
Current Research in Toxicology 6 (2024) 100158

Available online 23 February 2024
2666-027X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Identification of estrogen receptor agonists among hydroxylated 
polychlorinated biphenyls using classification-based quantitative 
structure–activity relationship models 

Lukman K. Akinola a,b,*, Adamu Uzairu a, Gideon A. Shallangwa a, Stephen E. Abechi a, 
Abdullahi B. Umar a 

a Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria 
b Department of Chemistry, Bauchi State University, Gadau, Nigeria   

A R T I C L E  I N F O   

Keywords: 
Autocorrelation descriptor 
Binary logistic regression 
Estrogen receptor 
Hydroxylated polychlorinated biphenyl 
Quantitative structure–activity relationship 

A B S T R A C T   

Identification of estrogen receptor (ER) agonists among environmental toxicants is essential for assessing the 
potential impact of toxicants on human health. Using 2D autocorrelation descriptors as predictor variables, two 
binary logistic regression models were developed to identify active ER agonists among hydroxylated poly-
chlorinated biphenyls (OH-PCBs). The classifications made by the two models on the training set compounds 
resulted in accuracy, sensitivity and specificity of 95.9 %, 93.9 % and 97.6 % for ERα dataset and 91.9 %, 90.9 % 
and 92.7 % for ERβ dataset. The areas under the ROC curves, constructed with the training set data, were found 
to be 0.985 and 0.987 for the two models. Predictions made by models I and II correctly classified 84.0 % and 
88.0 % of the test set compounds and 89.8 % and 85.8% of the cross-validation set compounds respectively. The 
two classification-based QSAR models proposed in this paper are considered robust and reliable for rapid 
identification of ERα and ERβ agonists among OH-PCB congeners.   

Introduction 

The demand and supply of new chemicals by industrialized society 
has resulted in the release of large amount of diverse chemicals into the 
natural environment. Among these environmental contaminants, poly-
chlorinated biphenyls (PCBs) stand out because of their resistance to 
biodegradation (Borja et al., 2005). Due to their lipophilic character, 
numerous congeners of PCBs accumulate in the tissues of organisms at 
successively higher levels within the food web, potentially posing 
detrimental health risk to human beings (Fernández-González et al., 
2015; Zhu et al., 2015). PCBs are synthetic organic compounds that were 
first synthesized in the early 1880s (Pentyala et al., 2011). Because of 
their diverse applications, millions of tons of PCBs were commercially 
produced globally for over six decades but their production was there-
after banned and discontinued in later years due to their persistence and 
potential for bioaccumulation (Lallas, 2001; Warmuth and Ohno, 2013). 
Although several studies have shown that PCBs by themselves pose 
significant risks to human health, the discovery that PCBs are capable of 
undergoing hydroxylation via biotic and abiotic means to form 

hydroxylated polychlorinated biphenyls (OH-PCBs) has raised serious 
environmental concern because OH-PCBs are several orders of magni-
tude more toxic than the parent PCBs (Tehrani and Aken, 2014). 

Identification of nuclear receptor agonists and antagonists among 
environmental toxicants is fundamental in assessing the potential 
impact of toxicants on human health. This is because many environ-
mental toxicants are known to cause adverse health effects in humans by 
inappropriately interacting with nuclear receptors (Toporova and 
Balaguer, 2020). Although some in vitro experiments have reliably been 
used by researchers to investigate the mechanisms of endocrine 
disruption via nuclear receptor binding (Baker, 2001), routine use of 
these experimental techniques for large scale screening of environ-
mental toxicants is considered expensive, laborious and time-consuming 
(Shukla et al., 2010; Tukker et al., 2016; Lang et al., 2018; Sakkiah et al., 
2019). In vitro studies to measure the nuclear receptor binding activities 
of some OH-PCB congeners were reported in literature (Arulmozhiraja 
et al., 2005; Takeuchi et al., 2011; Kamata et al., 2019). To accelerate 
the time and reduce the cost and effort required for toxicity testing in 
future experimental studies, computational methodologies designed to 

* Corresponding author at: Department of Chemistry, Bauchi State University, Gadau, Nigeria. 
E-mail address: lkakinola@basug.edu.ng (L.K. Akinola).  

Contents lists available at ScienceDirect 

Current Research in Toxicology 

journal homepage: www.journals.elsevier.com/current-research-in-toxicology 

https://doi.org/10.1016/j.crtox.2024.100158 
Received 23 November 2023; Received in revised form 22 February 2024; Accepted 22 February 2024   

mailto:lkakinola@basug.edu.ng
www.sciencedirect.com/science/journal/2666027X
https://www.journals.elsevier.com/current-research-in-toxicology
https://doi.org/10.1016/j.crtox.2024.100158
https://doi.org/10.1016/j.crtox.2024.100158
https://doi.org/10.1016/j.crtox.2024.100158
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Current Research in Toxicology 6 (2024) 100158

2

prioritize the selection of OH-PCB congeners that could act as agonists or 
antagonists of nuclear receptors are required. 

Quantitative structure–activity relationship (QSAR) modeling is a 
computational approach that establishes a correlation between biolog-
ical activities and theoretically-computed molecular descriptors (or 
experimentally-measured properties) of a series of chemical compounds. 
QSAR modeling relies on the assumption that changes in the molecular 
structures of chemical compounds reflect corresponding changes in the 
observed biological activities (Rogers and Hopfinger, 1994). QSAR 
models can either be classification-based or regression-based, depending 
on whether the response variables are discrete class labels or continuous 
quantities (Ambure et al., 2019). Classification-based QSAR models are 
particularly useful for rapid identification of environmental toxicants 
that can act as nuclear receptor agonists or antagonists. Consequently, 
classification-based QSAR models have the potential to be employed for 
rational selection and prioritization of chemicals in nuclear receptor- 
mediated toxicity studies. To the best of our knowledge, apart from 
the two classification-based QSAR models reported by Akinola et al. 
(2023) for identification of thyroid hormone receptor agonists among 
OH-PCB congeners, no classification-based QSAR model is currently 
available in the literature to identify OH-PCB congeners that could act as 
agonists or antagonists of other nuclear receptors. The objective of the 
present study was to develop classification-based QSAR models that can 
be utilized for rapid identification of ERα and ERβ agonists among OH- 
PCB congeners using 2D autocorrelation descriptors as predictor 
variables. 

Table 1 
Names and agonistic activities of 17β-estradiol and 99 hydroxylated poly-
chlorinated biphenyls in ERα and ERβ datasetsa,b.  

Compound ID Chemical name REC20(M) 

ERα ERβ  

17β-estradiol 2.5x10− 12 5.3x10− 12 

P1 2-chlorobiphenyl-4-ol 4.4x10− 8 2.9x10− 8 

P2 3-chlorobiphenyl-4-ol – 2.1x10− 6 

P3 5-chlorobiphenyl-2-ol 4.9x10− 6 3.0x10− 6 

P4 2′,3′-dichlorobiphenyl-2-ol 3.4x10− 6 4.6x10− 6 

P5 2′,5′-dichlorobiphenyl-2-ol 4.2x10− 6 2.1x10− 6 

P6 2′,5′-dichlorobiphenyl-3-ol 4.4x10− 7 7.3x10− 7 

P7 2′,5′-dichlorobiphenyl-4-ol 5.9x10− 8 1.0x10− 8 

P8 3′,4′-dichlorobiphenyl-2-ol 5.3x10− 6 3.7x10− 6 

P9 3,5-dichlorobiphenyl-4-ol – 6.7x10− 6 

P10 2,2′,5′-trichlorobiphenyl-3-ol 4.0x10− 7 5.7x10− 7 

P11 2,2′,5′-trichlorobiphenyl-4-ol 7.0x10− 8 2.6x10− 8 

P12 2′,3,3′-trichlorobiphenyl-2-ol 4.1x10− 6 – 
P13 2′,3,3′-trichlorobiphenyl-4-ol 4.0x10− 6 1.3x10− 6 

P14 2′,3,4′-trichlorobiphenyl-2-ol 4.2x10− 6 5.5x10− 6 

P15 3′,4,6-trichlorobiphenyl-2-ol – – 
P16 2,3′,4-trichlorobiphenyl-3-ol – – 
P17 2′,3,4′-trichlorobiphenyl-4-ol 1.3x10− 6 4.8x10− 7 

P18 3′,4,6-trichlorobiphenyl-3-ol – – 
P19 3,3′,6-trichlorobiphenyl-2-ol – – 
P20 2′,3,5′-trichlorobiphenyl-4-ol 1.3x10− 6 4.5x10− 7 

P21 2,3′,5-trichlorobiphenyl-4-ol 2.2x10− 6 1.8x10− 6 

P22 2′,5,5′-trichlorobiphenyl-2-ol – – 
P23 2,4,4′-trichlorobiphenyl-3-ol 6.0x10− 6 3.9x10− 6 

P24 2′,4′,6′-trichlorobiphenyl-2-ol 2.2x10− 6 1.1x10− 6 

P25 2′,4′,6′-trichlorobiphenyl-3-ol 1.2x10− 7 7.3x10− 8 

P26 2′,4′,6′-trichlorobiphenyl-4-ol 3.4x10− 9 1.7x10− 9 

P27 2′,4,5′-trichlorobiphenyl-3-ol – – 
P28 2,4′,5-trichlorobiphenyl-4-ol 4.1x10− 6 8.0x10− 7 

P29 3,4′,6-trichlorobiphenyl-2-ol – – 
P30 2,3′,4′-trichlorobiphenyl-4-ol 6.7x10− 8 2.3x10− 8 

P31 3′,4′,6-trichlorobiphenyl-3-ol 4.0x10− 7 1.1x10− 7 

P32 3′,5′,6-trichlorobiphenyl-3-ol 8.3x10− 7 4.8x10− 7 

P33 3,3′,4′-trichlorobiphenyl-2-ol – – 
P34 3,3′,4′-trichlorobiphenyl-4-ol 4.5x10− 6 6.6x10− 7 

P35 3′,4′,5-trichlorobiphenyl-2-ol – – 
P36 3,3′,5-trichlorobiphenyl-2-ol – – 
P37 3,3′,5′-trichlorobiphenyl-4-ol 3.0x10− 6 1.0x10− 6 

P38 3,3′,5′-trichlorobiphenyl-2-ol – – 
P39 3′,5,5′-trichlorobiphenyl-2-ol – – 
P40 3′,4,4′-trichlorobiphenyl-3-ol – – 
P41 3,4′,5-trichlorobiphenyl-2-ol – – 
P42 3′,4,5′-trichlorobiphenyl-2-ol – – 
P43 3,4′,5-trichlorobiphenyl-4-ol – – 
P44 2,2′,3′,5-tetrachlorobiphenyl-4-ol 2.1x10− 6 6.0x10− 6 

P45 2,2′,3′,6-tetrachlorobiphenyl-3-ol 2.5x10− 7 3.0x10− 7 

P46 2′,4,5′,6-tetrachlorobiphenyl-2-ol – – 
P47 2,2′,4′,6′-tetrachlorobiphenyl-4-ol 1.3x10− 9 3.4x10− 9 

P48 2,2′,5,5′-tetrachlorobiphenyl-3-ol 6.6x10− 6 – 
P49 2,2′,5′,6-tetrachlorobiphenyl-3-ol 1.6x10− 6 – 
P50 2′,3,3′,4-tetrachlorobiphenyl-2-ol – – 
P51 2,3,3′,4′-tetrachlorobiphenyl-4-ol 4.0x10− 6 5.2x10− 7 

P52 2′,3,3′,5-tetrachlorobiphenyl-2-ol – – 
P53 3′,5,5′,6-tetrachlorobiphenyl-2-ol – – 
P54 2′,3′,4′,5′-tetrachlorobiphenyl-2-ol 2.5x10− 6 1.4x10− 6 

P55 2′,3′,4′,5′-tetrachlorobiphenyl-3-ol 2.4x10− 7 1.4x10− 7 

P56 2′,3′,4′,5′-tetrachlorobiphenyl-4-ol 1.9x10− 7 1.1x10− 7 

P57 2′,3′,5′,6′-tetrachlorobiphenyl-2-ol 9.4x10− 6 – 
P58 2′,3′,5′,6′-tetrachlorobiphenyl-3-ol 1.0x10− 6 5.7x10− 7 

P59 2′,3′,5′,6′-tetrachlorobiphenyl-4-ol 8.2x10− 8 4.7x10− 9 

P60 2′,3,4,4′-tetrachlorobiphenyl-2-ol 6 .2x10− 6 5.8x10− 7 

P61 2,3′,4,4′-tetrachlorobiphenyl-3-ol – – 
P62 3′,4,4′,6-tetrachlorobiphenyl-3-ol – 5.3x10− 6 

P63 2′,3,4′,5-tetrachlorobiphenyl-2-ol – – 
P64 2,3′,4,5′-tetrachlorobiphenyl-3-ol – – 
P65 2′,3,4′,5-tetrachlorobiphenyl-4-ol – – 
P66 3′,4,5′,6-tetrachlorobiphenyl-3-ol – – 
P67 3′,4,5′,6-tetrachlorobiphenyl-2-ol – – 
P68 2′,3,4′,6′-tetrachlorobiphenyl-4-ol 2.7x10− 7 9.1x10− 9  

Table 1 (continued ) 

Compound ID Chemical name REC20(M) 

ERα ERβ 

P69 2′,4′,5,6′-tetrachlorobiphenyl-2-ol – – 
P70 2,3′,4′,5-tetrachlorobiphenyl-4-ol – – 
P71 3,3′,4′,6-tetrachlorobiphenyl-2-ol – – 
P72 2′,3,5,5′-tetrachlorobiphenyl-2-ol – – 
P73 2′,3,5,5′-tetrachlorobiphenyl-4-ol – – 
P74 2,3′,5,5′-tetrachlorobiphenyl-4-ol – – 
P75 3,3′,4,4′-tetrachlorobiphenyl-2-ol – – 
P76 3,3′,4′,5-tetrachlorobiphenyl-2-ol – – 
P77 3,3′,4′,5-tetrachlorobiphenyl-4-ol – – 
P78 3,3′,5,5′-tetrachlorobiphenyl-2-ol – – 
P79 2′,3,3′,5,6-pentachlorobiphenyl-2-ol – – 
P80 2,2′,3′,4′,5′-pentachlorobiphenyl-4-ol 6.5x10− 8 3.8x10− 8 

P81 2,2′,3′,5′,6′-pentachlorobiphenyl-4-ol 1.8x10− 7 1.0x10− 7 

P82 2,2′,3′,4,6-pentachlorobiphenyl-3-ol 1.3x10− 6 5.3x10− 6 

P83 2′,3,3′,4′,5′-pentachlorobiphenyl-4-ol 6.3x10− 7 4.6x10− 7 

P84 2′,3′,4′,5,5′-pentachlorobiphenyl-2-ol – – 
P85 2,3,3′,4′,5-pentachlorobiphenyl-4-ol – – 
P86 3,3′,4′,5,6-pentachlorobiphenyl-2-ol – – 
P87 2,3′,4′,5,6-pentachlorobiphenyl-3-ol 9.4x10− 6 5.0x10− 6 

P88 3,3′,5,5′,6-pentachlorobiphenyl-2-ol – – 
P89 2′,3,3′,5′,6′-pentachlorobiphenyl-4-ol – 6.2x10− 6 

P90 2′,3′,5,5′,6′-pentachlorobiphenyl-2-ol – – 
P91 2,3′,5,5′,6-pentachlorobiphenyl-3-ol – – 
P92 2,3′,4,4′,6-pentachlorobiphenyl-3-ol – – 
P93 2′,3,4′,5,6′-pentachlorobiphenyl-2-ol – – 
P94 2,3′,4,5′,6-pentachlorobiphenyl-3-ol – – 
P95 2′,3,4′,5,6′-pentachlorobiphenyl-4-ol – – 
P96 2,2′,3,4′,5,5′-hexachlorobiphenyl-4-ol – – 
P97 2′,3,3′,4′,5,5′-hexachlorobiphenyl-4-ol – – 
P98 2′,3,3′,5,5′,6′-hexachlorobiphenyl-4-ol – – 
P99 2,2′,3,4′,5,5′,6-heptachlorobiphenyl-4- 

ol 
– – 

aREC20 values taken fromTakeuchi et al. (2011). 
bREC20 value denotes 20 % relative effective concentration.  
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Materials and methods 

Datasets 

The datasets used for developing and validating the binary logistic 
regression models reported in this paper were obtained from literature 
(Takeuchi et al., 2011). These datasets were generated in an in vitro 
investigation involving measurement of agonistic activities of 99 mono- 
hydroxylated polychlorinated biphenyls (OH-PCBs) against human es-
trogen receptor α (ERα dataset) and human estrogen receptor β (ERβ 
dataset) using reporter gene assays. According to Takeuchi et al. (2011), 
the estrogenic activity of a test compound (OH-PCB) in the in vitro re-
porter gene assay was defined as the concentration of the test compound 
(OH-PCB) that produced a response that equals 20 % of the maximal 
response produced by 17β-estradiol in assays conducted under similar 
condition. Of the 99 OH-PCB congeners tested in the in vitro reporter 
gene assays, 44 and 55 congeners were observed to be active and 
inactive estrogen receptor agonists respectively in both ERα and ERβ 
datasets. Table S1 (Supplementary Material) shows the names, 2D 
structures, CAS registry numbers and agonistic activities of the 99 OH- 
PCBs in ERα and ERβ datasets. An abridged version of Table S1 is 
shown in Table 1. 

Calculation and preprocessing of molecular descriptors 

Two-dimensional structure of each of the 99 OH-PCB molecules lis-
ted in Table 1 was drawn using the 2D sketch palette in Spartan ’14 
software (Shao et al., 2006). These 2D structures were converted into 3D 
structures and then optimized using semi-empirical AM1 model as 
implemented in Spartan ’14 software (Shao et al., 2006). Geometry 
optimization of the 3D structures of OH-PCB molecules is required in 
order to minimize the energy of the structures. These optimized struc-
tures were then imported into PaDEL-Descriptor software and a total of 
346 2D autocorrelation descriptors were calculated for each OH-PCB 
molecule in the dataset (Yap, 2011). Intercorrelated descriptors 
(redundant descriptors) and descriptors with constant or nearly constant 
values (irrelevant descriptors) were eliminated from the pool of 346 2D 
autocorrelation descriptors calculated by PaDEL-Descriptor software 
(Yap, 2011). In this paper, intercorrelated descriptors with correlation 
coefficient exceeding 0.90 and constant-value descriptors with variance 
lower than 0.0001 were removed using V-WSP algorithm (Ballabio 
et al., 2014) as implemented in V-WSP tool (version 1.2) developed by 
Ambure et al. (2015). Correlation matrix was constructed to verify the 
absence of multicollinearity in the final 2D autocorrelation descriptors 
selected for model building. 

Dataset division 

The 44 OH-PCB congeners listed as active compounds in Table 1 
were divided into training and test sets, with the training set being 75 % 
of the total active compounds and the test set being 25 % of the total 
active compounds. The 55 inactive compounds listed in Table 1 were 
also divided into training and test sets, with the training set being 75 % 
of the entire inactive compounds and the test set being 25 % of the entire 
inactive compounds. The dataset division procedure described above 
was implemented in Dataset Division GUI 1.2 developed by Ambure 
et al. (2015) using Kennard-Stone algorithm (Kennard and Stone, 1969; 
Snarey et al., 1997; Martin et al., 2012). The 33 active compounds and 
the 41 inactive compounds assigned to the training set were then com-
bined to form 74 training set compounds. These 74 training set com-
pounds were used to develop the binary logistic regression models 
reported in this paper. Similarly, the 11 active compounds and the 14 
inactive compounds assigned to the test set were also combined to form 
25 test set compounds. These 25 test set compounds were reserved for 
external validation of the developed models. The 74 OH-PCB congeners 
assigned to the training sets in the ERα and ERβ datasets, along with the 

values of 2D autocorrelation descriptors selected for model building in 
these datasets, are shown in Tables S2 and S3 respectively (Supple-
mentary Material). Similarly, the 25 OH-PCB congeners assigned to the 
test sets in the ERα and ERβ datasets, along with the values of 2D 
autocorrelation descriptors used for model validation, are shown in 
Tables S4 and S5 respectively (Supplementary Material). 

Development of binary logistic regression models 

The two classification-based QSAR models reported for both ERα and 
ERβ datasets in this paper were developed using binary logistic regres-
sion as implemented in IBM® SPSS® Statistics (version 26). In this 
multivariate statistical method, the 2D autocorrelation descriptors 
shown in Tables S2 and S3 (Supplementary Material) for the training set 
compounds (74 OH-PCB congeners) were used as input independent 
variables while the coded values of discrete class labels of compounds in 
the training set (1 for active OH-PCBs and 0 for inactive OH-PCBs) were 
used as the outcome variable. Feature selection was carried out using 
forward conditional procedure as implemented in IBM® SPSS® Statis-
tics (version 26). The statistical significance of each of the chosen pre-
dictor variables was assessed through Wald test (Hosmer et al., 2013). A 
predictor variable is considered statistically significant, and thus 
included in a binary logistic regression model, if the p-value obtained 
from its Wald test is less than 0.05 (Hosmer et al., 2013). Additionally, 
the developed models were evaluated for their goodness-of-fit using 
both Omnibus test and Hosmer-Lemeshow test (Bewick et al., 2005; 
Goeman and le Cessie, 2006; Stoltzfus, 2011). In the context of binary 
logistic regression, goodness-of-fit serves as an indicator of how well a 
model fit the data used in building the model (Goeman and le Cessie, 
2006; Stoltzfus, 2011). Furthermore, Nagelkerke R square and Cox & 
Snell R square were calculated to assess the proportion of the total 
variation in the outcome variable that could be explained by the pre-
dictor variables (Sarma and Vardhan, 2019). Nagelkerke R square is an 
adjusted variant of Cox & Snell R square that adjusts the scale of the 
statistic to cover the full range from 0 to 1 (Bewick et al., 2005; Sapra, 
2014). Finally, the binary logistic regression models generated for both 
ERα and ERβ datasets were used to compute the logit values and pos-
terior probabilities of group memberships for all the training set 
compounds. 

Model validation 

The 2D autocorrelation descriptors selected for model building in 
ERα and ERβ datasets were also calculated for test set compounds 
selected from ERα and ERβ datasets. Utilizing these 2D autocorrelation 
descriptors, logit values and posterior probabilities of group member-
ships were calculated for the test set compounds in both ERα and ERβ 
datasets. The computed posterior probabilities were then used to cate-
gorize the test set compounds into either active or inactive estrogen 
receptor agonists based on a predetermined optimal decision threshold. 
Compounds with predicted probabilities that equal or greater than the 
optimal decision threshold were classified as active and those with 
predicted probabilities less than the optimal decision threshold as 
inactive. The predictions made on the test set compounds were then 
used to evaluate the predictive abilities of the developed QSAR models 
using the performance metrics described later in this paper. To provide a 
more robust estimate of predictive capacities of the developed models, 
K-fold cross-validation was also employed to evaluate the performance 
of the models. In this approach, each of the datasets was partitioned into 
K subsets of approximately equal size, iteratively training the model on 
K-1 folds while testing on the held-out fold (Yadav and Shukla, 2016). 
This process was repeated K times, ensuring each fold served as training 
set in K-1 times and as validation set once. Value of K = 5 was chosen in 
the cross-validation procedure described above, maintaining a 4:5 ratio 
of active to inactive compounds in each fold (imbalance ratio in both 
ERα and ERβ datasets is 1.25). The performance metrics described later 
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in this paper were then calculated for each of the cross-validation sets 
and the average performance metrics across folds provided a robust 
estimate of models’ predictive performance. 

Determination of optimal decision threshold 

To categorize the compounds in the training set, test set and cross- 
validation sets into active and inactive compounds, the probabilities 
predicted for compounds in each subgroup were compared to a pre-
determined optimum decision threshold. For a well-balanced dataset, 
the default decision threshold is always set at 0.5 (Esposito et al., 2021). 
This implies that a compound is categorized as active when its predicted 
probability equals or exceeds 0.5, and as inactive when its predicted 
probability is less than 0.5. However, this default decision threshold 
may not be applicable when dealing with imbalanced datasets, as is the 
case in the present study (Esposito et al., 2021). Imbalanced datasets 
exhibit a disproportionate distribution of classes, with one class being 
significantly more prevalent than the other (He and Garcia, 2009). To 
determine the optimal threshold for each of the datasets used in this 
paper, values of F1 score (Eq. (8), Youden’s index (Eq. 9) and geometric 
mean (Eq. 10) were calculated at different probability thresholds. The 
threshold corresponding to the point of maximum F1 score, maximum 
Youden’s index and maximum geometric mean was selected as the 
optimal decision threshold for the classification (Schisterman et al., 
2005; Zou et al., 2016; Hancock et al., 2022). By employing these three 
approaches, the determination of the optimal decision threshold was 
effectively ensured, thereby overcoming the challenges posed by the 
imbalanced nature of the datasets utilized in the present study. 

Assessment of model performance 

The classifications obtained for the compounds assigned to training, 
test and cross-validation sets in both ERα and ERβ datasets were orga-
nized in a specific table layout known as confusion matrix that allows 
easy calculation of true positive (TP), true negative (TN), false positive 
(FP) and false negative (FN). In this paper, TP and TN refer to the 
number of active and inactive OH-PCB congeners that were correctly 
classified by the models as active and inactive estrogen receptor agonists 
respectively while FP and FN refer to the number of inactive and active 
OH-PCB congeners that were misclassified by the models as active and 
inactive estrogen receptor agonists respectively. From the values of TP, 
TN, FP and FN obtained, performance metrics such as accuracy (ACC), 
sensitivity or recall or true positive rate (TPR), specificity or true 
negative rate (TNR), precision or positive predictive value (PPV), 
negative predictive value (NPV), F1 score (F1), balanced accuracy (BA) 
and Matthews correlation coefficient (MCC) were calculated for the 
prediction made on training set compounds, test set compounds and 
cross-validation set compounds using the formulae shown in Eqs. (1)– 
(8). The performance of the developed models vis-à-vis the classifica-
tions made on the training set compounds in both ERα and ERβ datasets 
were also evaluated graphically using receiver operating characteristic 
(ROC) curves. 

ACC =
TP+ TN

TP+ TN + FP+ FN
(1)  

TPR =
TP

TP+ FN
(2)  

TNR =
TN

TN + FP
(3)  

PPV =
TP

TP+ FP
(4)  

NPV =
TN

TN + FN
(5)  

BA =
TPR+ TNR

2
(6)  

MCC =
TPxTN − FPxFN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP+ FP)(TP+ FN)(TN + FP)(TN + FN

√
)

(7)  

F1 =
2xPrecisionxRecall
Precision+ Recall

(8)  

Youden′s index(J) = Sensitivity+ Specificity − 1 (9)  

Geometric mean =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sensitivity× Specificity

√
(10)  

Results 

A total of seven 2D autocorrelation descriptors were collectively 
selected for building the two binary logistic regression models reported 
in this paper. The symbols and definitions of these autocorrelation de-
scriptors are shown in Table 2. Of the seven autocorrelation descriptors 
listed in Table 2, five descriptors (ATS8m, ATS6e, ATSC3e, ATSC3p and 
GATS4s) were used to develop the structure–activity relationship model 
for ERα dataset. Similarly, four of the seven autocorrelation descriptors 
listed in Table 2 (ATS6e, ATSC3p, MATS5p and GATS7c) were employed 
in building the structure–activity relationship model for ERβ dataset. 
The values of the five descriptors computed for compounds assigned to 
the training set and test set in ERα dataset are presented in Tables S2 and 
S4 respectively (Supplementary Material). Similarly, the values of the 
four descriptors computed for compounds assigned to the training set 
and test set in ERβ dataset are presented in Tables S3 and S5 respectively 
(Supplementary Material). The correlation matrices computed to verify 
absence of multicollinearity in the autocorrelation descriptors selected 
for ERα and ERβ datasets are shown in Tables S6 and S7 respectively 
(Supplementary Material). The absolute values of the correlation co-
efficients shown in Tables S6 and S7 were found to be very low, sug-
gesting absence of multicollinearity among the autocorrelation 
descriptors selected for building the two binary logistic regression 
models reported in this paper. 

Using the values of ATS8m, ATS6e, ATSC3e, ATSC3p and GATS4s 
shown in Table S2 (Supplementary Material) as predictor variables and 
the coded values of the discrete class labels (1 for active OH-PCBs and 
0 for inactive OH-PCBs) of the training set compounds in Table S2 as 
outcome variable, application of binary logistic regression method 
produced the logistic regression coefficients (B), their standard errors (S. 
E.), the p-values of Wald tests, the odds ratios (Exp(B)) and the 95 % 
confidence intervals of the odds ratios listed in Table 3. From the values 
of the logistic regression coefficients listed in Table 3, the binary logistic 
regression model (Model I) displayed in Eq. (11) was constructed. 
Similarly, application of binary logistic regression method, using the 

Table 2 
Symbols and definitions of molecular descriptors utilized in building models I 
and II.  

Symbol Definition Type Class 

ATS8m Moreau-Broto autocorrelation–lag 8/ 
weighted by mass 

2D Autocorrelation 

ATS6e Moreau-Broto autocorrelation–lag 6/ 
weighted by Sanderson electronegativity 

2D Autocorrelation 

ATSC3e Centered Moreau-Broto autocorrelation–lag 
3/weighted by Sanderson electronegativity 

2D Autocorrelation 

ATSC3p Centered Moreau-Broto autocorrelation–lag 
3 weighted by polarizability 

2D Autocorrelation 

MATS5p Moran autocorrelation–lag 4/weighted by 
polarizability 

2D Autocorrelation 

GATS7c Geary autocorrelation–lag 7/weighted by 
charge 

2D Autocorrelation 

GATS4s Geary autocorrelation–lag 4/weighted by 
intrinsic state 

2D Autocorrelation  
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values of ATS6e, ATSC3p, MATS5p and GATS7c shown in Table S3 
(Supplementary Material) as predictor variables and the coded values of 
the discrete class labels (1 for active OH-PCBs and 0 for inactive OH- 
PCBs) of the training set compounds in Table S3 as response variable, 
produced the logistic regression coefficients (B), their standard errors (S. 
E.), the p-values of Wald tests, the odds ratios (Exp(B)) and the 95 % 
confidence intervals of the odds ratios listed in Table 4. From the values 
of the logistic regression coefficients listed in Table 4, the binary logistic 
regression model (Model II) displayed in Eq. (12) was constructed. The 
p-value displayed in Tables 3 and 4 for each of the predictor variables 
indicates that the strength of the relationship between the outcome 
variable and each of the predictor variables was statistically significant 
at p < 0.05. In Tables 3 and 4, the odds ratio of ATSC3p was found to be 
greater than one. This indicates that OH-PCB congener with higher value 
of ATSC3p has higher likelihood of being classified as active ERα agonist 
or active ERβ agonist. Conversely, the odds ratios of less than one re-
ported in Tables 3 and 4 for the other molecular descriptors indicate that 
OH-PCB congener with higher value of each of these molecular de-
scriptors has lower likelihood of being classified as active ERα agonist or 
active ERβ agonist. The results of the Omnibus tests of model coefficients 
and Hosmer-Lemeshow test to assess the goodness-of-fit of Models I and 
II are presented in Tables S8 and S9 (Supplementary Material) respec-
tively. The results of the Omnibus tests of model coefficients shown in 
Table S8 indicate that there were significant improvements in fit (p <
0.05) for Models I and II when compared to the null models constructed 
without any predictor variable. The results of the Hosmer-Lemeshow 
test presented in Table S9 show no significant difference between the 
observed outcomes and the outcomes predicted by the models, indi-
cating that both Model I (χ2(8) = 5.187, p = 0.737) and Model II (χ2(8) 
= 2.872, p = 0.942) adequately fit the data in the training sets. In 
Table S10 (Supplementary Material), two pseudo-R-squared values were 
presented for each of Model I and Model II. The Nagelkerke R2, which is 

an adjusted version of the Cox and Snell R2, was used to explain the 
results presented in Table S10. As shown in Table S10, the Nagelkerke R2 

value of 0.892 reported for Model I and the Nagelkerke R2 value of 0.881 
reported for Model II indicate that 89.2 % of variation in the outcome 
variable in Model I and 88.1 % of variation in the outcome variable in 
Model II can be accounted for by the predictor variables in Models I and 
II respectively. 

Model I (ERα dataset) 

ln
(

P
1 − P

)

=68.055 − 0.001 ATS8m − 0.216 ATS6e − 4.799 ATSC3e

+ 2.853ATSC3p − 7.303GATS4s
(11)  

Model II (ERβ dataset) 

ln
(

P
1 − P

)

=120.178 − 0.415 ATS6e + 2.607 ATSC3p − 8.932 MATS5p

− 7.307 GATS7c
(12) 

Having established the fitness of the binary logistic regression 
models displayed in Eq. (11) (Model I) and Eq. (12) (Model II), the two 
models were then used to calculate the values of logit for the training set 
compounds. The probabilities of allotting the training set compounds to 
active class were then calculated from these logit values. Tables S11 and 
S12 (Supplementary Material) show the values of logit and predicted 
probabilities calculated for the training set compounds selected from 
ERα and ERβ datasets respectively. In order to convert the predicted 
probabilities obtained in this study to class labels (1 for active and 0 for 
inactive), an optimal decision threshold was determined for each dataset 
using the values of F1 score, Youden’s index and geometric mean 
computed at various probability thresholds in Tables S17 and S18 
(Supplementary Material). As shown in Table S17, a maximum F1 score 
of 0.818 was obtained at probability thresholds of 0.1, 0.2, 0.3, 0.4, 0.5 
and 0.6 for ERα dataset and a maximum F1 score of 0.857 was obtained 
at probability thresholds of 0.4 and 0.5 for ERβ dataset. Given that the 
precisions and recalls reported in Table S17 were indistinguishable at 
these multiple probability thresholds, an optimal decision threshold of 
0.5 was selected for both ERα and ERβ datasets. The result presented 
above was corroborated by the results shown in Table S18 where 
maximum Youden’s index and maximum geometric mean were also 
obtained at probability thresholds of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 for 
ERα dataset and at probability thresholds of 0.4 and 0.5 for ERβ dataset. 

Table 3 
Logistic regression coefficients and odds ratios of 2D autocorrelation descriptors utilized in building model I.   

B S.E. Wald df p-value Exp(B) 95 % C.I. for Exp(B) 

Lower Upper 

ATS8m  − 0.001  0.001  4.007 1  0.045  0.999  0.997  1.000 
ATS6e  − 0.216  0.091  5.643 1  0.018  0.806  0.674  0.963 
ATSC3e  − 4.799  2.185  4.821 1  0.028  0.008  0.000  0.597 
ATSC3p  2.853  0.935  9.303 1  0.002  17.342  2.773  108.471 
GATS4s  − 7.303  3.152  5.368 1  0.021  0.001  0.000  0.325 
Constant  68.055  26.382  6.654 1  0.010  3.597 x 1029    

Table 4 
Logistic regression coefficients and odds ratios of 2D autocorrelation descriptors utilized in building model II.   

B S.E. Wald df p-value Exp(B) 95 % C.I. for Exp(B) 

Lower Upper 

ATS6e  − 0.415  0.137  9.239 1  0.002  0.660  0.505  0.863 
ATSC3p  2.607  0.860  9.194 1  0.002  13.561  2.514  73.148 
MATS5p  − 8.932  3.755  5.658 1  0.017  0.000  0.000  0.208 
GATS7c  − 7.307  2.871  6.479 1  0.011  0.001  0.000  0.186 
Constant  120.178  39.664  9.180 1  0.002  1.558 x 1052    

Table 5 
Confusion matrix for the predictions made by models I and II on training set 
compounds*.   

Class Predicted group membership Total 

Active (1) Inactive (0) 

Model I (ERα dataset) Active (1) 31 2 33 
Inactive (0) 1 40 41  

Model II (ERβ dataset) Active (1) 30 3 33 
Inactive (0) 3 38 41  
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Fig. 1. Receiver operating characteristic (ROC) curve for evaluating the performance of model I on training set compounds selected from ERα dataset.  

Fig. 2. Receiver operating characteristic (ROC) curve for evaluating the performance of model II on training set compounds selected from ERβ dataset.  
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Having established the optimal decision threshold at 0.5, all investi-
gated OH-PCB congeners in this study were classified as active if their 
predicted probabilities equal or exceed the 0.5 threshold. The classifi-
cations of the training set compounds in Tables S11 and S12 by Models I 
and II are summarized in the confusion matrix shown in Table 5. As 

shown in Table 5, exactly 31 out of the 33 active compounds and 40 out 
of the 41 inactive compounds in the ERα training set were correctly 
classified by Model I (Eq. (11). Table 5 also shows that 30 out of the 33 
active compounds and 38 out of the 41 inactive compounds in the ERβ 
training set were correctly classified by Model II (Eq. (12). Evaluating 
the performance of the predictions made on the training set compounds 
by Models I and II, using the metrics listed in Eqs. (1)–(8), resulted in the 
values of the performance metrics listed in Table 9. As shown in Table 9, 
the overall accuracy, sensitivity, specificity, precision, negative predic-
tive value, F1 score, balanced accuracy and Matthews correlation coef-
ficient recorded for the classification made by Model I on the training set 
compounds obtained from ERα dataset were 95.9 %, 93.9 %, 97.6 %, 
96.9 %, 95.2 %, 95.4 %, 95.8 % and 91.8 % respectively. Table 9 also 
shows that the overall accuracy, sensitivity, specificity, precision, 
negative predictive value, F1 score, balanced accuracy and Matthews 
correlation coefficient recorded for the classification made by Model II 
on the training set compounds obtained from ERβ dataset were 91.9 %, 

Table 6 
Confusion matrix for the predictions made by models I and II on test set 
compounds*.   

Class Predicted group membership Total 

Active (1) Inactive (0) 

Model I (ERα dataset) Active (1) 9 2 11 
Inactive (0) 2 12 14  

Model II (ERβ dataset) Active (1) 9 2 11 
Inactive (0) 1 13 14  

Fig. 3. Graphical representation of classification predicted by model I on test set compounds selected from ERα dataset.  

Fig. 4. Graphical representation of classification predicted by model II on test set compounds selected from ERβ dataset.  
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90.9 %, 92.7 %, 90.9 %, 92.7 %, 90.9 %, 91.8 % and 83.6 % respectively. 
From the values of the performance metrics reported for Models I and II, 
it can be seen that the classification predicted by Model I in ERα dataset 
was slightly better than the classification predicted by Model II in ERβ 
dataset. Overall, the values of the performance metrics reported in 
Table 9 indicate satisfactory classifications of the training set com-
pounds by the two binary logistic regression models displayed in Eq. 
(11) (Model I) and Eq. (12) (Model II). The performance of the classi-
fications predicted by Models I and II on the training set compounds in 
ERα and ERβ datasets was also evaluated graphically using the receiver 
operating characteristic (ROC) curves shown in Fig. 1 and Fig. 2 
respectively. The areas under these ROC curves (AUC) were found to be 
0.985 for Model I and 0.987 for Model II. The high values of AUC re-
ported in Fig. 1 and Fig. 2 suggest excellent discriminating abilities of 
the two classification-based QSAR models displayed in Eq. (11) and Eq. 
(12). 

Finally, the predictive abilities of Models I and II were evaluated 
using OH-PCB congeners that were not part of the compounds used for 
model building. To accomplished this task, the two binary logistic 
regression models displayed in Eq. (11) and Eq. (12) were used to 
calculate the logit values and the probabilities of allotting the test set 
compounds to active class using the values of the 2D autocorrelation 
descriptors shown in Tables S4 and S5 (Supplementary Material). The 
results of the classifications made by Models I and II on test set com-
pounds selected from ERα and ERβ datasets were shown in Tables S13 
and S14 respectively (Supplementary Material). The results presented in 
Tables S13 and S14 are summarized as confusion matrix in Table 6 and 
depicted graphically in Fig. 3 and Fig. 4 for better visualization. In 
Figs. 3 and 4, compounds above the horizontal cut-off lines were clas-
sified as active while compounds below the horizontal cut-off lines were 
classified as inactive. As shown in Fig. 3, of the 25 OH-PCB congeners 
assigned to test set in ERα dataset, only compounds P2, P60, P70 and 
P82 were misclassified by Model I. In Fig. 4, among the 25 OH-PCB 
congeners assigned to test set in ERβ dataset, only compounds P12, 
P37, and P62 were misclassified by Model II. The proportions of active 
and inactive compounds that were correctly classified in Fig. 3 by Model 
I were 81.8 % and 85.7 % respectively. In Fig. 4, the proportions of 
active and inactive compounds that were correctly classified by Model II 
were 81.8 % and 92.8 % respectively. The performance of the classifi-
cations shown in Table 6 for the test set compounds was further assessed 
using the values of the performance metrics listed in Table 9. The values 
of the performance metrics shown in Table 9 for the predictions made by 
Model I (Eq. (11) and Model II (Eq. (12) on the test set compounds 
suggest that the two QSAR models have good predictive abilities when 
applied to new OH-PCB congeners that were not part of the compounds 

used for model building. To provide a more robust estimate of the pre-
dictive capacities of the developed models, K-fold cross-validation was 
also employed to evaluate the predictive abilities of the developed 
models. Tables S15 and S16 (Supplementary Material) show the pre-
dicted probabilities and predicted group memberships for the validation 
sets utilized in the K-fold cross-validation of ERα dataset and ERβ dataset 
respectively. For easy evaluation of model performance vis-à-vis the 
predictions made on validation set compounds, the results displayed in 
Tables S15 and S16 (Supplementary Material) are summarized as 
confusion matrices in Tables 7 and 8 respectively. The average values of 
the performance metrics derived from Tables 7 and 8 are shown in 
Table 9. As shown in Table 9, the average values of the performance 
metrics reported for the cross-validation sets indicate satisfactory pre-
dictions, affirming the robustness of the classification-based QSAR 
models developed in this paper. 

Discussion 

The present study set out to develop classification-based QSAR 
models for categorizing OH-PCB congeners into active and inactive es-
trogen receptor agonists. Application of binary logistic regression 
method on training set compounds selected from ERα and ERβ datasets, 
using 2D autocorrelation descriptors as predictor variables, led to the 
development of two classification-based QSAR models for predicting 
ERα and ERβ agonists among OH-PCB congeners. Evaluating the per-
formance of the classifications made by the two models on test set 
compounds selected from ERα and ERβ datasets revealed that the two 
classification models have good predictive abilities and can reliably be 
used for identification and prioritization of new ERα and ERβ agonists 
among OH-PCB congeners. Activation of estrogen receptors via binding 
to environmental toxicants has been identified as a molecular initiating 
event in several apical adverse outcomes of toxicant exposure in humans 
(Shanle and Xu, 2011). For instance, human exposure to endocrine 
disrupting chemicals has been shown to be associated with reproductive 
dysfunction, systemic lupus erythematosus, endometrial carcinoma, 
breast cancer, ovarian cancer and female precocious puberty (Li and 
McMurray, 2009; Chighizola and Meroni, 2012; Bourguignon and 
Parent, 2012; Darbre and Williams, 2015; Mallozzi et al., 2017; Ben- 
Jonathan, 2019; Tam et al., 2022; Caserta et al., 2022). Previous ex-
periments conducted to establish the link between estrogen receptor 
binding to chemicals and the adverse effects of chemicals in humans 
were found to be laborious, expensive and time-consuming. Use of 
classification-based QSAR models for active compound selection and 
prioritization in experimental studies involving toxicity testing of 
chemicals can drastically reduce the cost, effort and time required to 

Table 7 
Confusion matrix for validation sets derived from K-fold cross-validation of ERα 
dataset.   

Class Predicted group membership Total 

Active (1) Inactive (0) 

Validation set 1 Active (1) 8 1 9 
Inactive (0) 0 11 11  

Validation set 2 Active (1) 9 0 9 
Inactive (0) 0 11 11  

Validation set 3 Active (1) 7 2 9 
Inactive (0) 1 10 11  

Validation set 4 Active (1) 7 2 9 
Inactive (0) 1 10 11  

Validation set 5 Active (1) 6 2 8 
Inactive (0) 1 10 11  

Table 8 
Confusion matrix for validation sets derived from K-fold cross-validation of ERβ 
dataset.   

Class Predicted group membership Total 

Active (1) Inactive (0) 

Validation set 1 Active (1) 9 0 9 
Inactive (0) 3 8 11  

Validation set 2 Active (1) 7 2 9 
Inactive (0) 3 8 11  

Validation set 3 Active (1) 8 1 9 
Inactive (0) 0 11 11  

Validation set 4 Active (1) 8 1 9 
Inactive (0) 1 10 11  

Validation set 5 Active (1) 5 3 8 
Inactive (0) 0 11 11  
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conduct these experiments. Using different molecular descriptors and 
different machine learning algorithms for modeling, some classification- 
based QSAR models to identify agonists or antagonists of thyroid hor-
mone receptor (Bai et al., 2018; Wang and Xing, 2019), estrogen re-
ceptor (Liu et al., 2007; Roncaglioni et al., 2008; Wang et al., 2021) and 
androgen receptor (Piir et al., 2021) among diverse groups of chemical 
compounds suspected to be endocrine disruptors were reported in the 
literature. The two classification-based QSAR models reported in this 
paper were developed using binary logistic regression method. Some of 
the main attractions of using binary logistic regression algorithm for 
building classification-based QSAR models include easy implementation 
of the algorithm, easy interpretation of the resulting models, no 
assumption about distribution of classes in feature space is required, the 
algorithm is less inclined to over-fitting, and it is one of the most effi-
cient algorithms when the different outcomes represented by the dataset 
are linearly separable (Sperandei, 2014; Sarma and Vardhan, 2019). The 
performance of the two binary logistic regression models developed in 
the present paper was found to be comparable with the performance of 
the classification-based QSAR models previously reported in the litera-
ture (Liu et al., 2007; Roncaglioni et al., 2008; Bai et al., 2018; Wang and 
Xing, 2019; Piir et al., 2021; Wang et al., 2021). The two binary logistic 
regression models developed in this paper are therefore considered 
suitable for rapid identification of ERα and ERβ agonists among OH-PCB 
congeners. It is crucial to highlight that in QSAR studies, the modeling 
approach can be either predictive or descriptive, depending on the 
research goal (Gramatica, 2020). While predictive QSAR models aim to 
accurately predict the biological activities of untested compounds, 
descriptive QSAR models focus on understanding the relationship be-
tween structural features and biological activities of compounds within 
the training dataset without necessarily prioritizing predictive capabil-
ities (Zefirov and Palyulin, 2001; Fujita and Winkler, 2016). Descriptive 
QSAR models mostly utilize interpretable molecular descriptors, 
whereas predictive QSAR models often use molecular descriptors that 
can be challenging to interpret (Zefirov and Palyulin, 2001; Fujita and 
Winkler, 2016). A limitation of the present study is the absence of 
explanation for the underlying structural features in OH-PCBs respon-
sible for estrogen receptor binding. This limitation is due to lack of 
interpretability of the 2D autocorrelation descriptors selected for 
building the QSAR models reported in this paper. Nevertheless, the 
choice of these molecular descriptors is justified since the primarily 
focus of the present study was to develop predictive QSAR models for 
rapid identification of ERα and ERβ agonists among untested OH-PCB 
congeners. 

Conclusion 

Investigation of OH-PCBs in nuclear receptor-mediated toxicities in 
previous experimental studies was found to be time-consuming and 
resource-intensive. To expedite the identification of active nuclear re-
ceptor agonists and antagonists among OH-PCB congeners in future 
experimental endeavors, it is imperative to develop and apply 
classification-based QSAR models. In this study, two binary logistic 

regression models were successfully developed to predict active ERα and 
ERβ agonists among OH-PCB congeners using 2D autocorrelation de-
scriptors as predictor variables. Through comprehensive internal and 
external validation procedures, the robustness, reliability and pre-
dictivity of the proposed QSAR models were established. The two 
classification-based QSAR models developed in this paper are consid-
ered suitable for rapid identification of active ERα and ERβ agonists 
among OH-PCB congeners, offering a promising approach for priori-
tizing OH-PCBs in toxicity testing and regulatory consideration. 
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