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Abstract
Pseudorabies (PR) is one of the most devastating diseases in the pig industry. To identify

changes in microRNA (miRNA) expression and post-transcriptional regulatory responses to

PRV infection in porcine kidney epithelial (PK15) cells, we sequenced a small RNA (sRNA)

library prepared from infected PK15 cells and compared it to a library prepared from unin-

fected cells using Illumina deep sequencing. Here we found 25 novel viral miRNAs by high-

throughput sequencing and 20 of these miRNAs were confirmed through stem-loop RT-

qPCR. Intriguingly, unlike the usual miRNAs encoded by the α-herpesviruses, which are

found clustered in the large latency transcript (LLT), these novel viral miRNAs are through-

out the PRV genome like β-herpesviruses. Viral miRNAs are predicted to target multiple

genes and form a complex regulatory network. GO analysis on host targets of viral miRNAs

were involved in complex cellular processes, including the metabolic pathway, biological

regulation, stimulus response, signaling process and immune response. Moreover, 13 host

miRNAs were expressed with significant difference after infection with PRV: 8 miRNAs

were up-regulated and 5 miRNAs were down-regulated, which may affect viral replication in

host cell. Our results provided new insight into the characteristic of miRNAs in response to

PRV infection, which is significant for further study of these miRNAs function.

Introduction
Pseudorabies virus (PRV) belongs to the familyHerpesviridae and is the causative agent of
Aujeszky’s disease. PRV causes neurological and respiratory system disorders in newborn pig-
lets and reproductive disease in pregnant sows [1]. The widely used PRV Bartha-K61 strain-
based vaccine has played an important role in the control and eradication of PR worldwide. In
late 2011, however, PRV variant outbreaks among Bartha-K61-vaccinated pigs in China. The
PRV variant JS-2012 strain was isolated from a Bartha-K61-vaccinated pig farm in Jiangsu
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Province of China in 2012 [2, 3]. This variant caused higher mortality than did a previously iso-
lated classic virulent PRV strain, SC. The Bartha-K61 did not fully protect piglets against chal-
lenge with the variant JS-2012 strain [3]. This new PRV variant that has emerged in PR
vaccine-immunized swine populations in China has caused significant economic losses to the
domestic swine industry [4–7].

miRNAs are small ssRNA species (~20–24 nucleotides) that regulate mRNA expression
through post-transcriptional mechanisms [8]. Mature miRNAs are incorporated into the
RNA-induced silencing complex (RISC), leading to either mRNA degradation or translational
repression [8]. miRNAs can modulate, to varying degrees, the expression of hundreds of differ-
ent target genes, including genes that regulate immunity, apoptosis and key steps in the virus
life cycle such as latency, lytic infection and the transition from latency to lysis [9, 10].

As with many other alphaherpesviruses, PRV expresses multiple viral miRNAs [11–13] in
multiple cells and tissues. Eleven PRV miRNAs have been identified in previous studies [14–
16]. Since even single nucleotide changes can dramatically alter miRNA specificity, miRNAs
are prone to accelerated evolution, especially in viruses [17, 18]. Here we constructed and com-
pared sRNA libraries prepared from PRV JS-2012-infected and uninfected PK15 cells using
Illumina deep sequencing, both to identify viral miRNAs and to characterize cellular miRNAs
for their potential roles in the host response to variant PRV infection. Our findings described
the PRV virus-host interaction at the overall miRNA level. These data may accelerate the
understanding of PRV pathogenesis and other herpesviruses.

Materials and Methods

Viruses and cells
The PRV variant JS-2012 strain (GenBank NO. KP257591), the classic virulent PRV SC and
vaccine Bartha-K61 strain were kept in our laboratory [3, 19]. PK15 cells purchased from
ATCC (Manassas, VA, USA) were used for virus propagation in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA,
USA).

RNA extraction
PK15 cells (3×106 cells per flask) were infected with PRV at a multiplicity of infection (MOI) of
0.01 and incubated at 37°C for 1 h with rocking every 15 min. Cell monolayers were washed
with phosphate-buffered saline (PBS) and fresh medium was added to the infected cells. Cells
were harvested for RNA extraction at 2, 4, 6, 8, 12, 18, 24, 30 and 36 h post-infection (pi). The
total RNA was extracted from PK15 cells using the miRNeasy Mini Kit (QIAGEN) and geno-
mic DNA was removed using the RNase-Free DNase Set (QIAGEN). RNA (5 μL) extracted
from the nine time points was mixed and quantified using a NanoDrop 2000 Spectrophotome-
ter (Thermo). The mixed RNA quality was assessed using an Agilent 2100 Bioanalyzer. sRNA
sequencing was further performed using the Illumina Genome Analyzer (Illumina, Huada
Genomics Institute Co. Ltd, China).

Stem-loop RT-qPCR assay
Assays to quantify the mature miRNAs were conducted as previously described [20]. Briefly,
10 ng of total RNA was reverse-transcribed to cDNA by using the RevettAidtm Frist Strand
cDNA Synthesis Kit (Thermo) together with miRNA specific stem-loop RT (S1 Table). Sam-
ples were incubated at 42°C for 1 h and at 70°C for 5 min. Next, PCR was performed for each
miRNA using the transcription product and miRNA specific forward primer and universal
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reverse primer (S1 Table). Real-time PCR was performed using a SYBR Premix Ex Taq™
(Takara) in an Eppendorf Mastercycler ep realplex (Germany). In each assay, 2 μL cDNA was
used for amplification. The amplification conditions were as follows: 95°C for 1 min, followed
by 40 cycles at 95°C for 15 s and 64°C for 30 s. miRNA expression was normalized to U6 small
nuclear RNA (snRNA). The relative quantitative miRNA expression level was evaluated using
the comparative Ct method [20]. Relative expression was calculated by the comparative ΔΔCt
method, and the values were expressed as 2-ΔΔ Ct.

Analysis of virally encoded miRNA
The sRNA tags were aligned to the known PRV miRNA precursor in miRBase 21.0 (http://
www.mirbase.org/) with no mismatch and then aligned to the corresponding mature miRNA
with at least 16 nts overlap allowing offsets. The known viral miRNAs of PRV JS-2012 included
the miRNA precursor, length and count of tags would be obtained. Mireap software (http://
sourceforge.net/projects/mireap/) was used to predict virally encoded novel miRNA by explor-
ing the secondary structure, Dicer cleavage sites and predicted minimum free energies of unan-
notated sRNA tags which could be mapped to genome.

Target prediction of viral miRNAs and GO analysis
Target genes were predicted for virally encoded miRNA using RNAhybrid and miRanda soft-
ware. Complying with the following criteria in seed region: 1) no mismatch between 1–9 nts on
the 5’ end; 2) G-U is permitted, but the number cannot exceeds 3. The Gene Ontology (GO)
program Blast2GO (https://www.blast2go.com/) was used to annotate potential host target
genes to create histograms of GO annotation, including cell component, biological process and
molecular function. GO enrichment analysis of the target genes was performed using PAN-
THER Classification System [21] to detect the significantly enriched GO terms of the host tar-
get genes compared to the Sus scrofa genome-wide background.

Analysis for host miRNAs
The known and novel host miRNAs in JS-2012-infected and uninfected samples were analyzed
and compared. Relative miRNA abundance levels were normalized to the number of tran-
scripts per million (TPM) in each sample. Normalization formula: Normalized expression =
Actual miRNA count/Total count of clean reads�1000000. A difference of at least 2-fold
between libraries was considered significant for further analysis.

Sources of genome sequences
The PRV JS-2012, a new virulent pandemic strain, was used for infection and subsequent anal-
ysis [2]. JS-2012 full genome has been sequenced and is 143,461 bp long (GenBank NO.
KP257591). Sus scrofa genome assembly (Sscrofa10.2) has been produced by the International
Swine Genome Sequencing Consortium and 3’ UTR of pig genes were retrieved from Ensembl
database (www.ensembl.org).

Results

Analysis of sRNAs libraries from solexa sequencing
A total of sRNAs reads 114,766,884 and 111,468,414 of 18 to 30 nucleotides in length were
obtained from PRV JS-2012-infected and uninfected PK15 cells, respectively. After removing
low quality reads and masking adaptor sequences, 112,037,904 (97.62%) and 109,595,539
(98.32%) clean sRNA reads were obtained from the two sRNAs libraries, respectively. Within
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each sample, 97.81% and 98.75% high quality sRNAs were 20–24 nts in length, with most
sRNAs 22 nts in length (Fig 1). The sRNAs were categorized and annotated by following the
priority rule: rRNA (in which Genbank> Rfam)> known miRNA> repeat> exon> intron
(Table 1). Ultimately, 87,409,488 (78.02%) and 88,667,800 (80.9%) miRNA reads from two
libraries were matched to known PRV and host miRNAs sequences, and then 19309634
(17.23%) and 16515597 (15.07%) unannotated sRNA reads from two libraries were matched to
PRV and pig genome for predicting novel miRNA.

Stem-loop RT-qPCR for miRNAs detection
To validate the deep sequencing results, stem-loop RT-qPCR was used to verify the expression
of virally encoded candidate miRNAs. Among 25 mature viral miRNAs, 20 miRNAs expressed
in PRV JS-2012-infected PK15 cells were detected using this approach, with the exception of
prv-miR-1, 6, 16, 21 and 25 (Fig 2). Stem-loop RT-qPCR was also used to confirm the differen-
tially expressed host miRNAs. Eight differentially expressed miRNAs were analyzed (Fig 3).

Fig 1. Length distributions of sRNAs (18–30 nt) in PRV-infected and uninfected PK15 cells.

doi:10.1371/journal.pone.0151546.g001

Table 1. Distribution of sRNAs in PRV-infected and uninfected samples.

Category PRV-infected Uninfected

Unique (%) Total (%) Unique (%) Total (%)

Total 1,035,394 100 112,037,904 100 971,825 100 109,595,539 100

Exon antisense 683 0.07 1,117 0 789 0.08 1,209 0

Exon sense 8,734 0.84 16,589 0.01 13,138 1.35 22,309 0.02

Intron antisense 23,353 2.26 210,710 0.19 30,741 3.16 193,569 0.18

intron sense 174,548 16.86 1,334,446 1.19 220,826 22.72 1,197,915 1.09

miRNA 4,581 0.44 87,409,488 78.02 4,489 0.46 88,667,800 80.9

rRNA 36,478 3.52 1,196,939 1.07 32,388 3.33 963,096 0.88

repeat 37,020 3.58 432,889 0.39 43,406 4.47 642,224 0.59

scRNA 502 0.05 1,059,031 0.95 486 0.05 489,317 0.45

snRNA 6,010 0.58 186,756 0.17 5,809 0.6 126,485 0.12

snoRNA 4,323 0.42 96,049 0.09 3,770 0.39 57,162 0.05

srpRNA 252 0.02 1,171 0 254 0.03 1,119 0

tRNA 61,638 5.95 783,085 0.7 64,533 6.64 717,737 0.65

Unannotated RNA 677,272 65.41 19,309,634 17.23 551,196 56.72 16,515,597 15.07

doi:10.1371/journal.pone.0151546.t001
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Overall, the relative expression levels of these miRNAs detected with RT-qPCR were consistent
with the relative expression levels determined with deep sequencing.

Analysis of virally encoded miRNA
All 11 known mature miRNA sequences in PRV JS-2012 infected sample were detected and then
compared with previous studies [14] (Table 2). The dominant sequences of prv-miR-LLT1-3p,

Fig 2. Expression levels detection of virally encoded novel miRNAs using stem-loop qRT-PCR.miRNAs expression levels were normalized to the U6
snRNA. Data are shown as the average ± standard deviation from three independent experiments.

doi:10.1371/journal.pone.0151546.g002

Fig 3. Validation of differentially expressed host miRNAs using stem-loop RT-qPCR.miRNAs
expression levels were normalized to the U6 snRNA. The experiments were performed with at least three
independent experiments.

doi:10.1371/journal.pone.0151546.g003
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prv-miR-LLT3-3p, prv-miR-LLT4-5p, prv-miR-LLT10a/b-3p and prv-miR-LLT11a/b-5p were
identical, while the prv-miR-LLT2-5p, prv-miR-LLT5-3p, prv-miR-LLT6-5p, prv-miR-LLT7-5p,
prv-miR-LLT8-5p and prv-miR-LLT9-5p sequences differed slightly as compared with the miR-
NAs described in miRBase. Mostly, several bases were added in the 3’ end, while a base changed
in the 5’ end of prv-miR-LLT5-3p (insertion) and prv-miR-LLT9-5p (deletion). In general, the
11 known PRVmiRNAs were comparatively conservative and highly expressed in PK15 cells
infected with the variant JS-2012 strain.

Twenty-five new candidate viral miRNAs were predicted using Mireap software (Table 3).
The energetically stable hairpin structures of 25 novel viral miRNAs and their expression pro-
file were listed in S1 File. Three novel miRNAs, prv-miR-11-5p, prv-miR-12a-3p, prv-miR-
17a-5p were located in the LLT region, while the other miRNAs were distributed throughout
the PRV genome. Some miRNAs were presented in two copies, including-miR-LLT10a/b-3p,
prv-miR-LLT11a/b-5p, prv-miR-12a/b-3p, prv-miR-13a/b-5p, prv-miR-14a/b-5p and prv-
miR-17a/b-5p. miRNAs located in the internal repeat sequence (IRS) were designated as ‘a’
and miRNAs in terminal repeat sequences (TRS) were designated as ‘b’ (Fig 4). Moreover, the
prv-miR-18 through prv-miR-25, prv-miR-12b, prv-miR-13b, prv-miR-14b and prv-miR-17a
were encoded on the opposite DNA strand to the latency associated transcript. This phenome-
non appears to be a common feature in the herpesviruses (Fig 4).

Prediction targets of virally encoded miRNA and functional analysis
A total of 36 miRNAs, including 11 known miRNAs and 25 novel miRNAs, were mapped to
the PRV JS-2012 genome. We used RNAhybrid and miRanda software to scan the potential
viral gene targets for these miRNAs. We scanned the 3’UTRs of PRV-encoded genes, including
the LLT and found that each gene can be targeted by one or more miRNAs. Each of miRNAs

Table 2. The differences (D) or similarities (S) between the known viral miRNAs from JS-2012 strain andmiRBase.

miRNA Sequence(5’-3’) Length Strand and Position Reads

prv-miR-LLT1-3p (S) TCTCACCCCTGGGTCCGTCGC a 21 +98550–98570 148492

prv-miR-LLT2-5p (D) CTCATCCCGTCAGACCTGCGCC a 22 +99014–99035 1141

CTCATCCCGTCAGACCTGCGb 20 +99014–99033 284

prv-miR-LLT3-3p (S) CGCACACGCCCCTCTCGCGCAC a 22 +99114–99135 987

prv-miR-LLT4-5p (S) AGAGTATCAGCGTGGCTTTTTT a 22 +99394–99415 19472

prv-miR-LLT5-3p (D) ATGAGTGGATGGATGGAGGCGA a 22 +100603–100624 21596

TGAGTGGATGGATGGAGGCGAGb 22 +100604–100625 17690

prv-miR-LLT6-5p (D) CGTACCGACCCGCCTACCAGGCA a 23 +100238–100260 7457

CGTACCGACCCGCCTACCAGGb 21 +100238–100258 64

prv-miR-LLT7-5p (D) CCGGGGGGTTGATGGGGATGGG a 22 +99979–100000 4181

CCGGGGGGTTGATGGGGATb 19 +99979–99997 41

prv-miR-LLT8-5p (D) GTGGGGGCGAAGATTGGGTTGGG a 23 +100912–100934 12911

GTGGGGGCGAAGATTGGGTTb 20 +100912–100931 377

prv-miR-LLT9-5p (D) TCGAGGAGATGTGGAGGGGTGC a 22 +101067–101088 23870

ATCGAGGAGATGTGGAGGGGb 20 +101066–101085 265

prv-miR-LLT10a/b-3p (S) CCGAGCCTGCCCCTTCCGTCGCA a 23 +102570-102592/-144577-144599 1894

prv-miR-LLT11a/b-5p (S) AGGCTGGGAGTGGGGACGGAAGA a 23 +102707-102729/-144440-144462 30780

a: The most abundant viral miRNAs sequences in this study.
b: The viral miRNAs sequences in this study were the same as the miRBase.

doi:10.1371/journal.pone.0151546.t002
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are predicted to target multiple genes and form a complex regulatory network (Fig 5). The
results revealed the complexity interaction network formed by viral miRNAs and their targets.
Notably, prv-miR-1, prv-miR-14a, prv-miR-17a, prv-miR-21, prv-miR-24 and prv-miR-25
were encoded directly antisense to the individually corresponding coding gene, which could
theoretically lead to the cleavage of the transcript and negative regulation of the gene.

The potential host targets of 36 viral miRNAs were predicted by RNAhybrid and miRanda
software. We found thousands of putative targets combined two programs (S2 Table). In order
to investigate biological function of these host targets, GO annotation was performed for the
putative host targets. Results revealed that these host targets belonged to the following catego-
ries: biological regulation, stimulus response, metabolic process and cellular process, which
were similar to the previous study [14]. Besides, the new functions of these newly viral miRNAs
were found in this study, such as signal-organism process and signaling process and others (Fig
6). Furthermore, GO enrichment analysis showed that these host targets were functionally
enriched in regulation of biological process, immune system process, apoptosis, cell death and
others (P< 0.05, S3 Table). These results revealed the complexity of interaction network
formed by viral miRNAs and their host targets.

Table 3. Summary of virally encoded novel miRNA.

miRNA Sequence(5’-3’) Length Strand and Position Reads RT-qPCR

prv-miR-1-5p GGCGGTCGGGGGGCGCGTCGGGC 23 +3812–3834 478 -

prv-miR-2-3p CATGCACCTGTACCTCTCGG 20 +8294–8313 136 +

prv-miR-3-3p CGGCCAGCCCGGACGCGCTGTA 22 +10820–10841 5 +

prv-miR-4-3p CGACGACTGGGGGCGCGCGCC 21 +60508–60528 16 +

prv-miR-5-3p CGAGCTCTGCGACCGGCGCG 20 +60634–60653 10 +

prv-miR-6-5p CGCAGGCGCGCGGCATGGAGGT 22 +60774–60795 10 -

prv-miR-7-5p TACCCGGCGCCCGTGAACGCGCTC 24 +69940–69963 5 +

prv-miR-8-3p CGAGCTCCTGCCGGCCCGCACG 22 +73963–73984 9 +

prv-miR-9-5p TACGCGGCGCGCTTCGTCCACG 22 +85091–85112 6 +

prv-miR-10-5p CCCGCGGACGCGCCGGAGGCGG 22 +86375–86396 105 +

prv-miR-11-5p TCCACTTCTCGACGGCCGGCTCC 23 +100055–100077 28 +

prv-miR-12a/b-3p CCAATCGGGTGGCAGCGGGGG 21 +102686-102706/-144463-144483 400 +

prv-miR-13a/b-5p CCGGGGAAGGGTCGGGCGATG 21 +110905-110925/-136244-136264 983 +

prv-miR-14a/b-5p CGCCTCGGGGCCGACGTGAACC 22 +117693-117714/-130124-130145 39 +

prv-miR-15-5p TCTCCGCCGAGACGACCCCGGGC 23 +125184–125206 7 +

prv-miR-16-3p CGCGGGCGGCGGGAGGGGAGGGA 23 +134599–134621 96 -

prv-miR-17a/b-5p GCGACGGAAGGGGCAGGCTCGGCG 24 +144578-144601/-102568-102591 5635 +

prv-miR-18-3p GGCCGGAACACCGAGCGATGG 21 -34759-34779 6 +

prv-miR-19-5p ACGGAGCGCCTGGACGCCGCGGC 23 -36979-37001 103 +

prv-miR-20-3p CCGTGCTGGCCGTGGTCGACGA 22 -57462-57483 114 +

prv-miR-21-3p CACGCGGCGGGGGCGAGGGCGTCC 24 -86755-86778 7 -

prv-miR-22-3p CCCGACGGGCTGGTGCGGACG 21 -87359-87379 105 +

prv-miR-23-5p CTGGATCGTGTGCCTCGGCGTG 22 -89358-89379 11 +

prv-miR-24-3p CGTTGAGGGTCTGGATGCACG 21 -90107-90127 34 +

prv-miR-25-5p ACGGGCGCGCGGGCGGCGCCGG 22 -126341-126362 5 -

This table showed the name, sequences, length, genomic position and cloning frequency of novel miRNAs encoded by JS-2012 strain in this analysis.

The qPCR results showed whether each PRV miRNA was detected (+) or not (-).

doi:10.1371/journal.pone.0151546.t003
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Expression and differential analysis for host miRNAs
By mapping the clean reads to the miRBase and Sus scrofa genome, 598 host miRNAs were
detected in this study. Among of these, 283 known and 239 novel (S4 Table) were found in both
libraries, 44 miRNAs were found only in the PRV-infected group and 32 miRNAs were unique
to the PRV-uninfected group. In both libraries, the 15 most abundant miRNAs accounted for
92.65% and 92.32% of the total miRNA reads in the infected and uninfected samples, respec-
tively (Table 4). Among the 15 most abundant miRNAs, the most strongly expressed miRNA in
both libraries was ssc-let-7 (f, a, d, e, g, c), which represented 74.98% and 74.39% of the total
miRNA reads in two samples, respectively. This is consistent with previous reports that ssc-let-
7 is highly expressed in various cell types and species [22]. Moreover, 13 miRNAs were

Fig 4. Location of virally encoded miRNA in the PRV JS-2012 genome. The relative positions of the known and predicted novel miRNAs in the JS-2012
genome are shown. The linear form indicated PRV JS-2012 genome. The black arrows indicated predicted miRNAs locations in ORFs of PRV JS-2012. The
knownmiRNAs were indicated with black font. Validated putative miRNAs were indicated with blue font and non-validated putative miRNAs were indicated
with red font. The figure showed only ORFs contained the viral miRNAs, virus others genes and 5’ or 3’UTRs, DNA repeats, splice sites, and origin of
replication were not shown.

doi:10.1371/journal.pone.0151546.g004
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differentially expressed: 8 were upregulated (ssc-miR-132, ssc-miR-146b, ssc-miR-215, ssc-
miR-371, ssc-miR-27a, ssc-miR-331-3p, ssc-miR-432-5p and ssc-miR-199a/b-3p), while 5 were
down-regulated after PRV infection (ssc-mir-10a-5p, ssc-mir-148-3p, ssc-mir-219a, ssc-mir-
374b-3p and ssc-miR-532-5p) (Fig 7).

Fig 5. Gene regulatory network formed by PRV JS-2012-encodedmiRNAs (circles) and their target genes (rectangles).

doi:10.1371/journal.pone.0151546.g005
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Fig 6. GO annotation on host targets of the viral miRNAs. The figure showed the GO annotation of these targets in biological processes, cellular
components andmolecular functions.

doi:10.1371/journal.pone.0151546.g006

Table 4. Fifteen miRNAsmost strongly expressed in PRV-infected and uninfected samples.

Ranking PRV-infected Uninfected

miRNA Reads miRNA Reads

1 ssc-let-7f 32,811,037 ssc-let-7f 33,388,247

2 ssc-let-7a 24,197,500 ssc-let-7a 23,895,506

3 ssc-miR-320 3,384,445 ssc-let-7d-5p 3,042,879

4 ssc-let-7d-5p 3,221,481 ssc-let-7e 3,002,352

5 ssc-let-7e 3,128,349 ssc-miR-320 2,941,979

6 ssc-miR-21 2,666,385 ssc-miR-21 2,452,680

7 ssc-miR-103 2,301,329 ssc-miR-103 2,422,357

8 ssc-miR-107 1,804,587 ssc-miR-140-3p 2,109,493

9 ssc-miR-140-3p 1,664,999 ssc-miR-107 1,956,230

10 ssc-let-7g 1,239,239 ssc-let-7g 1,451,004

11 ssc-miR-221-3p 963,000 ssc-miR-10a-5p 1,203,474

12 ssc-let-7c 948,125 ssc-let-7c 1,178,695

13 ssc-miR-423-5p 931,315 ssc-miR-185 1,017,287

14 ssc-miR-185 912,415 ssc-miR-423-5p 924,473

15 ssc-miR-29a 813,115 ssc-miR-192 873,400

doi:10.1371/journal.pone.0151546.t004
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Discussion
The identification of viral and host miRNAs has had a major impact on our understanding of
both the herpesvirus life cycle and of host-virus interactions [9]. Our use of solexa sequencing
allowed us to find 25 additional PRV miRNAs from PRV JS-2012 infected PK15 cells. Twenty
of them were confirmed through stem-loop RT-qPCR excepted prv-miR-1, 6, 16, 21 and 25
(Fig 2). In addition, using stem-loop RT-qPCR, the expression levels of 25 novel miRNAs were
detected in SC or Bartha-K61infected cells. Different from the results of JS-2012, the prv-miR-
3 did not detected in the SC infected cells, prv-miR-3 and 15 did not detected in the Bartha-
K61 infected cells (S2 File). However, the expression levels of novel miRNAs encoded by SC or
Bartha-K61 were largely consistent with the PRV variant JS-2012 strain.

Fig 7. Differential expression of host miRNAs as a function of PRV JS-2012 infection. Red, miRNAs with ratio > 2 (infected/uninfected in expression);
blue, miRNAs with 1/2� ratio� 2; green, ratio < 1/2.

doi:10.1371/journal.pone.0151546.g007
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Unlike the miRNAs encoded by other α-herpesviruses and γ-herpesviruses, which are
found clustered in regions of the genome close to and within the latency-associated transcript
(LAT) [11–13]. This study is the first to confirm the viral miRNAs encoded within open read-
ing frames (ORFs), IRS and TRS regions of the PRV genome like β-herpesviruses [23]. We col-
lected sRNA samples from PK15 cells infected with PRV JS-2012 at nine time points to detect
comprehensively the virally encoded miRNAs, potentially explaining why we observed more
miRNAs as compared with previous studies [14].

So far, PRV has been found to encode 11 miRNAs in its LLT intron region [14–16]. A recent
study reported that the deletion of 9 miRNAs cluster within LAT had no effect on the ability of
the virus to establish latency, speculated that a potential role for these miRNAs may be in medi-
ating the immune response and maintaining a latent state in ganglia [24]. In our study, 6 of 11
virally encoded known miRNAs share conserved, but not completely identical sequences with
miRNAs in miRBase. miRNA recognition of target mRNAs is highly dependent upon full
sequence complementarity of the “seed region”, the 2–8 nts from the 5’ end of the miRNA
[25]. Thus, terminal stability of the 5’miRNA end is crucial for target discrimination. We spec-
ulate that the functions of these miRNAs may not be affected because the base changes of the 6
miRNAs are basically not located in the “seed region”. In general, the 11 known mature miR-
NAs sequences encoded in the LLT region were highly expressed and conserved in PRV JS-
2012-infected PK15 cells.

Several studies have demonstrated that viral mRNAs can be regulated by herpesvirus miR-
NAs [9, 13, 26]. Herpesvirus-encoded miRNAs target crucial trans-activator proteins, such as
the miR-UL112-1 targeting of the IE72 gene of HCMV [27], miR-H2-3p and miR-H6 targeting
the ICP0 and ICP4 genes of HSV-1 [28], miR-H2-3 targeting the ICP0 gene of HSV-2 [29, 30]
and miR-K12-7-5p targeting the RTA gene of KSHV [31]. These regulatory mecahnisms are
thought to be pivotal in controlling latency establishment and reactivation, in all three herpes-
virus subfamilies [26]. In our study, prv-miR-6, prv-miR-15, prv-miR-16, prv-miR-LLT-1,
prv-miR-LLT-7, prv-miR-LLT-9 and prv-miR-LLT-11 are predicted to target the 3’UTR of
the PRV trans-activator IE180. IE180 is the functional equivalent of ICP0 of HSV. This may be
a survival mechanism for the tight control of latency by inhibiting immediate early genes. prv-
miR-5, prv-miR-15, prv-miR-16, prv-miR-17, prv-miR-22, prv-miR-23, prv-miR-25, prv-
miR-LLT-1, prv-miR-LLT-3, prv-miR-LLT-7, prv-miR-LLT-8 and prv-miR-LLT-11 were pre-
dicted to target the LLT region that serves as the large latency transcript of the PRV. This tar-
geting may be connected to maintaining a latent state or reactivation in the trigeminal
ganglion.

Moreover, miRNA-regulated pathways are linked to many aspects of host-virus interaction.
Viral miRNAs have a regulatory effect on cellular transcripts to exert their functions [26].
Some virus-encoded miRNAs target cellular signal pathway genes. For example, the antiproli-
ferative and anti-angiogenic gene THBS1 is inhibited by KSHVmiR-K12-6-3p [32]. The antivi-
ral factor MICB is downregulated by HCMVmiR-UL112-1, EBV miR-BART2-5p and KSHV
miR-K12-7 [33]. The interferon-inducible T-cell chemoattractant CXCL11 is downregulated
by EBV miR-BHRF1-3 [34]. Other virally-encoded miRNAs regulate antiviral responses and
immune evasion, including EBV miR-BART-18-5p targeting of MAP3K2 [35], KSHV
miR-K12-1 targeting of IkBa gene, and miR-K12-3, 7 and 11 targeting of NFIB gene [36].
KSHV miR-K12-5, 9, 10a and 10b target the BCLAF1 gene, to affect latent/lytic replication by
sensitizing cells to reactivation [37]. KSHV miR-UL112-1 targets Bach-1 with pro-apoptotic
activity [32]. In our study, GO analysis on the host targets of viral miRNAs revealed that these
targets were involved in complex cellular pathways, including the metabolic pathway, inflam-
matory response, biological regulation, signaling process and immune response.
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Virus can affect host miRNA expression profiles to facilitate their replication. In our
study, the 13 differentially expressed host known miRNAs existed in PRV-infected sample
library compared with mock sample library (S5 Table). These dysregulated host miRNAs
play an important role in other viral infections. miR-132 is up-regulated in murine corneas
after HSV-1 infection, facilitating viral blinding lesion effect by pathological angiogenesis
[38]. miR-132 is also upregulated after KSHV infection and has a negative effect on the
expression of interferon-stimulated genes through suppression of the p300, facilitating viral
replication [39]. More recently, EBV and VSV have been shown both to significantly upre-
gulate the expression of miRNA-146a and to act as a miRNA-146a-mediated negative regu-
lator of tumor necrosis factor receptor-associated factor 6 (TRAF6), and interleukin-1
receptor-associated kinase-1 (IRAK1), key elements of the host immune and inflammatory
response [40]. These findings suggest that miR-146a/b may function as novel negative regu-
lators that help to fine-tune the immune response [41–43]. miR-199a-3p was recently
reported to suppress HBV replication by targeting HBs genes [44]. Expression of miR-148 is
regarded as a potential biomarker in non-small-cell lung cancer [45]. However, it has been
unclear what role, if any, these dysregulated host miRNAs play in the process of PRV
replication.

In conclusion, this study is the first to analyze the conservative of viral miRNAs and identi-
fied more new viral miRNAs from the PK-15 cells infected with variant PRV strain. Among 25
novel viral miRNAs, at least 17 viral miRNAs are throughout the variant PRV JS-2012 genome
outside of the LLT region like β-herpesviruses. This is a breakthrough in the study of PRV
miRNA, and even in α-herpesviruses. In addition, we identified the differentially expressed
host miRNAs from the infected and uninfected PK 15 cells. Our findings describe the PRV
virus-host interaction at the overall miRNA level. We believe these data will contribute to
understand the molecular characteristics, pathogenesis and evolution trend of PRV and other
herpesviruses.
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