correspond to ColV plasmid carriage (B2:
12 ColV1 versus 167 ColV2), whereas in non-B2 sequences, iroNwas almost always observed
in conjunction with ColV (non-B2: 39 ColV1 versus 2 ColV2). Similarly, cjrABC-senB, a compo-
nent of pUTI89-like plasmids and putative iron uptake system, was identified in sequences
with and without pUTI89-like plasmids (29 pUTI891, 25 pUTI892; total of 54 cjrABC-senB,
14.3%), although these genes were restricted to phylogroups B2 and D regardless of plasmid
carriage. Overall, these results point to an apparent interplay between specific iron acquisi-
tion systems, mobile genetic elements, and phylogenetic background within pathogenic E.
coli. Further underscoring the importance of iron acquisition in pathogenic E. coli was the
extensive carriage of the yersiniabactin high-pathogenicity island (HPI), indicated by marker
genes fyuA and irp2 (both 287, 76.1%). HPI was present in almost all B2 sequences (222/225,
98.7%) and identified in every phylogroup except for E.

DISCUSSION
Canine and human ExPEC share common lineages. Here, we generated the largest

collection of canine-origin E. coli whole-genome sequences assembled to date. Phylogroup B2
dominated the collection. Phylogroup B2 was similarly overrepresented (79.6%) in a study of
618 E. coli isolates from dogs attending four veterinary clinics in France (18) and is by far the
major phylogroup among human ExPEC (13, 31). A diversity of STs were identified across the
specimen types, indicating that STs are not syndrome specific. The most common STs almost
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exclusively (barring the enigmatic B1-ST58) belonged to phylogroup B2, with ST372, ST73, and
ST127 being the most prevalent types.

The most common type, ST372, was similarly dominant among E. coli from canine
infections in Australia and fecal commensals from healthy dogs in Spain (8, 18, 32, 33).
ST372 is also identified among human ExPEC isolates, although, unlike ST73 and ST127, it is
not ranked in the top 20 most prevalent human ExPEC STs (34, 35). It was interesting that
the virulence gene carriage of ST372 was lower than that of many of the other STs in the
collection. This might be explained by database bias toward genes associated with virulence
for humans and a lack of knowledge of dog-specific virulence genes. Alternatively, the domi-
nance of the ST in the absence of an extensive array of virulence genes may be due to its
possession of metabolic capacities facilitating success in the canine gut, with its infectivity
being predominantly host-mediated. The latter possibility, in conjunction with its apparent
dominance in both healthy and diseased dogs and lower prevalence in humans, supports
the contention that ST372 is a dog-adapted lineage of E. coli (18). Future work involving in-
depth genomic comparisons between dog and human ST372 isolates will provide further in-
formation in this regard.

ST73 is often overshadowed by ST131, despite consistent reports of its dominance as a
human ExPEC sequence type causing UTI and bacteremia in Australia (36, 37), France (38), the
United Kingdom (39, 40), and elsewhere (13). The dominance of ST73 in our study of E. coli
from dogs, as well as in the large study of isolates from dogs in France, indicates that dogs
may be a major reservoir of ST73 (18). A similar observation prevails in E. coli isolated from cats
(41). It is as yet unknown whether the ST73 in dogs represents distinct dog-adapted subli-
neages or acquisition of human lineages, as has been postulated for ST131 and ST1193 (42).

ST127 is another common human ExPEC lineage, often associated with sepsis (43). We
recently demonstrated that there is global-scale genomic linkage between ST127 from
companion animals (including from this collection) and human origin ST127, reflecting the
aforementioned scenario with ST131 and ST1193 (7, 42).

Apart from ST372, most of the common STs in this collection are well-described
human ExPEC, and their presence in community-onset canine infections over multiple
years suggests that dogs and humans are both colonized by a broad spectrum of
human ExPEC lineages. This is easily explained by their close association with humans
as companion animals, with cocarriage being driven by shared living spaces, physical
proximity, and consumption of overlapping diets, which can include raw retail meats
and human food scraps. Consistent with this view, these E. coli STs predominate in the
feces of healthy humans (44). Further supporting the sharing of ExPEC with humans is
the virulence content of major STs in the collection reflected that of their human coun-
terparts, with a high prevalence of Yersinia HPI carriage and an abundance of other
iron acquisition genes that function in both gut colonization and pathogenicity (29).

Overall, our results indicate that canine ExPEC mostly comprise commensals and patho-
gens that are commonly associated with humans. ST372 represents an exception in this
regard; it is a lineage that may be mostly adapted to canines, with a lower prevalence in
humans. What these results imply about relative rates and directions of transfer of ExPEC
between humans and dogs is still uncertain and requires further investigation.

Major F plasmid types circulate in canine ExPEC. The major human ExPEC STs, partic-
ularly ST95 (22), ST131 (23, 26), and ST73 (45), comprise sublineages that are often discernible
by serotype and fimH allele variation. Lineage subdivision is also often accompanied by car-
riage of different F plasmid replicon sequence types belonging to ColV (various replicon types)
and pUTI89-like (ColIa1/F29:A-:B10) genotypes (22, 25, 26). In the canine collection, 56 isolates
(14.9%) carried a ColV plasmid and these sequences were identified across all phylogroups.
ExPEC ColV carriage in our canine collection was similar to the estimated human ExPEC car-
riage rate of 16% (25). ColV plasmids were particularly dominant in phylogroups C (ST88) and
G (ST117), but a significant proportion of phylogroup B1 (ST58) and a small number of B2
(numerous STs) isolates also carried a ColV plasmid. ST88 is a major ColV plasmid-carrying
ST causing extraintestinal disease and has also been identified in store-bought produce
(36, 46–48). ST58 is a multihost pathogen with a major sublineage rich in ColV plasmids and
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is frequently identified in poultry and pigs (25). ST117 is a noted avian pathogenic E. coli
(APEC) lineage rich in ColV plasmids and is dominant in both commensal and pathogenic E.
coli populations from poultry in Australia and abroad (49, 50). As has been demonstrated for
Campylobacter species, the frequent consumption of raw chicken by dogs may present a
risk for acquisition of poultry-associated ExPEC, such as ST117 (51). The association of ColV-
carrying ST58, ST88, ST131, and ST95 isolates with bacteremia or sepsis in Australia is also
notable (36, 52). Our results are therefore reflective of previous reports of ColV carriage
within prominent and emerging STs, demonstrate their pathogenicity in dogs, and support
interspecies transfer between numerous hosts. It will be important to monitor the frequency
of isolation of STs that can carry ColV plasmids, given the important role they play in E. coli
that cause extraintestinal disease in humans and domestic animals (53).

In contrast to ColV plasmid carriage, only about 7.7% (29/377) of the collection carried a
pUTI89-like plasmid. These plasmids are common in human ExPEC infections and typically
carry cjrABC-senB virulence genes, which are purported to contribute to iron acquisition and
ExPEC virulence in murine models of UTI (27, 54). pUTI89-like plasmids were confined to
phylogroups B2 and D and were most common in ST963 (8/9, 89%), ST95 (3/6, 66.7%), and
ST131 (5/8, 62.5%) sequences. Their presence in these STs is indicative of sublineage parti-
tioning, as has been recently described for ST131 and ST95 (22, 23).

Despite the relevance of ColV and pUTI89-like plasmids to several important ExPEC STs,
the two dominant STs in the collection, ST372 and ST73, mostly lacked F plasmids of these
types, reiterating the unavoidable importance of the core genomic background in ExPEC
evolution. Interestingly, ST73 was one of the most VAG-rich STs, with an average 116 VAGs,
whereas ST372 carried substantially fewer, at an average of 89.1. ST73 isolates in this collec-
tion and others were shown to carry an abundance of adhesins and genes involved in iron
acquisition, suggesting a redundancy for genes of ColV or pUTI89-like plasmids (45). Despite
the lower total number of VAGs, ST372 in this collection also carried adhesins and iron ac-
quisition genes. Overall, this indicates that our understanding of the relative contribution of
plasmids and chromosomally encoded gene functions to ExPEC intestinal fitness and extra-
intestinal pathogenicity is still in its infancy.

Antimicrobial resistance carriage is low but not trivial. Notably, carriage of clinically
important antibiotic resistance genes was not a common occurrence in the collection, but
persistent drug resistant lineages were seen and were associated with class 1 integron car-
riage, often in the presence of ColV plasmids. Class 1 integrons with complete or truncated
copies of intI1 were identified in 70/377 (18.6%) E. coli isolates, 27 (38.6%) of which carried a
ColV plasmid. Carriage of intI1 with and without ColV was notable in several STs, including
ST58 (ColV1), ST117 (ColV1), ST10 (ColV1/2), and ST38 (ColV2). The presence of intI11 ARG
loci on ColV plasmids has been well described, and our results indicate that this trend
extends to canine ExPEC (28, 52, 55, 56). Extended-spectrum beta-lactamase (ESBL)-produc-
ing E. coli was infrequently detected; however, ESBL-producing E. coli in ST131, ST1193, and
AmpC b-lactamase-producing E. coli in ST155, ST315, ST617, ST457, ST767, and ST372 have
been detected in companion animals around the world (32, 57, 58). Fluoroquinolone resist-
ance mutations were detected in 17.5% of sequences, also indicating exposure to human
sources of E. coli, with successful human ExPEC lineages ST131 and ST1193 presenting as
the predominant carriers of these mutations (57, 59).

Conclusion. In summary, dogs are primarily infected with ExPEC characteristic of
human infections, as characterized by the distribution of STs, phylogroups, plasmids,
AMR, and virulence genes. One notable exception is ST372, which may be a “dog-
adapted” ST that has spilled back into humans. The overall explanation for the shared
genotypes is shared gut carriage of these E. coli between humans and their pets due
to close proximity and shared diets.

MATERIALS ANDMETHODS
Isolates used in this study. The 377 E. coli isolates analyzed were part of a collection isolated from

dogs presenting with various extraintestinal diseases by the Clinical Microbiology Laboratory of the
Melbourne Veterinary School, University of Melbourne, Australia, between 2007 and 2017. The isolates were
transported as slope cultures on LB agar. Isolate names carry the prefix MVC (for Melbourne Veterinary
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Collection) followed by a 1- to 3-digit number specifying individual isolates from the collection. Full isolate
metadata and public accession numbers are available in Table S1 in the supplemental material.

Genomic DNA isolation, whole-genome sequencing, and assembly. E. coli isolates from the
Melbourne Veterinary Collection were freshly cultured onto LB agar plates, and a single colony was used to in-
oculate 5 mL of sterile LB medium. Following overnight culture, total cellular DNA was extracted using the
ISOLATE II Genomic DNA (Bioline) kit following the manufacturer’s standard protocol for bacterial cells and was
stored at 4°C. Library preparation was done by the AIMI Core Sequencing Facility, University of Technology
Sydney, following the adapted Nextera Flex library preparation kit process Hackflex (60). Briefly, genomic DNA
was quantitatively assessed using the Quant-iT PicoGreen dsDNA assay kit (Invitrogen, USA). Each sample was
normalized to a concentration of 1 ng/mL. A 10-ng sample of DNA was used for library preparation. After tag-
mentation, DNA was amplified using the facility’s custom-designed i7 and i5 barcodes, with 12 cycles of PCR.
Due to the number of samples, the quality control for the samples was done by sequencing a pool of samples
using the MiSeq V2 Nano kit for 300 cycles. Briefly, after library amplification, a 3-mL sample of each library was
added to a library pool. The pool was then cleaned up using SPRIselect beads (Beckman Coulter, USA) follow-
ing the Hackflex protocol. The pool was sequenced using the MiSeq V2 nano kit (Illumina, USA). Based on the
sequencing data generated, the read count for each sample was used to identify the failed libraries (i.e., libra-
ries with less than 100 reads) and normalized to ensure equal representation in the final pool. The final pool
was sequenced on one lane of an Illumina Novaseq S4 flow cell, 2 � 150 bp, at Novogene (Singapore). The
quality of reads generated was confirmed with fastp (0.20.1).

Genome assembly and gene screening. Clermont phylogrouping was performed with EZCLermont
(https://github.com/nickp60/EzClermont). A modular analysis pipeline known as pipelord2, implemented with the
Snakemake workflow management system, was used to perform primary bioinformatic analysis (61). This pipeline
is freely available to download from https://github.com/maxlcummins/pipelord2_0. Default settings were used
unless otherwise stated. First, Kraken2 was applied to the sequence reads to confirm all genomes were E. coli.
Draft genomes were then assembled with Shovill 1.0.4 (https://github.com/tseemann/shovill), with default settings
and assembly stats run to confirm the quality of the assemblies (https://github.com/sanger-pathogens/assembly
-stats). Assemblies with .800 contigs or total lengths of ,4.5Mbp or .6.5Mbp were excluded. MLST 2.19.0
(https://github.com/tseemann/mlst) was used to determine E. coli sequence types. ABRicate 1.0.1 (https://github
.com/tseemann/abricate) was used to screen draft genomes for genes from several publicly available and custom
in-house databases. Public databases used were CARD, VFDB, PlasmidFinder, SerotypeFinder, and ISFinder (62–66).
The custom database included the set of genes used to infer ColV plasmid carriage (see below) and additional vir-
ulence genes. This is available at https://github.com/maxlcummins/custom_DBs. ABRicate was also used to align
assemblies to a variety of reference plasmids, including pUTI89 from the E. coli strain UTI89, sourced from GenBank
(gb j NC_007941). The pMLST tool available at https://bitbucket.org/genomicepidemiology/cge-tools-docker/src/
master/ was used to perform pMLST typing (67). AMR-associated single-nucleotide polymorphisms were identified
with PointFinder (68). Finally, gene screening results were summarized using abricateR (https://github.com/
maxlcummins/abricateR), with a gene being considered present at 95% length and 90% nucleotide identity.

Criteria for inference of plasmid presence. The presence of a ColV-type plasmid was inferred using
criteria previously described by Liu et al. (69). The presence of a pUTI89-like plasmid was inferred if a given as-
sembly mapped to $90% of the pUTI89 sequence at $90% identity or if the isolate was determined by
pMLST to carry the F29:A-:B10 RST combination, which is characteristic of pUTI89-like plasmids.

Pan-genome and phylogenetic analysis. The assembled genomes were annotated using prokka
1.14.6 (70). The core and pan-genome were then determined with Roary 3.13.0, with default settings and
paralog splitting on (71). The resulting core gene alignment of 1,770,948 bp was then used as the basis for sub-
sequent analyses. IQTree 2.0.3 was used to infer a maximum-likelihood phylogenetic tree using the GTR1F1R
substitution model and 1,000 bootstrap replicates (72). The tree was midpoint rooted for visualization.

Data analysis and visualization. A custom R script was written in RStudio 1.4.1106 with R 4.0.5 to
analyze and visualize the data generated by pipelord, including MLSTs, ARGs, VAGs, and MGEs. This script was
also used to infer the presence of plasmids, based on BLAST data generated by pipelord with plasmidmapR
(https://github.com/maxlcummins/plasmidmapR), and to visualize the phylogenetic tree in conjunction with
metadata and gene data. The sequences of plasmids pCERC4 and pUTI89 were visualized with SnapGene Viewer
(version 5.0.7; GSL Biotech LLC). Microsoft PowerPoint was used to compile elements of Fig. 2 and Fig. S1 to S5 in
the supplemental material.

Data availability. All genomes used in this study were deposited in GenBank and the Sequence
Read Archive under the BioProject PRJNA678027. Individual accession numbers can be found with com-
prehensive metadata and genomic data in Table S1. The data analysis and visualization script are freely
available at https://github.com/CJREID/MVC and can be used to reproduce all secondary analyses. R
package versions used therein are available within the README.md document in the code repository.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 5.6 MB.
SUPPLEMENTAL FILE 2, CSV file, 0.6 MB.
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