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The interactions between circular RNAs (circRNAs) and microRNAs (miRNAs) have been
shown to alter gene expression and regulate genes on diseases. Since traditional
experimental methods are time-consuming and labor-intensive, most circRNA-miRNA
interactions remain largely unknown. Developing computational approaches to large-scale
explore the interactions between circRNAs and miRNAs can help bridge this gap. In this
paper, we proposed a graph convolutional neural network-based approach named
GCNCMI to predict the potential interactions between circRNAs and miRNAs.
GCNCMI first mines the potential interactions of adjacent nodes in the graph
convolutional neural network and then recursively propagates interaction information
on the graph convolutional layers. Finally, it unites the embedded representations
generated by each layer to make the final prediction. In the five-fold cross-validation,
GCNCMI achieved the highest AUC of 0.9312 and the highest AUPR of 0.9412. In
addition, the case studies of two miRNAs, hsa-miR-622 and hsa-miR-149-5p, showed
that our model has a good effect on predicting circRNA-miRNA interactions. The code and
data are available at https://github.com/csuhjhjhj/GCNCMI.
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1 INTRODUCTION

Non-coding RNA (ncRNA) refers to various RNA molecules that will not translate into a protein.
There has been much agreement through numerous studies that ncRNA has monumental biological
functions though it only part a small fraction of the genomes. Since the discovery of RNA and
ribosomal RNA in the 1950s, non-coding RNA that plays a biological role has been known for
60 years (Palazzo and Lee, 2015). As well as their roles at the transcriptional and post-transcriptional
levels, ncRNA plays a critical role in epigenetic regulation of gene expression. The recent finding
suggests that some of these RNAs are also involved in translation and splicing (Steitz and Moore,
2003; Butcher and Brow, 2005; Gesteland et al., 2006).

MicroRNA (miRNA) was discovered in 1993 by the Ambros and Ruvkun groups in
Caenorhabditis elegans (Lee et al., 1993) and brought a revolution to molecular biology. They
are small single-stranded molecules that derive from transcripts’ unique hairpin structures called
pre-miRNA. Most miRNAs are transcribed from DNA sequences into primary miRNAs, then
processed into precursor miRNAs and becomemature miRNAs finally (O’Brien et al., 2018; Liu et al.,
2021). Furthermore, miRNAs have been found to regulate gene expression post-transcriptionally by
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affecting mRNA translation, implying that dysregulation of
miRNAs may be associated with various diseases by affecting
gene expression (Bartel, 2004). For instance, recent studies
showed approximately 50% of annotated human miRNAs are
located in cancer-associated regions of the genome called fragile
sites. This indicated that miRNA plays a crucial role in cancer
progression (Calin et al., 2004).

Circular RNA consists of large non-coding RNAs produced by a
non-canonical splicing event called back splicing. They are ubiquitous
in species ranging from viruses to mammals during post-
transcriptional processes. Viroids are the first circRNA to be
discovered, though they are not produced by a back splicing
mechanism (Sanger et al., 1976). A few years later, most
circRNAs are observed in the cytoplasm and some small fractions
in the nucleus. Circular forms of RNAs were observed or synthesized
in diverse species such as viruses (Kos et al., 1986), prokaryotes (Ford
and Ares, 1994), unicellular eukaryotes (Grabowski et al., 1981), and
mammals (Capel et al., 1993). Most circRNA are expressed from
known encoding proteins, composed of single or multiple exons.
With the progress of high-throughput RNA-sequencing and
bioinformatics tools, scientists have found the human
transcriptome’s general feature ubiquitous in many other metazoans.

A diverse set of circRNAs have been identified as having
functions such as sponges, decoys, or translatable elements that
alter gene or protein expression. Biological functions of circRNAs
have only been investigated for a small fraction, while most of which
are proposed as miRNA sponges (Hansen et al., 2013; Memczak
et al., 2013; Deng et al., 2022). Sponging up miRNA and interacting
with RNA-binding proteins (RBP), circRNA plays many
pathological functions like regulating miRNA activity. He et al.
(He et al., 2022) performed circRNA microarray analysis and found
its expression profile in diabetes. By acting asmicroRNA sponges for
miR-7 (ciRS-7) and miR-124-3p and miR-338-3p (circHIPK3),
ciRS-7 and circHIPK3 promote insulin secretion. circRNAs were
identified in cancers, so it also proposed to play a crucial role in the
intimation and development of tumors. (Ashwal-Fluss et al., 2014;
Dong et al., 2017; Soslau, 2018). Most studies focus on the role of
circRNA in tumors. circRNA was described as oncogenes. Diverse
cellular functions of circRNA suggest their potential for cancer
treatment as biomarkers and therapeutic targets (Chen and
Huang, 2018; Li et al., 2019).

The interactions between circRNA and miRNA have been
gradually discovered in recent years, and some related databases
have been established. The CircR2Cancer database (Lan et al.,
2020) contains 1,439 interactions between 1,135 circRNAs and
82 cancers. In addition, the database also includes basic
information such as detection methods and expression
patterns of circRNAs. However, there are few datasets on
direct circRNA-miRNA interactions. Moreover, the known
interactions are only a tiny part. Discovering the interactions
between circRNAs and miRNAs is beneficial to understanding
the interactions between circRNA andmiRNA and disease. Using
biological experiments to verify the interactions between
circRNA-miRNA is time-consuming and labor-intensive.
Computational methods can be used to mine the interactions
between circRNA-miRNA more effectively. Still, there is little
work to predict the circRNA-miRNA interactions.

As far as we know, GCNCMI is the first method to predict the
circRNA-miRNA interactions, but other methods in the field of
bioinformatics are still worth reference. Many methods based on
computational interactions have recently achieved good results in
predicting microbe-disease interactions and ncRNA-disease
interactions. AE-RF (Deepthi and Jereesh, 2021) build an
autoencoder to mine potential interaction features and then
train a random forest model to predict circRNA-disease
interactions. The DMFMDA (Liu et al., 2020) uses one-hot
encoding of diseases and microorganisms to convert a vector
representation in a low-dimensional space by embedding the
propagation layer. The obtained vector representation is then
input into amulti-layer neural network, and the parameters of the
neural network are continuously optimized through Bayesian
sorting to achieve accurate prediction. Deng et al. (Deng et al.,
2020) constructed a meta-pathway-based circRNA-disease
feature vector. This vector representation combines multiple
similarities such as circRNA similarity, disease similarity, etc.
The prediction is finally achieved using a random forest classifier.
KATZHMDA (Chen et al., 2017) predicts the interactions
between unknown microbes and disease by the Gaussian
kernel similarity between known microbes and disease.
NTSHMDA (Luo and Long, 2018) constructs a disease-
microbe heterogeneity network based on the known similarity
between microorganisms and diseases and assigns equal weights
to known disease-microbe interactions according to the different
contributions of diseases and microorganisms, which is
conducive to reducing prediction error. Liu et al. (Dayun
et al., 2021) established a multi-component graph attention
network, which first passed a decomposer to identify node-
level feature vectors, then combined the feature vectors to
obtain a unified embedding vector, which was finally input
into a fully connected network to predict microorganisms
unknown interactions with the disease. SDLDA (Zeng et al.,
2020) extract the linear and nonlinear interactions between
lncRNA and diseases through singular value decomposition
and neural network and finally unites the linear and nonlinear
features into a new feature vector, which is input to the fully
connected layer to realize prediction.

Although the above methods have achieved good prediction
results, there are still some problems that will affect mining
efficiency. Some existing association prediction methods rely
on known similarities, but it is difficult to construct such
similarities with the increasing number of miRNAs and
circRNAs. There are far fewer known associations than
unknown associations. Therefore, these methods are unsuitable
when the circRNA and miRNA data increase. When the scale of
data increases, how to mine the higher-order interactions of
circRNA-miRNA is an urgent problem to be solved. In this
paper, we construct a bipartite graph to describe the
interaction information between circRNA and miRNA using
known relationship pairs of them. Then we develop a graph
convolutional network method to mine the deep semantic
information that carries collaborative signal in the bipartite
graph. We propagate the information flow recursively over the
graph structure and continuously aggregate the interactive
information between nodes to refine the embedding of each
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node. Finally, We concatenate the embeddings generated by each
layer to predict the relationship of unknown circRNA-miRNA
pairs. Experimental results show that our GCNCMI model
outperforms the other six state-of-the-art methods.

2 MATERIALS AND METHODS

2.1 Datasets
We built the benchmark dataset from the circBank database (Liu
et al., 2019). circBank contains 140,790 circRNAs. Each circRNA
collects information such as miRNA binding sites, protein-coding
ability, etc. We removed redundant parts of the dataset and
extracted 2,115 circRNAs and 821 miRNAs from the circBank
database, including 9,589 known circRNA-miRNA interactions.
It now can be downloaded on the website http://www.circbank.
cn/downloads.html. In addition, we randomly selected
9,589 unlabeled samples from the benchmark dataset. The
detailed information can be seen in Table 1.

2.2 Problem Description
Our work aims to predict unknown relationships based on known
circRNA and miRNA relationships. We use U � u1, u2 . . . un{ }
andV � v1, v2, . . . , vm{ } to respectively represent the collection of
n circRNAs and m miRNAs, and use the interaction matrix
R ∈ Rn×m to represent the relationship between them. If the
circRNA ui is related to miRNA vj, then the Rij = 1, otherwise
Rij = 0. It should be noted that Rij = 0 can only indicate that the
two RNAs have not yet found a relationship, but may actually be
related.

2.3 Graph Construction
We use a bipartite graph G(U ∪ V, E) constructed by the
interaction matrix R ∈ Rn×m to show the relationship between
circRNAs and miRNAs, where U, V are the vertex sets denoting
the circRNAs and miRNAs, and E is the edge sets constructed
from the association matrix R ∈ Rn×m. This bipartite graph can be
expanded into a complex interaction graph as shown in Figure 1.
This interaction graph contains the higher-order interaction
information of circRNA and miRNA, from which we can
mine deep semantic information that carry collaborative
signal. For example, the path u1 − v1 − u2 and u1 − v2 − u2
indicate the behavior similarity between u1 and u2, as both
circRNAs have interacted with v1 and v2. Then, the interaction
between u2 and v3 suggests that u1 and v3 are likely to be related.

2.4 GCNCMI
To capture the deep interaction information embedded in the
interaction graph, we model the high-order interaction
information of circRNA-miRNA in the embedding function.

We propagate the information flow recursively over the graph
structure and continuously aggregate the information of
neighboring nodes to refine the embedding representation of
the nodes (Hamilton et al., 2017; Xu et al., 2018; Wang et al.,
2019). The architecture of our proposed GCNCMI model is
shown in Figure 2. There are three parts to the framework: 1)
An embedding layer that offers initialized circRNA embeddings
and miRNA embeddings from the input data; 2) multiple
embedding propagation layers that refine the embeddings by
aggregating higher-order interaction information; 3) the
prediction layer that concatenates the embeddings from
different propagation layers and outputs the prediction score
of a circRNA-miRNA pair.

2.4.1 Embedding Layer
We use the embedding vector ekui ∈ Rs(ekvi ∈ Rs) to describe the
circRNA u (miRNA v) in k-th layer, where s is the embedding
size. The initial state of circRNA embeddings and miRNA
embeddings in embedding layer can be abstracted as:

E0
u � e0u1 , e

0
u2, . . . , e

0
un

[ ] (1)
E0
v � e0v1 , e

0
v2, . . . , e

0
vm

[ ] (2)
Where E0

u is the initial embedding of circRNAs, and E0
v is the

initial embedding of miRNAs. The initial embedding will be
continuously optimized and improved end-to-end, which will be
mentioned in the next section.

2.4.2 Embedding Propagation Layers
Next, we continuously aggregate the information of the node
itself and its adjacent nodes to refine the embeddings of
miRNAs and circRNAs. This is based on the GNN message-
passing architecture (Hamilton et al., 2017; Xu et al., 2018).
During an embedding update, the message aggregated by each
node consists of two parts: the messages from the neighbor
nodes of the previous layer and the messages inherited from
the node itself.

As shown in Figure 3, in the k-th propagation layer, the
embedding of circRNA u can be recursively formulated as:

eku � σ m u, k( ) + ∑
v∈Nu

m u, v, k( )⎛⎝ ⎞⎠ (3)

TABLE 1 | The number of circRNAs, miRNAs, and circRNA-miRNA interactions
included in the dataset.

circRNA miRNA interactions unlabled interactions

2,115 821 9,589 9,589

FIGURE 1 | An illustration of the circRNA-miRNA association matrix (A),
a bipartite graph (B), and an interaction graph (C).
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Where eku represents the embedding of circRNA obtained in
the k-th embedding propagation layer, σ(·) is the activation
function LeakyReLU (Nikolakopoulos and Karypis, 2019), v
denotes the neighbor nodes of u, and m(u, k) represent the

messages delivered from the previous layer itself, while m(u, v, k)
representing the messages delivered by all neighbor nodes from the
previous layer. The m(u, k) and m(u, v, k) can be formulated as
follows:

m u, k( ) � Wk
1e

k−1
u (4)

m u, v, k( ) � Wk
1e

k−1
v +Wk

2 ek−1v ⊙ ek−1u( )�����������
N u( )‖N v( ) |√ (5)

Where Wk
1,W

k
2 ∈ Rdk×dk−1 are the trainable transformation

matrices used to extract propagation information, and dk is the
transformation size; ek−1u is the circRNA embedding
representation generated from the (k−1)-th propagation
layer, which will further contribute its information to the
circRNA embedding u at layer k. We use the graph
Laplacian norm 1/

��������|Nu||Nv|√
to control how much the

propagating message decays as the path length increases,
where N(u) represent the first-hop neighbors of circRNA u
(miRNA v). In Eq. 4, we consider the self-connection of nodes,
which can effectively retain the original feature information to
avoid information variation when the number of layers
increases. For the neighbor nodes of node u, we aggregate

FIGURE 2 | An illustration of GCNCMI model architecture (the arrowed lines present the flow of information). Using GCNCMI to predict the relationship between
circRNA u (green) and miRNA v (blue) mainly includes three steps: (1) In the embedding layer, we use input data to initialize circRNA embedding (e0u) and miRNA
embedding (e0v ); (2) In embedding propagation layers, the embeddings are continuously refined by recursively aggregating higher-order interaction information; (3) In the
prediction layer, we concatenate the embeddings from different propagation layers and make the final prediction.

FIGURE 3 | Illustration of message aggregation for circRNA u in k-th
embedding propagation layer, where the ek−1v represents the embedding of
the neighbor node v of u in (k-1)-th layer.
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not only the information of node v but also aggregate the
interaction information between the u and v. It is encoded via
ek−1v ⊙ ek−1u , where ⊙ is element-wise product operation. In this
way, more information from similar nodes can be passed,
which enhances the representation ability of the model and
helps to improve the accuracy of prediction results. Eqs 3–5
represent the calculation process of the embedding circRNA u
at the k-th layer. Analogously, the embedded representation of
miRNA can be obtained.

2.4.3 Model Prediction
After multi-layer propagation, we can obtain multiple
embedding representations of miRNAs and circRNAs. The
embeddings obtained by different propagation layers contain
different orders of interaction information, so they have
different contributions to reflecting the relationship
between circRNAs and miRNAs. Therefore, we concatenate
all embeddings to express the final embedding. The following
formula shows the final embedding representation of
circRNA u and miRNA v through K embedding
propagation layers:

epu � e0u‖e1u‖/‖eKu , epv � e0v‖e1v‖/‖eKv (6)
Where ‖ denotes concatenation operation, this simple

concatenation operation can makes our final embeddings
contain richer semantic information without increasing the
learning parameters. Finally, we perform an inner product
operation on the final embedding to obtain the interaction
prediction between circRNA u and miRNA v:

ŷGCNCMI u, v( ) � epu ⊗ epv (7)
Algorithm 1 shows the pseudocode description for predicting

the interaction between circRNA u and miRNA v using
GCNCMI.

2.4.4 Model Optimization
Pointwise loss and pairwise loss are two common methods
used to update model parameters (He et al., 2016). The
pointwise learning emphasizes the loss between the
predicted value ŷuv and target value yuv. Still, we prefer to
address predicting the interactions between circRNA and
miRNA from the perspective of ranking. Therefore, we
choose pairwise loss optimization to update model
parameters. Bayesian Personalized Ranking (BPR) is a
matrix factorization-based pairwise loss function that is
often used to optimize recommendation tasks similar to our
prediction task (Rendle, 2010). Specifically, it can be
formulated as follows:

min
Θ

L � ∑
u,i,j( )∈D

−ln s ŷui − ŷuj( ) + λ‖Θ‖22 (8)

where s(/) is the sigmoid function; D = {(u, i, j)|(u, i) ∈ R+,
(u, j) ∈ R−} is the pairwise training sample containing positive
samples R+(i.e., circRNA u has interacted with miRNA vi) and
negative samples R−(i.e., the interactions between circRNA u
and miRNA vj is unknown). ŷui denotes the prediction score of

u and vi. ŷuj denotes the prediction score of u and vj. Θ �
E, Wk

1 ,W
k
2{ }K

k�1{ } represents all model parameters that will be
trained. λ is a parameter used to control the strength of L2
regularization. We use Adam as the optimizer to update the
model parameters. Additionally, we use message dropout and
node dropout to avoid model overfitting during training.
Message dropout means that we will drop the message in
Eq. 3 with a certain probability during the propagation,
while node dropout randomly drops a specific node and
discards all its outgoing messages. Dropout operations can
reduce the influence of specific RNAs, making the model more
robust.

Algorithm 1. GCNCMI algorithm to predict the interaction
between circRNA u and miRNA v

3 EXPERIMENT

3.1 Experimental Settings
To evaluate the performance of our model in predicting
circRNA-miRNA interactions, we combined the known
9,589 interactions used as positive samples, and
9,589 unlabeled interactions were randomly selected from
the benchmark dataset as negative samples. We performed
five-fold cross-validation on the constructed dataset. The

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 9597015

He et al. GCNCMI

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


validated circRNA-miRNA interactions were randomly
divided into five parts. Take each part as a positive sample
and an equal number of unlabeled samples from the
benchmark data as negative samples to form a test set. At
the same time, perform the same operation on the remaining
four parts to obtain a training set. This operation is performed
until the loop is completed five times.

To measure the performance of GCNCMI more
comprehensively, we used AUC, AUPR, Recall, Accuracy
(Acc), precision (Pre), and F1 Scores. The definitions of each
indicator are as follows:

Accuracy � TP + TN

TP + TN + FP + FN
(9)

Precision � TP

TP + FP
(10)

Recall � TP

TP + FN
(11)

F1 � 2pPrecisionpRecall
Precision + Recall

(12)

Where TP and FP represent the number of correctly
classified samples and the number of misclassified samples
in known circRNA-miRNA interactions, respectively, TN
represents the number of correctly predicted unrelated
circRNA-miRNA interactions, and FN represents the

TABLE 2 | The five-fold cross-validation results of GCNCMI.

No. AUPR AUC ACC Pre Recall F1

1 0.9293 0.9288 0.8508 0.9390 0.8289 0.8805
2 0.9428 0.9352 0.8531 0.9424 0.8440 0.8905
3 0.9453 0.9372 0.8578 0.9450 0.8357 0.8870
4 0.9396 0.9282 0.8532 0.9392 0.8341 0.8835
5 0.9412 0.9312 0.8503 0.9408 0.8298 0.8818

Average 0.9396 0.9320 0.8530 0.9413 0.8345 0.8847

FIGURE 4 | GCNCMI performed the ROC curves of five-fold cross-
validation.

TABLE 3 | The performance of GCNCMI on different layers.

K AUPR AUC Acc Pre Recall F1

1 0.9283 0.9198 0.8368 0.9280 0.8319 0.8773
2 0.9412 0.9312 0.8503 0.9408 0.8298 0.8818
3 0.9393 0.9301 0.8480 0.9390 0.8340 0.8834
4 0.9374 0.9272 0.8446 0.9371 0.8444 0.8883
5 0.9361 0.9244 0.8295 0.9358 0.8371 0.8837

FIGURE 5 | The performance of GCNCMI model on different layers.

TABLE 4 | The performance of GCNCMI model on different embedding sizes.

D AUPR AUC Acc Pre Recall F1

16 0.9260 0.9170 0.8360 0.9257 0.8136 0.8660
32 0.9190 0.9102 0.8316 0.9187 0.8032 0.8571
64 0.9215 0.9110 0.8287 0.9212 0.8105 0.8623
128 0.9361 0.9265 0.8485 0.9357 0.8230 0.8757
256 0.9412 0.9312 0.8503 0.9409 0.8298 0.8819
512 0.9376 0.9268 0.8475 0.9373 0.8303 0.8806

FIGURE 6 | The performance of GCNCMImodel on different embedding
sizes.
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number of prediction errors in unrelated miRNA-circRNA
interactions. F1 is a weighted average of model precision and
Recall.

3.2 Cross-Validation Results
We performed five-fold cross-validations to evaluate the
performance of the GCNCMI model in predicting circRNA-
miRNA interactions. The experimental results of the five-fold
cross-validation are shown in Table 2. As shown in the table,
the AUC of the five-fold cross-validations are: 0.9288, 0.9352,
0.9372, 0.9282, 0.9312. On the AUPR, the AUPR of the five-
fold cross-validations are 0.9293, 0.9428, 0.9453, 0.9396,
0.9412, respectively. In addition, we also plotted the ROC
curve of GCNCMI, as shown in Figure 4. The above
experimental results show that GCNCMI has good
performance in predicting unknown circRNA-miRNA
interactions.

3.3 Parameter Influence
For GCNCMI, two essential parameters affect its performance:
K (the number of layers) and D (the dimension of the
embedding vector). When K is 2, and D is 256, our model
GCNCMI achieves the best performance under five-fold cross-
validation.

The setting of the number of layers K indicates that our final
embedding model incorporates the information of K-hop
neighbor nodes in the bipartite graph, which can learn more
hidden interaction information between nodes for the neural
network. Table 3 lists the detailed values, and Figure 5 shows the
trend chart for different layers. We tried from 1 to 5 layers for the
number of layers of the model and found that the model’s
accuracy at the beginning will increase with the increase of the
number of layers. The best performance of the model is when the
layer is 2. As the number of network layers increases, the hidden
feature pairs of nodes tend to converge to the same value, which
leads to an over-smoothing problem in the network.

On the other hand, under the framework of five-fold cross-
validation, we conducted experiments for D in 16, 32, 64, 128,
256, 512, and other 6 cases; the detailed data is shown in
Table 4. In general, as the dimension of the embedding vector
increases, the expressive power of the model increases. But as
can be seen from the Figure 6, from 16, 32, 64, 128, 256, the
model’s performance has been increasing at first, but at 256,
the commission has reached the maximum value. As D
continues to grow, it will adversely affect the model’s
performance.

3.4 Compared With State-Of-The-Art
Methods
Since circRNA and miRNA interaction is a relatively new field,
GCNCMI is the first method we know to predict the interaction
between circRNA and miRNA, but other advanced methods in
bioinformatics still provide us with reference. To better verify the
performance of GCNCMI in inferring the interaction between
circRNA and miRNA. We compare GCNCMI with six other
state-of-the-art methods in bioinformatics.

Considering the scarcity of related biological resources, in
calculating biological similarity, we only calculated Gaussian
interaction profile biological similarity (GIP). In addition,
since the adjacency matrix initialized each time is different, it
requires us to re-mine the information in the bipartite graph.
Strictly speaking, in similarity-based methods [AE-RF (Deepthi
and Jereesh, 2021), KATZHMDA (Chen et al., 2017),

TABLE 5 | Performance comparison of different methods under five-fold cross validation.

Methods AUC AUPR Acc Pre Recall F1

AE-RF 0.7662 ± 0.0050 0.8239 ± 0.0042 0.8333 ± 0.0013 0.8923 ± 0.0019 0.9279 ± 0.0019 0.9097 ± 0.0010
DMFCDA 0.7321 ± 0.0240 0.7115 ± 0.0171 0.6975 ± 0.0112 0.8160 ± 0.0265 0.7729 ± 0.1112 0.7938 ± 0.0707
DMFMDA 0.7922 ± 0.0057 0.8230 ± 0.0089 0.7307 ± 0.0049 0.7030 ± 0.0080 0.7246 ± 0.0116 0.7136 ± 0.0065
KATZHMDA 0.8469 ± 0.0017 0.8647 ± 0.0019 0.8073 ± 0.0030 0.8511 ± 0.0055 0.7227 ± 0.0106 0.7816 ± 0.0071
NTSHMDA 0.8526 ± 0.0016 0.8772 ± 0.0018 0.6276 ± 0.0083 0.7556 ± 0.0518 0.4040 ± 0.0531 0.5264 ± 0.0486
SDLDA 0.7875 ± 0.0307 0.8286 ± 0.0189 0.6693 ± 0.0019 0.8287 ± 0.0108 0.7891 ± 0.0809 0.8084 ± 0.0706
GCNCMI 0.9320 ± 0.0014 0.9396 ± 0.0406 0.8530 ± 0.0134 0.9413 ± 0.0204 0.8345 ± 0.0301 0.8846 ± 0.0068

FIGURE 7 | AUC values of different methods under five-fold cross-
validation.

TABLE 6 | The number of circRNAs, miRNAs, and circRNA-miRNA interactions
included in the independent test dataset.

circRNA miRNA interactions unlabled interactions

1,502 494 9,386 9,386
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NTSHMDA (Luo and Long, 2018)], the similarity matrix is
recalculated each time during the cross-validation process. In
the SDLDA method, we used SVD singular value decomposition
to obtain linear features of circRNAs and miRNAs. The
DMFMDA method chooses a Bayesian loss function over the
loss function instead of the mean squared error.

We performed a ten-times, five-fold cross-validation of
GCNCMI with six advanced methods, changing the random
number seed each time, and calculated the mean and standard
deviation of 10 experiments. Table 5 lists several methods such as

AE-RF (Deepthi and Jereesh, 2021), DMFCDA (Liu et al., 2020),
DMFMDA (Liu et al., 2020), KATZHMDA (Chen et al., 2017),
NTSHMDA (Luo and Long, 2018), SDLDA (Zeng et al., 2020),
and compared with the GCNCMI model. Figure 7 plots the AUC
curves to compare the seven methods. As can be seen from
Table 5 and Figure 7, GCNCMI mines the high-order
interactions between circRNA and miRNA; GCNCMI is
higher than other methods in most indicators, among which
the AUC value of GCNMCI is 0.9320, and the highest among
different methods is NTSHMDA, whose AUC value is 0.8526,
which is 7.94% lower than GCNCMI. GCNCMI value of AUPR is
0.9396, which is 6.24% higher than the second-best method,
NTSHMDA. The above experimental results show that our model
performs well in predicting the relationship between circRNA
and miRNA.

The radar Figure 8 shows the performance of GCNCMI on
AUC, AUPR, ACC, Recall, F1, Pre. The evaluation index is set
from 0 to 1. As shown from Figure 8, the distance between the
point and the center of the circle reflects the level of the value. It is
evident that GCNCMI is better than other methods in predicting
the circRNA-miRNA relationship.

To further verify the accuracy of the GCNCMI model in
circRNA-miRNA association prediction, we retrieved the data
from the PubMed database, removed the known relationships
that overlapped with the training dataset, and established a
9,386 miRNA-circRNA association relationship, 494 miRNAs,
an independent test set of 1,502 circRNAs, and 9,386 unlabeled
interactions were randomly selected from the benchmark dataset
as negative samples. The specific information of the independent
test set can be found in Table 6. Although there may be a small
part of the independent test set and the unknown overlapping
relationship in the training set, it can be ignored because it

FIGURE 8 | Radar plots of different methods on various performances.

FIGURE 9 | Comparison of AUC and AUPR values of GCNCMI and several other methods on independent test sets.
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occupies a small proportion of the entire unvalidated sample set.
The basic model for predicting circRNA-miRNA associations was
obtained by training on our data set and tested on the
independent test set. The test results are as Figure 9. The
AUC of the GCNCMI model reached 0.9213, and the AUPR
value reached 0.9296, which is higher than several other methods
of comparison. The independent test results further showed that
GCNCMI is an effective tool for inferring miRNA-circRNA
associations.

3.5 Embedding Visualization
To more clearly demonstrate the learning ability of the GCNCMI,
We use T-SNE (Van der Maaten and Hinton, 2008) to visualize the
embedding of circRNA-miRNA interaction pairs. Because the
number of unknown relationships is much larger than the
number of known associations, and to better visualize the overall

mining of higher-order relationships by GCNCMI, we choose to
visualize more unlabeled samples than labeled samples. The main
goal of T-SNE is to convert multi-dimensional datasets into low-
dimensional datasets. Compared with other dimensionality
reduction algorithms, T-SNE is the most effective technique in
data visualization. Since T-SNE is not a linear dimensionality
reduction technique, it can capture the complex manifold
structure of high-dimensional data. We initially a 32-dimensional
vector to represent miRNA and circRNA. To explore the similarity
between vector representations, we used the T-SNE algorithm to
reduce the vector to 2-dimensional, as shown in Figure 10A. The
blue + represents unknown miRNA-circRNA interaction pairs, and
the red dots represent the known circRNA-miRNA interaction pairs.
Figure 10B shows the embedding of the circRNA-miRNA
interactions learned by the GCNCMI model. Comparing Figures
10A,B, it can be seen that GCNCMI has a good effect on mining

FIGURE 10 | Embedding visualization (A) represents the embedding of the initialized circRNA-miRNA interaction pairs, and (B) represents the embedding
representation of the circRNA-miRNA interaction pairs learned by the GCNCMI model. (C) represents the embedding of miRNA after learning by the GCNCMI model,
and (D) represents the embedding of circRNA after learning by the GCNCMI model.
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high-order interactions between miRNAs and circRNAs, and the
GCNCMI can better use the known interaction pairs to mine
potential miRNA-circRNA interaction pairs. In addition, we also
visualized the learned circRNA embeddings and miRNA
embeddings. Figure 10C shows the learned miRNA embeddings.
We used the GCNCMI model to predict the top 30 circRNAs most
closely associated with each miRNA, and also predicted the top
30 miRNAs most closely associated with each circRNA. The hsa-
miR-4786-5p and hsa-miR-3664-3p were associated with nine
similar circRNAs, and hsa-miR-4786-5p and hsa-miR-5692c were
associated with five similar circRNAs. Therefore, the hsa-miR-4786-
5p is more similar to hsa-miR-3664-3p. It can also be seen from
Figure 10C that the distance between hsa-miR-4786-5p and hsa-
miR-3664-3p is closer. Figure 10D shows the visualization of the
embedding of circRNAs after model learning. The hsa-circ-
0078873 and hsa-circ-0042658 were associated with three similar
miRNAs, and hsa-circ-0035141 and hsa-circ-0078873 were
associated with seven similar miRNAs. Therefore, hsa-circ-
0078873 is closer to hsa-circ-0035141, and it can be seen from
Figure 10D that hsa-circ-0078873 is closer to hsa-circ-0035141. The
experimental results show that GCNCMI can effectively learn the
potential higher-order interactions between miRNAs and circRNAs.

3.6 Case Studies
It is of great significance to discover unknown associations
between circRNAs and miRNAs. We selected two miRNAs,
hsa-miR-622 and hsa-miR-149-5p, for case studies.
Specifically, we first delete the circRNAs that have been

experimentally validated for the selected miRNAs. Then, the
remaining circRNAs were sorted in descending order
according to the values predicted by the GCNCMI model. The
following shows the results of the normalized prediction scores of
the GCNCMI model. Finally, we screened the top 10 circRNAs
and collected evidence in the published literature for testing.

miR-622 (Lu et al., 2022) is a miRNA of 13q31.3 in the
eukaryotic genome, and its expression is mainly in the
nucleus. In recent years, studies have found that miR-622 can
functionally inhibit the malignant proliferation of cells, which is
helpful for cancer treatment. In recent years, miR-149-3p (Yang
et al., 2017) can effectively inhibit the proliferation and apoptosis
of malignant tumors. Recent studies have found that miR-149-3p
can increase the sensitivity of drugs. Table 7 and Table 8 list the
top 10 candidate circNRAs of hsa-miR-622 and hsa-miR-149-
5p. We selected the top 10 candidate circRNAs as our predicted
circRNAs, respectively, and finally, we compared the predicted
results with the experimentally validated interactions. It can be
seen that 7 of hsa-miR-622 were confirmed by existing evidence,
and 8 of hsa-miR-149-5p were confirmed by existing evidence. It
should be noted that unproven associations may exist and require
further experimental verification.

4 CONCLUSION

CircRNAs are circular non-coding RNAs with regulatory functions,
most of which exist in eukaryotic excerpts, and most circRNAs are
composed of exons. Because circRNAs are less affected by nucleases,
circRANs are more stable than linear RNAs. Current studies have
shown that circRNAs can competitively adsorb miRNAs, and
circRNAs can bind to proteins to inhibit the activity. Therefore,
there is an urgent need to explore the relationship between
circRNA and miRNA. However, because traditional biological
experiments are time-consuming and labor-intensive, a more
efficient method is needed to explore the potential relationship
between circRNA and miRNA.

In this paper, we proposed a graph convolutional neural
network prediction model for circRNA and miRNA
interactions. To fully exploit the potential high-order
interactions between circRNAs and miRNAs, we designed a
graph convolutional neural network method to propagate the
interaction’s relation recursively without computing the
similarity of circRNAs and miRNAs. The experimental results
demonstrated the excellent performance of GCNCMI in
predicting the interactions between circRNAs and
miRNAs. The results of independent tests indicate that the
GCNCMI model has good generalization performance in
predicting unknown circRNA and miRNA relationships.
Finally, a case study compared our predictions with those
validated by biological experiments, further demonstrating
the model’s excellent predictive performance. The above
results indicate that GCNCMI is an excellent method for
predicting the potential interactions between circRNAs and
miRNAs.

While GCNCMI has excellent performance, it also has some
limitations. First, due to the scarcity of biological resources,

TABLE 7 | The top 10 circRNAs with the closest relationship to hsa-miR-
622 predicted by GCNCMI model.

Rank CircRNA Evidence(PMID) Score

1 hsa_circ_0000231 34183076 0.8822
2 hsa_circ_0101432 Unconfirmed 0.8820
3 hsa_circ_0119872 33579337 0.8815
4 hsa_circ_0008574 32616043 0.8798
5 hsa_circ_0000211 31668923 0.8796
6 hsa_circ_0001273 35567340 0.8712
7 hsa_circ_0086902 Unconfirmed 0.8592
8 hsa_circ_KCNQ5 35413218 0.8542
9 hsa_circ_0101432 35297300 0.8498
10 hsa_circ_0006000 Unconfirmed 0.8469

TABLE 8 | The top 10 circRNAs with the closest relationship to hsa-miR-149-5p
predicted by GCNCMI model.

Rank CircRNA Evidence(PMID) Score

1 hsa_circ_0061140 32224273 0.8737
2 hsa_circ_0075341 31706100 0.8722
3 hsa_circ_0008956 34153672 0.8702
4 hsa_circ_0000654 31778020 0.8693
5 hsa_circ_0051239 Unconfirmed 0.8689
6 hsa_circ_ROBO2 34649241 0.8673
7 hsa_circ_0011385 34720052 0.8672
8 hsa_circ_0087352 35286916 0.8671
9 hsa_circ_0123996 32707301 0.8661
10 hsa_circ_0031059 Unconfirmed 0.8648
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GCNCMI only uses the association data of circRNAs and
miRNAs, and the quality of the data will affect the
performance of GCNCMI model training. In the future, using
heterogeneous data from multiple perspectives will be considered
to improve the model’s performance further.
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