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Transcriptional landscape of circulating 
platelets from patients with COVID‑19 
reveals key subnetworks and regulators 
underlying SARS‑CoV‑2 infection: implications 
for immunothrombosis
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Abstract 

Background:  Thrombosis and coagulopathy are pervasive pathological features of coronavirus disease 2019 (COVID-
19), and thrombotic complications are a sign of severe COVID-19 disease and are associated with multiple organ fail-
ure and increased mortality. Platelets are essential cells that regulate hemostasis, thrombus formation and inflamma-
tion; however, the mechanism underlying the interaction between platelets and severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) remains unclear.

Results:  The present study performed RNA sequencing on the RNA isolated from platelets obtained from 10 COVID-
19 patients and eight healthy donors, and discovered that SARS-CoV-2 not only significantly altered the coding and 
non-coding transcriptional landscape, but also altered the function of the platelets, promoted thrombus formation 
and affected energy metabolism of platelets. Integrative network biology analysis identified four key subnetworks and 
16 risk regulators underlying SARS-CoV-2 infection, involved in coronavirus disease-COVID-19, platelet activation and 
immune response pathways. Furthermore, four risk genes (upstream binding transcription factor, RNA polymerase 
II, I and III subunit L, Y-box binding protein 1 and yippee like 2) were found to be associated with COVID-19 severity. 
Finally, a significant alteration in the von Willebrand factor/glycoprotein Ib-IX-V axis was revealed to be strongly associ-
ated with platelet aggregation and immunothrombosis.

Conclusions:  The transcriptional landscape and the identification of critical subnetworks and risk genes of platelets 
provided novel insights into the molecular mechanisms of immunothrombosis in COVID-19 progression, which may 
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Background
Coronavirus disease 2019 (COVID-19) is caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) [1] and represents one of the greatest public 
health challenges since the 1918 influenza pandemic over 
100 years ago [2]. The main epidemiological characteris-
tics of COVID-19 are rapid spread, high infectiousness 
and an approximately 1–3% mortality rate [3–6]. Due 
to the lack of specific treatment options available [7, 8], 
symptomatic treatment and supportive care remain the 
primary treatment strategy.

The respiratory symptoms associated with COVID-19 
can lead to acute respiratory distress syndrome, in severe 
cases [9]. In addition, accumulating evidence has sug-
gested that thrombosis and coagulopathy are pervasive 
pathological features of COVID-19 [10, 11]. Compared 
with other respiratory infectious diseases, COVID-19 
shows a higher cumulative incidence of thrombotic 
complications [12–14], especially in COVID-19 patients 
admitted to intensive care units (ICUs) [15, 16]. It is 
noteworthy that hospitalized children with COVID-19 
have been reported to be at an increased risk of devel-
oping thrombosis [17, 18]. In addition, the thrombotic 
complications of COVID-19 patients are associated with 
multiple organ failure and increased mortality [19, 20].

Autopsies of COVID-19 patients have shown that 
platelet-rich thrombi exist in the microcapillaries of 
multiple organs. The number of megakaryocytes in the 
heart and lungs is abnormally increased [21–23]. Previ-
ous studies have observed that the platelets of COVID-19 
patients appear to be overreactive and may interact with 
SARS-CoV-2 to promote coagulation dysfunction dur-
ing COVID-19 infection [24–26]. Platelets, the second 
most abundant type of cell in the peripheral blood [27], 
are best known as mediators of thrombus formation and 
hemostasis [28]. In recent years, studies have reported 
that platelets were the key sentinel and effector cells in 
infectious diseases, such as Dengue virus (DENV) and 
malaria [29, 30]. During pathogen invasion, the tran-
scriptome and proteome of platelets have been reported 
to be altered to augment host defense mechanisms [31, 
32]; however, these changes may also result in adverse 
outcomes. Activated platelets release various cytokines, 
including chemokines CXCL1, PF (platelet factor)-4, to 
amplify thrombin production, enhance leukocyte recruit-
ment, promote neutrophil extracellular trap formation, 
upregulate the endothelial expression of proinflammatory 

cytokines and, finally, induce immunothrombosis [20]. 
Nevertheless, the mechanism underlying the interaction 
between platelets and SARS-CoV-2 remains unknown to 
the best of our knowledge.

The present study performed RNA sequencing (RNA-
seq) on RNA isolated from platelets obtained from 10 
COVID-19 patients and eight healthy donors and further 
examined the transcriptional dysregulation in circulat-
ing platelets from COVID-19 patients. Then, integrative 
network biology analysis was performed to identify criti-
cal subnetworks and risk regulators underlying SARS-
CoV-2 infection. Our findings may provide novel insights 
into the molecular mechanisms of immunothrombosis in 
COVID-19 progression and pave the way for developing 
therapeutic strategies for preventing COVID-19-associ-
ated thrombosis and improving the clinical outcome of 
COVID-19 patients.

Results
Clinical characteristics of healthy donors and hospitalized 
patients with COVID‑19
As shown in Table 1, COVID-19 patients were matched 
with healthy donors by age and sex. Comorbidities, 
including diabetes, hypertension and cancer, were pre-
sent in 40% of the COVID-19 cases, which is consist-
ent with previous reports [33–35]. The symptoms of the 
patient’s initial diagnosis mainly include fever (80%), 
cough (80%) and sputum (50%), occasionally sore throat 
(30%), fatigue (10%), muscle aches (20%), and nausea 
(10%). And the respiratory rate and heart rate of the hos-
pitalized patients were in the normal range. Additionally, 
in Additional file  1: Fig. S1, the imaging of all patients 
was consistent with the changes of viral pneumonia. The 
CRP levels were significantly increased in the COVID-19 
patient group, whereas the lymphocyte count was notably 
decreased, which is consistent with previous reports that 
found that elevated CRP levels and lymphopenia were the 
main laboratory characteristics of COVID-19 patients 
[36–39]. As shown in Fig. 1, the platelet count, platelet-
crit (PCT), mean platelet volume (MPV), platelet distri-
bution (PDW), prothrombin time (PT), and activated 
partial thromboplastin time (APTT) of the COVID-19 
patient group were either within the normal ranges or 
only slightly exceeded the normal ranges, but the plate-
let count was substantially lower, and the PT and APTT 
were significantly increased compared with the control 
group. Furthermore, the alanine aminotransferase and 

pave the way for the development of novel therapeutic strategies for preventing COVID-19-associated thrombosis 
and improving the clinical outcome of COVID-19 patients.
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creatinine levels between the COVID-19 patients and the 
healthy donors were not significantly different and were 
all within the normal range, indicating that liver and kid-
ney damage or failure was not present in the COVID-19 
patient cohort. The above results support that all patients 
enrolled in the group are ordinary new coronavirus 
patients. 

SARS‑CoV‑2 infection alters the coding and non‑coding 
transcriptional landscape of human platelets
To determine whether SARS-CoV-2 infection altered 
the transcriptome of circulating human platelets, we 
performed RNA-seq on RNA isolated from platelets 
obtained from 10 COVID-19 patients and eight healthy 
donors. Hierarchical clustering of transcriptome-wide 
RNA expression showed differential grouping of COVID-
19 patients and healthy donors (Additional file 2: Figure 
S2), suggesting that SARS-CoV-2 infection altered the 
transcriptional landscape of platelets. Differential expres-
sion analysis identified 1,223 differentially expressed 
RNAs between COVID-19 patients and healthy donors 
(adjusted P-value < 0.05 and absolute log2FC > 1.0), 
including 191 and 13 significantly upregulated mRNAs 
and lncRNAs, respectively, and 883 and 136 significantly 
downregulated mRNAs and lncRNAs, respectively (Fig. 2 
and Additional file 5: Table S1).

We performed GO functional term and KEGG sign-
aling pathway enrichment analyses to determine the 
involvement of differentially expressed RNAs in bio-
logical processes. GO functional enrichment analysis 
revealed that differentially expressed mRNAs and lncR-
NAs were significantly enriched in biological processes 
involved in ‘hemostasis’, ‘platelet activation’, ‘immune 
response’ and ‘metabolic process and energy’ (Fig. 3A, B). 
The top 20 enriched KEGG signaling pathways are shown 
in Fig. 3C, in which differentially expressed mRNAs and 
lncRNAs were highly clustered in several signaling path-
ways associated with ‘coronavirus disease-COVID-19’, 
‘platelet activation’ and ‘immune’. In addition, differen-
tially expressed mRNAs and lncRNAs were observed 
to be preferentially expressed in the blood, spleen and 
bone marrow, as determined using tissue and cell-spe-
cific enrichment analysis (Fig. 3D). These data suggested 
that SARS-CoV-2 infection may alter the expression of 
platelet RNAs, change the function of platelets, promote 
thrombosis and affect the biological processes of energy 
metabolism.

Integrative network biology analysis of circulating 
platelets from COVID‑19 patients
To gain further insight into the biological network of 
transcriptional changes associated with SARS-CoV-2 
infection and platelet activation, we constructed a dys-
GCN based on differentially expressed mRNAs and 
lncRNAs by calculating the PCC. The dysGCN was built 
and included 960 nodes (118 lncRNAs and 842 mRNAs) 
and 30,716 connections between them (Fig.  4A). After 
module mining, we identified a total of 17 co-expression 
modules ranging in size from 6 to 130 RNAs. Func-
tional characterization using GO functional term and 

Table 1  Clinical characteristics of control donors and 
hospitalized patients with COVID-19

DVT, deep vein thrombosis; CRP, C reactive protein; MPV, mean platelet volume; 
PT, prothrombin time; APTT, activated partial thromboplastin time; ALT, alanine 
aminotransferase
a  Two-tailed Student T test
b  Chi-square test

Control donors COVID-19 patients P-value
(n = 8) (n = 10)

Age, years 47.25 (± 8.31) 45.80 (± 13.76) 0.797a

Gender, male 4 (50%) 6 (60%) 0.520b

Comorbidities

Hypertension 0 (0%) 3 (30%)

Diabetes 0 (0%) 2 (20%)

Cancer 0 (0%) 1 (10%)

Hyperlipidemia 3 (37.5%) 0 (0%)

Heart disease 0 (0%) 0 (0%)

DVT 0 (0%) 0 (0%)

Symptom

Fever 0 (0%) 8 (80%)

Cough 0 (0%) 8 (80%)

Expectoration 0 (0%) 5 (50%)

Sore throat 0 (0%) 3 (30%)

Fatigue 0 (0%) 1 (10%)

Muscle ache 0 (0%) 2 (20%)

Chest tightness 0 (0%) 0 (0%)

Nausea 0 (0%) 1 (10%)

Diarrhea 0 (0%) 0 (0%)

Physical signs

Respiratory rate 20 (18–20)

Heart rate 85 (75–92)

Laboratory findings on admission

CRP, mg/dL 1.41 (± 1.78) 22.51 (± 25.65) 0.029a

Leukocytes, × 109/L 5.39 (± 1.34) 4.85 (± 1.54) 0.440a

Neutrophils, × 109/L 3.10 (± 0.85) 3.00 (± 1.33) 0.846a

Lymphocytes, × 109/L 1.88 (± 0.66) 1.27 (± 0.28) 0.037a

Platelet count, 
× 109/L

294.25 (± 44.52) 212.40 (± 70.70) 0.009a

MPV, fl 10.06 (± 0.81) 9.78 (± 0.51) 0.407a

PT, S 12.31 (± 0.75) 13.73 (± 0.25) 0.399a

APTT, S 36.40 (± 4.19) 45.47 (± 5.17) 0.001a

Fibrinogen, mg/Dl 2.86 (± 0.54) 4.76 (± 0.87)  < 0.001a

ALT, U/L 21.25 (± 10.47) 26.70 (± 5.76) 0.215a

Creatinine, μmol/L 60.34 (± 12.74) 66.75 (± 21.00) 0.440a
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KEGG signaling pathway enrichment analyses showed 
that modules-2, -8 and -16 were enriched in ‘coronavi-
rus disease-COVID-19’ and ‘platelet activation pathways’. 
In addition, module-2 was also associated with ‘immune 
response pathways’ and module-15 was enriched in the 
‘coronavirus disease-COVID-19 pathway’ only (Fig.  4B, 
C). These results suggested that modules-2, -8, -15 and 
-16 are key subnetworks involved in circulating platelets 
during SARS-CoV-2 infection.

Systematic identification of key regulators in circulating 
platelets during SARS‑CoV‑2 infection
The four modules formed a key subnetwork, consist-
ing of 196 nodes (17 lncRNAs and 179 mRNAs) and 
8,822 edges between them, and were mainly involved 

in the biological process and RNA interaction of plate-
let activation caused by SARS-CoV-2 infection. To 
discover critical regulators of this subnetwork during 
SARS-CoV-2 infection, we mapped these mRNAs to 
‘coronavirus disease-COVID-19’ and ‘platelet activa-
tion pathways’, and identified 16 key candidate regula-
tors (Fig.  5A). These 16 key candidate regulators were 
predominantly expressed in the blood and spleen, as 
shown in tissue and cell-specific enrichment analy-
sis (Additional file  3: Figure S3A). Further analysis 
using disease and viral perturbation datasets from the 
GEO database also showed that these key candidate 
regulators were associated with blood coagulation-
related diseases (Additional file  3: Figure S3B) and 
were differentially expressed in SARS-CoV-2- or SARS 
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virus-associated GEO datasets (Additional file 3: Figure 
S3C).

Furthermore, we calculated the expression correlation 
of these 16 key candidate regulators in healthy donors 
and disease samples. As shown in Fig. 5B, the expression 
levels of these 16 key candidate regulators were signifi-
cantly correlated in COVID-19 patients, which were not 

observed in healthy donors. These observations indi-
cated that these regulators were differentially expressed 
and exhibited a highly synergistic pattern during SARS-
CoV-2 infection. We observed a significant overlap 
between the co-expression relationship and protein–pro-
tein interactions (PPIs) among the 16 key candidate regu-
lators when considering the physical interaction.
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lncRNAs, long non-coding RNAs; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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Finally, we combined the results obtained from the 
enrichment analyses, identification of key subnet-
works and regulators, PPI network and previous stud-
ies to infer the key active pathway involved in platelet 
aggregation during SARS-CoV-2 infection. As shown 
in Fig. 5D, von Willebrand factor (VWF) bound to the 

platelet membrane glycoprotein (GP) Ib-IX-V complex 
and initiated a signaling cascade, which subsequently 
activated LYN proto-oncogene, Src family tyrosine 
kinase (LYN). The downstream pathway was initiated 
by LYN and propagated through PI3K, phospholi-
pase C γ2 and protein kinase C, which promoted ATP 
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Fig. 4  Identification and functional characterization of key subnetworks in circulating platelets during SARS-CoV-2 infection. A Global dysGCN in 
circulating platelets during SARS-CoV-2 infection. Network modules identified through the MFOLD are shown in distinct colors. Highly connected 
hub genes are labeled with respective gene symbols. B Heat map of enriched KEGG signaling pathways with FDR-adjusted P-value < 0.01 among 
different network modules. C Heat map of enriched GO functional terms with FDR-adjusted P-value < 0.01 among different network modules. 
dysGCN, dysregulated gene co-expression network; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; FDR, false discovery rate



Page 8 of 16Ji et al. Cell & Bioscience           (2022) 12:15 

FOS

RPS2

RPL8

A Modules associated with COVID-19 and platelet activation 

RPL10A

PLCG2
PIK3CD

VWF

S

IgG

G
PIB-IX-V

LYN

PI3K

PLCγ2 DAG

PKCATP

 αIIbβ3

FXIII

platelet aggregation

S
N

VWF

LYN

PIK3CD

PLCG2

PRKCB

ITGA2BITGB3

platelet

F13A1

Phagocytosis

DIAPH1

PRKAR2B

WNK1

DSTN

COX8A

VWF

LYN

ZYX

PYGB

UNC79

ITGA2B

VDR

DDRGK1

GBA2

WRNIP1

AOAH

RASA3

GZMA

STK40

TSPAN32

HPSE

NUDCD2

GRN

PNMA1

SLC35D2

ITGAM

CD74

TIMM13

MAFF

C12orf29

ADAP2

GPATCH3

HSD17B10

VCL

PKIA

NPEPPS

CERCAM

RNF126

PIK3AP1

FAM120A

CRY2

POLR2C

CSF3R

S100A9

SAMSN1

ZNF75A

ZNF746

ECD

SRRD

ITGB3

HIST4H4

ABCE1

TACO1

ZNF367

SIGLEC9

MPL

PDRG1

TXNDC12

ACADS

LCP1

IDH3B

RETN

VPS16

DNASE1

ANAPC4

CES2

IL10RA

ANPEP

TFIP11

PCBP1

RIOK3

SH3BP2

ARMC10

KATNAL1

ZNF800

CD83

CCDC137

PARP12

TYMP

SP100

HNMT

ANO6

HOOK2

REEP4

RNPEP

GAPT

YPEL2

PIK3CD

DENND1A

RSAD1

UBTF

KIF14

IER2

SF3B3

IL1RN

F13A1

CUL4A

METTL18

CCDC86

LIMD2

CDK5RAP1

BCL3

MPDU1

FLII

GZMB

HMOX2

TMEM175

CWF19L1

CAPN7

PLCG2

RABGGTA

ESF1

CEBPD

DDIT4

RPS14

ZNF48

UGCG

BIN1

S100A6

TRABD

RPS6

ILF2

EEF1D

MTRR

PNPLA6

GPBP1L1

SCPEP1

POLR2L

ACTN4

ARRB2

XK

FBRS

IKZF1 RPL10A

CNBP

RNF166

SNRPB

YBX3

CALD1

CALM1

YBX1

PRKCB

MLEC

AP1S1

ANP32B

MARCH2

CHURC1

WASF2

ARPC1B

MARCH6

EPHA1

RAB6B

CD151

ANP32A

EEF2

RPS29
RPL8

MALSU1

RBPMS2

FOS

CD14

RPS2
TRMT2A

TSPAN3

JUNB

HPS4

PTPN12

LILRA1

SPSB1

CDK2AP1

MT-ND1

UBC

BCAS4

G6PD

MT-ND5

DOCK2

TRIM8

RPL7

NPTN

CXCR2

MT-ND3

ITGA2B

RPS6

RPL10A

PRKCB

RPS2

PLC

M
od

ul
e-

2 M
odule-16

Module-15

Module-8

EIF3J-DT

PCBP1-AS1

STARD7-AS1

AL356276.1

LINC01871

AL136090.1

LINC01410

ARAP1-AS2

AC007298.1

AL512791.1

AC012645.3

AC016888.1

AC011446.2

AC018766.1

DDIT4-AS1

LINC02018

MRNAs only in COVID-19 pathway 

MRNAs only in platelet activation pathway 

MRNAs both in  platelet activation and 
COVID-19 pathways

RPS14
RPS29

LYN

ITGB3

RPL7

RPS6

VWF

PRKCB

F13A1

ITGA2B

[-1,-0.6]
(-0.6,-0.2]

(0.2,0.6]
(0.6,1]

(-0.2,0.2]

ITGA2B
VWF

F13A1
RPS6

RPS2
RPL7

RPL8
RPS14

PRKCB
FOS

PLCG2

RPS29
LYN

ITGB3
Healthy

COVID-19
F13A1

FOS

ITGA2B

ITGB3
LYN

RPL10APIK3CD

PLCG2
PRKCB

RPL7
RPL8

RPS2

RPS6
RPS14

RPS29

VWF

RPL10A

PRKAR2B

VDR

WRNIP1

PNMA1

PKIA

KATNAL1

YPEL2

PNPLA6

SCPEP1

ARRB2

RNF166
CALD1

CALM1

YBX1

AP1S1

MARCH6

RAB6B

HPS4

PTPN12

MT-ND5

TRIM8

NPTN

LYN

ITGB3

F13A1
RPS14

RPS29
RPL8

FOS

2 RPL7

VWF

PIK3CD
CG2

MM
o

M
dudlel-1166

881888LIILLLIILINLLINC02018

IITG

VW

PPRP

F13A1F13A1F

ITGA2BTGA2BITGA2B

B

C

D

PIK3CD

MEF2C-AS2

Fig. 5  Identification of subnetwork and core genes associated with SARS-CoV-2 infection and platelet activation. A The subnetwork associated 
with SARS-CoV-2 infection and platelet activation in modules-2, -8, -15 and -16. The red round border indicates mRNAs only in the ‘COVID-19 
pathway’; blue round border indicates mRNAs only in ‘platelet activation pathway’; gray round border indicates mRNAs both in ‘platelet activation’ 
and ‘COVID-19’ pathways. B Pearson’s correlation analysis was estimated among the core mRNAs. The size of the circle scales with the correlation 
magnitude and the darker the color, the larger the magnitude of the correlation coefficient. Red and blue represent positive and negative 
correlations, respectively. The upper triangular matrix and the lower triangular matrix represent the correlation coefficients in healthy and 
COVID-19 samples, respectively. C Protein–protein interaction network analysis among the core mRNAs. D Schematic diagram illustrating the 
SARS-CoV-2-induced activation of platelets and subsequent enhanced occurrence of thrombosis in COVID-19 patients. The red and black arrows 
indicate the pathways of SARS-CoV-2 infection and platelet activation, respectively. The dashed line indicates the indirect action and the solid line 
indicates the direct action. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019



Page 9 of 16Ji et al. Cell & Bioscience           (2022) 12:15 	

secretion and finally caused αIIbβ3-mediated platelet 
activation and aggregation.

We measured the levels of four DEmRNAs (F13A1, 
ITGB3, ITGA2B and VWF) involved in platelet aggre-
gation during SARS-CoV-2 infection in 5 patients with 
pneumonia and 6 normal donors by RT-qPCR. As 
shown in Additional file  4: Figure S4, we found that 
the ITGA2B and VWF were significantly decreased 
in patients with pneumonia compared with control 
donors. In addition, the F13A1 and ITGB3 also showed 
lower expression levels in patients with pneumonia 
compared with control donors although the  differ-
ence did not reach statistical significance which might 
be due to the limitation of sample size. These RT-qPCR 
results are in line with our observation form RNA-seq.

Identification of risk regulators associated with COVID‑19 
severity
COVID-19 patients are often accompanied by many 
complications, and the development of these compli-
cations often contributes to the progression of the dis-
ease and even death [40, 41]. We used RNAs identified 
in the key subnetwork to construct an RNA-disease 
association network to investigate how COVID-19-as-
sociated transcriptional characteristics of circulating 
platelets were shared with other diseases. Information 
related to disorders, genes, and possible association 
was obtained from the Online Mendelian Inheritance 
in Man (OMIM) and CTD databases. We classified 
the associated disorders into 19 categories. As shown 
in Fig.  6A, the number of interconnected genes with 
diseases suggested that key subnetworks in circulat-
ing platelets underlying SARS-CoV-2 infection were 
closely associated with immunological, cardiovascular, 
liver and hematological diseases, and cancer.

To further examine whether RNAs in the key subnet-
work were risk regulators associated with COVID-19 
severity, we compared the expression levels of RNAs 
in the key subnetwork between non-ICU COVID-19 
patients and healthy individuals [mild (M)—health 
(H)], ICU COVID-19 patients and healthy individu-
als [severe (S)—H], and ICU COVID-19 patients and 
non-ICU COVID-19 patients (S—M) in both our and 
Bhanu’s cohorts. According to their expression lev-
els, we identified four RNAs as candidate risk regula-
tors associated with COVID-19 severity (Fig.  6B). As 
shown in Fig. 6C, RNA polymerase II, I and III subu-
nit L (POLR2L), Y-box binding protein 1 (YBX1) and 
yippee like 2 (YPEL2) were revealed to be upregulated, 
while upstream binding transcription factor (UBTF) 
was downregulated.

COVID‑19 patient platelet‑specific transcriptional 
characteristics can be used to identify potential drugs 
for therapeutic repurposing
We used core mRNAs to identify potential drugs and 
antiviral agents to analyze their interactions with dif-
ferent drugs and constructed a gene-drug network 
(Fig.  7A). We identified 54 drugs that acted against the 
16 key regulators, implying that these key regulators have 
been widely used as drug targets to treat different dis-
eases, and genes that have no connection with drugs in 
the network may be potential drug targets. In addition, 
we replaced these drugs with their ATC classification and 
constructed a gene-drug ATC coding network (Fig.  7B) 
to gain further information about the drugs. Most of the 
drugs were used for blood and blood-forming organs and 
acted as antineoplastic and immunomodulating agents. 
Since these genes were identified as potential drug tar-
gets, we inputted these genes into the CMAP database to 
predict the candidate chemicals. The top 10 drugs asso-
ciated with the downregulated expression of mRNAs in 
COVID-19 patients are shown in Table 2, amongst which 
gabexate, valproic acid, estradiol, ketorolac and pron-
etalol have already been reported in previous studies. 
As these signature drugs were detected to target the key 
regulators, these drugs may represent potential drugs for 
COVID-19 and stimulate platelet activation.

Discussion
Since the outbreak of COVID-19, an increasing number 
of studies have reported the hyperactivity of activated 
platelets in COVID-19 patients [26, 42, 43], and their role 
in immunothrombosis induced by SARS-CoV-2 [20, 44]. 
Emerging evidence has shown that biomarkers of plate-
let activation were significantly increased in COVID-
19 patients and were associated with thrombosis and 
increased mortality in hospitalized COVID-19 patients, 
including CD40 ligand (sCD40L), P-selectin, the metabo-
lite of thromboxane A2, thromboxane B2 (TxB2) [45, 46]. 
Thus, it remains an important research priority to clar-
ify the mechanisms underlying the interaction between 
platelets and SARS-CoV-2 to provide potential treatment 
strategies for immunothrombosis during COVID-19.

We performed RNA-seq on RNA isolated from plate-
lets obtained from 10 COVID-19 patients and eight 
healthy donors in the present study. We found that 
SARS-CoV-2 significantly altered the coding and non-
coding transcriptional landscape (Fig. 2 and Additional 
file  1: Figure S1). However, the platelets and coagula-
tion indicators of COVID-19 patients were within the 
normal range or only slightly exceeded the normal 
range (Fig. 1 and Table 1). We further performed func-
tional and tissue enrichment analysis and discovered 
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that SARS-CoV-2 changed the function of the plate-
lets, promoted thrombosis and affected their energy 
metabolism. However, the activation and hyperrespon-
siveness of platelets in patients with infectious dis-
eases are known to be caused by numerous factors. For 

example, during excessive inflammation, the accumula-
tion of proinflammatory cytokines and chemokines has 
been found to activate platelets indirectly [58]. Viruses, 
such as DENV, influenza virus [47] and human immu-
nodeficiency virus [48], have also been identified to 
activate platelets directly. Therefore, the current study 
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conducted further analysis to explore how SARS-CoV-2 
may activate and regulate platelets.

We constructed a dysregulated gene co-expression 
network based on differentially expressed mRNAs and 
lncRNAs and identified four key subnetworks in the cir-
culating platelets during SARS-CoV-2 infection. The four 
key subnetworks were found to be involved in ‘coronavi-
rus disease-COVID-19’, ‘platelet activation’ and ‘immune 
response pathways’. These results indicated that the four 
key subnetworks might contain the key factor that SARS-
CoV-2 infection regulates to promote platelet activation. 
We subsequently mapped these mRNAs to ‘coronavirus 
disease-COVID-19’ and ‘platelet activation pathways’ 
and identified 16 key candidate regulators (Fig.  5A). In 
previous studies, Palma et  al. found that PI3Kδ inhibi-
tion could be used as a potential therapeutic target for 
COVID-19 to reduce inflammation and patient death 
[49]. A single-center cross-sectional study report showed 
that VWF activity and antigen levels continued to 
increase as the disease progressed [50], which was associ-
ated with the poor prognosis of COVID-19 patients [51]. 
Another comparative study discovered that integrin and 
integrin signaling genes, including integrin subunit β 3 
and integrin subunit α 2b, were highly expressed in lung 
samples and were suggested to provide SARS-CoV-2 with 
a more effective competitive advantage for invading lung 
cells [52]. The previous published experimental work 
provides further evidence for the core role of the 16 key 
candidate regulators in the regulation of platelets follow-
ing SARS-CoV-2 infection.

Notably, we observed a significant overlap between 
the co-expression relationship and PPI among the 
16 key candidate regulators. Thus, we combined the 
results obtained from the enrichment analyses, iden-
tification of key subnetworks and regulators, the PPI 
network and reported studies to hypothesize that a 
significant alteration in the VWF/GP Ib-IX-V axis may 
be strongly associated with platelet aggregation and 

immunothrombosis. It is well-established that the entry 
of SARS-CoV-2 into cells relies on angiotensin-con-
verting enzyme 2 (ACE2) and transmembrane protease 
serine 2 (TMPRSS2) for viral spike protein initiation, 
and this receptor is highly expressed by nasopharyngeal 
airway and alveolar epithelial cells, vascular endothelial 
cells and lung macrophages [53]. However, an increased 
number of studies have suggested that platelets do not 
express ACE2 and TMPRSS2 and the activation and 
regulation of platelets by SARS-CoV-2 seems to occur 
independently of ACE and TMPRSS2 [26, 42, 54]. VWF 
is a multimeric glycoprotein in the plasma, which plays 
a vital role in hemostasis and thrombosis by mediat-
ing the adhesion of platelets to damaged and activated 
blood vessels [55]. During infection, inflammation 
may regulate the formation of VWF-platelet thrombi 
in large arteries and small blood vessels by increasing 
VWF levels, enhancing VWF responsiveness and reg-
ulating the level and activity of regulatory molecules 
in the circulation [56]. This explains the significant 
changes in platelet VWF/GP Ib-IX-V levels in patients 
with COVID-19 in the present study, and further indi-
cates that the cascade initiated by the VWF/GP Ib-IX-V 
complex may play a pivotal role in the activation and 
regulation of platelets by SARS-CoV-2 infection.

Furthermore, the course of COVID-19 develops rap-
idly and can lead to severe and fatal complications, 
such as acute myocardial injury and chronic damage 
to the cardiovascular system [40, 41]. To facilitate the 
stratification of high-risk patients, reliable biomark-
ers related to disease progression are urgently required 
in the clinic. In the present study, four risk regulators 
(UBTF, POLR2L, YBX1 and YPEL2) were identified to 
be associated with COVID-19 severity. Therefore, these 
four regulators may represent potential biomarkers for 
the clinical management of COVID-19 patients.

Immunothrombosis is strongly associated with the 
progression of COVID-19 disease. Timely and accurate 

Table 2  Suggested top chemicals for the Platelet changes caused by SARS-CoV-2 infection

Chemical Dose (μM) Cell Score Up Down References

Gabexate 10 PC3 1 0.812  − 0.237 Yes

Phthalylsulfathiazole 10 MCF7 0.874 0.720  − 0.198 –

Bisacodyl 11 HL60 0.868 0.694  − 0.217 –

Boldine 12 PC3 0.858 0.567  − 0.333 –

Valproic acid 500 HL60 0.842 0.683  − 0.200 Yes

Estradiol 100 MCF7 0.838 0.679  − 0.201 Yes

Ketorolac 11 MCF7 0.833 0.642  − 0.233 Yes

Dacarbazine 22 HL60 0.829 0.754  − 0.116 –

Pronetalol 15 MCF7 0.825 0.675  − 0.191 Yes

GlycopyrroniumBromide 10 PC3 0.820 0.667  − 0.193 –
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anticoagulation and vigilant monitoring of thrombotic 
complications are key to COVID-19 patient management 
[57]. The current study identified 54 drugs targeting the 
16 key regulators and five out of the top 10 drugs had 
been previously reported in the literature. Thus, they may 
represent potential drugs for the treatment of COVID-
19-associated thrombosis.

Conclusions
The findings of the present study provided novel evi-
dence to suggest that SARS-CoV-2 may significantly alter 
the coding and non-coding transcriptional landscape 
of platelets and subsequently alter their function. The 
altered transcriptional landscape and the identification 
of the critical subnetwork and risk regulators of platelets 
provided novel insights into the molecular mechanisms 
of immunothrombosis in COVID-19 progression, which 
paves the way for developing new therapeutic strategies 
for preventing COVID-19-associated thrombosis and 
improving the clinical outcome of COVID-19 patients.

Methods
Subjects and specimen collection
The current study was approved by the Institu-
tional Review Board (IRB) of The Second Affili-
ated Hospital of Wenzhou Medical University (IRB# 
LCKY2020-09 and LCKY2020-222), and writ-
ten  informed  consent  was  obtained  from  each  partici-
pant prior to the commencement of the study. A total of 
10 patients with COVID-19 were recruited from The Sec-
ond Affiliated Hospital of Wenzhou Medical University 
between 6 and 16 February 2020, and the control group 
consisting of eight donors were recruited between 4 May 
and 15 August 2020. COVID-19 cases were confirmed by 
detecting SARS-CoV-2 RNA using reverse transcription-
quantitative PCR. All donors of the control group under-
went preliminary screening and the following exclusion 
criteria were applied: (i) Use of antiplatelet drugs; (ii) 
recent infections; and (iii) diagnosis of myelosuppressive 
diseases. K2-EDTA-anticoagulated whole blood was col-
lected from hospitalized COVID-19 patients before anti-
platelet or anticoagulation therapy. In addition, the blood 
count and C reactive protein (CRP) were detected by Sys-
mex XE 5000 hematology analyzer (Sysmex Corporation, 
Kobe, Japan), the coagulation parameters were detected 
using an automation coagulator STA-R Evolution (Stago, 
NJ, USA), and biochemical Indicators were measured 
using Cobas 6000 c501 (Roche Diagnostics, Rotkreuz, 
Switzerland). The clinical data of all participants, includ-
ing age, sex, dietary history, medication use and labora-
tory parameters, were collected and are shown in Table 1.

Another platelet RNA-seq cohort of 10 COVID-19 
patients (including six non-ICU and four ICU COVID-19 

patients) was retrieved from NCBI short-read archives 
under PRJNA634489 [58].

Platelet isolation and sequencing
The samples of all hospitalized patients were taken from 
the first morning after the patients were admitted to the 
hospital. The same standardized operating procedure 
was used to collect the whole blood from COVID-19 
patients and healthy donors. Platelet parameters were 
measured using a Sysmex XE 5000 hematology analyzer 
(Sysmex Corporation, Kobe, Japan). Platelets were iso-
lated from the whole blood within 12  h and leukocyte-
removed platelets were obtained using the previously 
described method [59–61]. Briefly, whole blood collected 
in the 5  ml EDTA-coated vacuum tube was centrifuged 
at 120×g for 20 min to separate the platelet-rich plasma 
(PRP) from the nucleated blood cells. The PRP was then 
centrifuged using a 20-min 360×g step to pellet the plate-
lets. Subsequently, 9/10th of the upper PRP was carefully 
removed and the platelet pellet was collected and resus-
pended in RNAlater, then frozen at − 80  °C. The counts 
and the purity of the separated platelets were confirmed 
using flow cytometry.

For next-generation RNA-seq, total RNA was isolated 
from 1 × 109 separated platelets using TRIzol® reagent 
(Invitrogen; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA), followed by DNase treatment. The quantity 
and quality of total RNA were determined and used for 
RNA library construction.

RNA‑seq analysis
Quality control  of raw RNA-seq data was conducted 
using Trimmomatic (v0.39) [62], including read trimming 
and quality filtering. Clean RNA-seq reads were mapped 
to the human reference genome (hg19) that included 
GENCODE v29 gene annotation using the HISAT2 pro-
gram (v2.2.1, with default parameters). Alignment files 
were processed and the final BAM files were obtained 
using SAMtools (V1.7) [63]. The number of reads map-
ping each human gene (as annotated in the GENCODE 
v29 gene annotation) was counted using HTSeq v0.11.2 
[64]. Differential expression analysis was conducted using 
the DESeq2 package [65], and statistical significances 
in expression between COVID-19 patients and healthy 
individuals were determined using a false discovery rate-
adjusted P-value < 0.05 and a log2fold change (FC) > 1.0.

Gene enrichment analyses
Functional enrichment analyses of differentially 
expressed RNAs, including Gene Ontology (GO) func-
tional term and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) signaling pathway enrichment analy-
ses, and tissue and cell-specific enrichment analysis [66], 
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were performed and visualized using the Metascape gene 
enrichment analysis tool (https://​metas​cape.​org) [66] 
and R package ‘clusterProfiler’ [67]. Enrichment analysis 
of differentially expressed RNAs in virus perturbations 
datasets obtained from the Gene Expression Omnibus 
(GEO) database was conducted using Enrichr (https://​
amp.​pharm.​mssm.​edu/​Enric​hr) [68].

Co‑expression network analysis
The Pearson’s correlation coefficient (PCC) was cal-
culated to measure the linear expression correlation 
between each pair of differentially expressed RNAs. A 
dysregulated gene co-expression network (dysGCN), 
which was composed of differentially expressed protein-
coding genes (PCGs) and long non-coding RNAs (lncR-
NAs) as points and a PCC of > 0.8 as edges, was then 
constructed and visualized using Cytoscape (http://​www.​
cytos​cape.​org). The densely connected and bipartite net-
work modules were identified using Molecular Complex 
Detection (http://​apps.​cytos​cape.​org/​apps/​mcode​plugin) 
of Cytoscape software [69].

Drug prediction analysis
Proteins are the direct targets of drugs and the bridge 
connecting genes and targeted drugs; thus, we mapped 
the RNA to protein using the UniProt database (https://​
www.​unipr​ot.​org). The UniProt ID was input into the 
DrugBank database (https://​go.​drugb​ank.​com) to iden-
tify drugs related to the proteins. To obtain more infor-
mation about the drugs, we also recorded the Anatomical 
Therapeutic Chemical (ATC) classification of the drugs 
and constructed a gene-drug ATC coding network. 
Since these genes can be used as disease targets, some 
candidate chemicals have been identified to predict the 
chemicals that target these genes and are related to the 
treatment of COVID-19 and bleeding. The Connectivity 
Map (CMAP) database [19] uses gene-expression signa-
tures to predict small molecular compounds for a spe-
cific disease. Upregulated and downregulated genes were 
subsequently uploaded to the CMAP database and small 
molecule drugs that may treat COVID-19 and bleeding 
were searched for.

Real‑Time Quantitative PCR (RT‑qPCR)
A total of 5 patients with pneumonia and 6 control 
donors were recruited from The Second Affiliated Hos-
pital of Wenzhou Medical University on 17 December 
2021. The samples of patients were taken from the first 
morning after the patients were admitted to the hospital 
and the samples of control donors were collected on the 
morning of the physical examination. Platelet total RNA 
from all samples was extracted according to the method 
described above within 12  h. Total RNA was reversely 

transcribed into cDNA using the reverse transcriptase 
reaction kit (vazyme). DNA removal was conducted at 
42 °C for 2 min with the addition of 4ul 4XgDNA wiper 
mix and 12ul RNA, and then reverse transcription reac-
tion was conducted at 50  °C for 15  min and 85  °C for 
5  s with the addition of 4ul 5X hiscript qRT supermix. 
RT-qPCR was carried out on a Bio-Rad C1000 quanti-
tative PCR instrument with the SYBR Select mastermix 
(Applied Biosystems) kits. The amplification conditions 
were: 2 min at 50 °C, and 2 min at 95 °C; 15 s at 95 °C, and 
1  min at 60  °C (40cycles). Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) was used as the internal refer-
ence for the mRNAs. The ΔCq was used to calculate the 
expression of the target gene in the patient’s group and 
the control group. The primer sequences were shown in 
Additional file 6: Table S2. The primers were synthesized 
by Sangon Biotech (Shanghai, China).
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