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A B S T R A C T   

Hydrogen sulfide (H2S) has long been recognized as a putrid, toxic gas. However, as a result of intensive 
biochemical research in the past two decades, H2S is now considered to be the third gasotransmitter alongside 
nitric oxide (NO) and carbon monoxide (CO) in mammalian systems. H2S-producing enzymes are expressed in all 
organs, playing an important role in their physiology. In the kidney, H2S is a critical regulator of vascular and 
cellular function, although the mechanisms that affect (sub)cellular levels of H2S are not precisely understood. 
H2S modulates systemic and renal blood flow, glomerular filtration rate and the renin-angiotensin axis through 
direct inhibition of nitric oxide synthesis. Further, H2S affects cellular function by modulating protein activity via 
post-translational protein modification: a process termed persulfidation. Persulfidation modulates protein ac-
tivity, protein localization and protein-protein interactions. Additionally, acute kidney injury (AKI) due to 
mitochondrial dysfunction, which occurs during hypoxia or ischemia-reperfusion (IR), is attenuated by H2S. H2S 
enhances ATP production, prevents damage due to free radicals and regulates endoplasmic reticulum stress 
during IR. In this review, we discuss current insights in the (sub)cellular regulation of H2S anabolism, retention 
and catabolism, with relevance to spatiotemporal regulation of renal H2S levels. Together, H2S is a versatile 
gasotransmitter with pleiotropic effects on renal function and offers protection against AKI. Unraveling the 
mechanisms that modulate (sub)cellular signaling of H2S not only expands fundamental insight in the regulation 
of functional effects mediated by H2S, but can also provide novel therapeutic targets to prevent kidney injury due 
to hypoxic or ischemic injury.   

1. Introduction 

Representing the simplest sulfur-containing molecule, hydrogen 
sulfide (H2S) - also known as sulfane (according to recent nomenclature) 
[1] - is a flammable colorless gas that has been mainly recognized as a 
toxic compound. Toxicity occurs already at low concentrations, upon 
prolonged exposure to concentrations above 2–5 parts per million or 
acute exposure to 100 parts per million or higher. Major toxicity of H2S 
occurs through inhibition of mitochondrial cytochrome c oxidase, 
leading to metabolic acidosis associated with cardiovascular and respi-
ratory collapse and sudden loss of consciousness [2]. Endogenous H2S 
synthesis in mammalian cells however, produces much lower, non-toxic 
concentrations and is recognized to have important physiological 

functions. H2S is enzymatically synthesized by cystathionine-β-synthase 
(CBS) [3], cystathionine γ-lyase (CSE), 3-mercaptopyruvate sulfur-
transferase (3-MST) and indirectly by D-amino acid oxidase (DAO) 
[3–5]. Following nitric oxide (NO) and carbon monoxide (CO), H2S was 
recently recognized as the third gasotransmitter: signaling molecules 
that can freely diffuse through membranes to transmit information 
[5–8]. Given the pleiotropic effect of H2S on different critical physio-
logical pathways, spatiotemporal regulation of H2S is paramount to 
allow cellular target specificity [9]. 

H2S plays an important role in renal physiology by modulating renal 
blood flow, endocrine function and metabolism. First, the 
concentration-dependent vasoactive properties of H2S are of major in-
fluence on renal blood flow [10,11]. In addition, H2S affects renal 
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endocrine function through regulation of renin and angiotensin II re-
ceptor levels, and induction of norepinephrine and aldosterone release, 
as demonstrated in a murine model of heart failure [12]. Further, H2S 
can attenuate ischemia/reperfusion injury through reduction of oxida-
tive stress, which is illustrated by the observation that mice lacking 
either CBS, CSE or 3-MST have a profoundly reduced resistance to 
ischemia/reperfusion injury in several organs [13–15]. Hence, tight 
regulation of endogenous H2S seems to be critical for maintenance of 
renal homeostasis, through different mechanisms that affect both 
filtration, endocrine and metabolic functions of the kidney. This specific 
spatiotemporal regulation of renal H2S signaling is achieved by regula-
tion of substrate and cofactor availability as well as modulation of the 
levels, enzymatic activity and localization of the H2S-producing en-
zymes. In the kidney, H2S is primarily synthesized by CBS and CSE. 
While both CBS and CSE are predominantly expressed in proximal tu-
bules [16,17], CSE is also expressed in the glomerulus [18,19]. As 
compared to CBS and CSE, levels of 3-MST and DAO in the kidney are 
much lower and their precise role in renal physiology remains unclear 
[20,21]. 

In this review, we describe the (sub)cellular and temporal regulation 
of H2S in the kidney and how H2S exerts its effects within different or-
ganelles such as the nucleus, ER and mitochondria. Moreover, we review 
how subcellular H2S anabolism and catabolism has affects renal (patho) 
physiology. Next to this, post-translational modification of protein 
cysteine residues via persulfidation also hold great promise to explain 
the beneficial properties of H2S with potential relevance for the treat-
ment of renal-related diseases, such as hypertension, ischemia/reper-
fusion and acute kidney injury. Therefore, modulation of the levels, 
enzymatic activity or localization of H2S-producing enzymes could be 
pharmacologically exploitable targets to modulate endogenous levels of 
H2S. 

2. Regulation of H2S production 

2.1. Subcellular enzyme localization affects spatial specificity of H2S 
levels 

One mode of regulation of H2S signaling specificity consists of the 
multiple H2S-producing enzymes that have both unique as well as 
redundant functions. Regulation of H2S production on the organelle 
level is achieved by (trans)localization of the H2S-producing enzymes in 
the cell. Natively, CBS and CSE reside mostly in the cytosol, while 3-MST 
mostly resides in the mitochondrion. Translocation of these enzymes 
into different organelles allows for subcellular control of H2S levels, as 
each enzyme has specific cellular localization signals and cues. CBS has a 
C-terminal mitochondrial targeting sequence which is recognized by 
Hsp70 under hypoxic conditions, while CSE requires the mitochondrial 
outer membrane transporter protein Tom20 to translocate to the mito-
chondrial lumen upon treatment with the ionophore calcimycin [22,23]. 
Specificity is also achieved by differences in optimal pH of the H2S 
synthesizing enzymes. The optimal pH for H2S production by CBS and 
CSE is pH 8.5–9.0 [24,25], which is closer to the slightly alkaline pH of 
8.0 within the lumen of the mitochondria as compared to the pH of 
7.0–7.4 of the cytosol [26]. The optimal pH for H2S production by 3-MST 
is 7.4 [27], close to the pH of the cytosol. The optimal pH for H2S pre-
cursor production by DAO is 8.4 for L-cysteine as a substrate, but 7.4 for 
D-cysteine as a substrate. CBS and CSE is localized primarily in the 
cytosol, but also in vesicles, nucleoli [28] and mitochondria. 3-MST is 

Localized in mitochondria [29] and in the cytosol [30]. Finally, DAO 
– contributing to H2S production via 3-MST - is localized in mitochon-
dria and peroxisomes [21,31]. Together, not only substrate availability, 
enzyme production and translocation, but also local pH and 
substrate-specific pH optima affect enzymatic activity and consequently, 
H2S levels. 

2.2. H2S production is regulated through substrate and cofactor 
availability 

Spatiotemporal regulation of H2S is also achieved by modulating 
substrate availability for H2S production, of which the most important 
are L-cysteine, L-homocysteine and 3-mercaptopyruvate, and to a lesser 
extent L-cystine and D-cysteine [32]. The canonical pathways of H2S 
synthesis are depicted in Fig. 1, with L-cysteine and L-homocysteine as 
major substrates for CBS and CSE. The intracellular concentration of 
L-cysteine is controlled by a number of independent processes: uptake 
from plasma in endothelial cells, proteolysis (increasing L-cysteine 
availability), the transsulfuration pathway (L-cysteine as a substrate for 
H2S synthesis) and the rate of incorporation into glutathione (decreasing 
or suspending L-cysteine availability) [33]. L-cystine is taken up via the 
glutamate/cystine antiporter which is under positive control of H2S, 
which forms a positive feedback loop for H2S production [34]. Dihy-
drolipoic acid (DHLA) is a potent anti-oxidant derived from dietary 
α-lipoic acid (LA), which - by reducing L-cystine - was demonstrated to 
release free L-cysteine [35] to be used for H2S production. The intra-
cellular concentration of L-homocysteine has not been determined yet, 
possibly because it is a toxic intermediate which is consumed efficiently 
by CBS, or because the concentration is below detection limits of current 
analytical methods. D-cysteine required for DAO comes primarily from 
metabolism of nutrients in the gastrointestinal tract [21]. CBS and CSE 
require the cofactor pyridoxal-5-phosphate (PLP), also known as 
vitamin B6, to produce H2S. H2S production by 3-MST depends on thi-
oredoxin (Trx) and dihydrolipoic acid: two important redox 
balance-maintaining molecules[36]. In turn, the expression of Trx is 
regulated by transcription factors involved in the antioxidant response, 
such as Nrf2 [37]. The systems that regulate substrate and cofactor 
availability are complex, with positive and negative feedback loops, and 
are coupled to maintenance of the redox balance. Thus, substrate, 
cofactor availability and H2S-producing enzyme abundance control H2S 
anabolism. 

2.3. H2S clearance is achieved both enzymatically and non-enzymatically 

While substrate availability, enzyme levels and subcellular locali-
zation contribute to spatiotemporal regulation of local H2S levels 
through affecting its synthesis, catabolism, exhalation and excretion 
regulate lowering of H2S levels. Exhalation accounts for <1% of H2S 
elimination in the body, as excretion is the major route responsible for 
clearance of H2S [38]. Before H2S can be excreted, it first needs to be 
converted catabolically. Catabolism of H2S occurs both enzymatically 
and non-enzymatically, of which enzymatic catabolism represents the 
most important catabolic pathway [3]. In mitochondria, H2S is catabo-
lized by the sulfide quinone oxidoreductase system (SQR) to form 
SQR-bound cysteine persulfides [39,40]. SQR-bound cysteine persulfide 
is then catabolized into thiosulfate, which is reversible and offers an 
endogenous donor pool capable of ameliorating hypertensive renal 
disease and diabetes [41,42]. Furthermore, SQR-bound cysteine per-
sulfide is catabolized into sulfite and sulfate that are excreted via urine. 
H2S is catabolized to sulfite through ethylmalonic encephalopathy 1 
protein (ETHE1), which resides in the mitochondrial matrix [43]. Suc-
cessive methylation of H2S by thiol S-methyltransferase (TMT) and 
thioether S-methyltransferase (TEMT) forms the trimethylsulfonium 
ion, which is also excreted via urine [44]. Lastly, H2S binds to methe-
moglobin to form sulfhemoglobin in erythrocytes, which act as a sink of 
H2S upon erythrocyte sequestration to the spleen[45]. 

2.5. Intermediates of H2S metabolism allow for delayed H2S signaling by 
storage-and-release 

H2S metabolism is not always a one-way street, as certain catabolic 
intermediates allow for suspended release of H2S. Three different pools 
of H2S have been proposed so far: sulfane sulfur species, acid labile H2S 
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and polysulfides. First, H2S can be stored in the form of sulfane sulfur 
species: compounds that contain a sulfur atom with six valence electrons 
that is bound to another two or more sulfur atoms (RS-Sn-SR) such are: 
persulfides (RSSH), polythionates (− SO3-Sn-SO3

- ), organic polysulfanes 
(HSSnSH, RSSSnR, RSSnSH) and thiosulfate (S2O3

2− /− S-SO3
- ) [5]. H2S 

from sulfane sulfur compounds can be released in reducing conditions or 
by the activity of thioredoxin/thioredoxin reductase which is a key 
player in catabolism or sulfane sulfur, mostly incorporated in protein 
persulfides [46,47]. The only enzyme reported to produce sulfane sulfur 
compounds from H2S is 3-MST, but the mechanism remains unknown 
[48,49]. Like H2S, sulfane sulfur species also possess strong antioxidant 
capacities [50], which contributes to the prolonged cytoprotective effect 
of H2S and sulfane sulfur production by 3-MST. Second, H2S can be 
stored in the form of acid-labile sulfur that can be released under acidic 
conditions (pH < 5.4), usually in the iron-sulfur center of mitochondrial 
enzymes [51,52]. Third, H2S can also be stored in the form of poly-
sulfides, facilitated by the enzymes 3-MST and cysteine aminotrans-
ferase (CAT) [53]. Delayed H2S signaling is achieved through release 
from H2S pools under specific redox conditions. Together, H2S anabo-
lism is tightly controlled by enzyme localization, substrate specificity 
and optimal pH levels, while enzymatic and non-enzymatic metabolism 
of H2S lead to functional intermediates and ultimately, excretion of H2S 
derivatives. 

2.6. H2S signaling in renal physiology 

2.6.1. Vasoactive effects of H2S affect systemic blood pressure and renal 
blood flow 

Production of H2S in endothelial cells governs hormetic (i.e. 
biphasic) dose-dependent vasoactive effects by influencing endothelial 
and vasomotor function. Endogenous H2S in endothelial cells is pro-
duced by CSE[54], 3-MST[55] and CBS [56] and leads to endogenous 
concentrations of H2S in arterial blood in the range of 0.1–1.0 μM [57, 
58]. In short-term experiments, exogenous NaHS administration induces 
vasodilation in isolated human mesenteric arteries and rat thoracic aorta 
[59,60]. In rats, a bolus injection of H2S transiently decreased blood 
pressure, indicating vasodilation. In CSE knockout mice, an increased 
blood pressure as compared to wild-type mice was observed, indicating 
a lack of H2S-mediated vasodilation [54]. On the contrary, results from a 
recent study have shown the absence of H2S-mediated hypertension in 
CSE− /- mice as well as the increased level of endogenous NO compared 
to the CSE wildtype animals. This observation emphasizes the direct 
chemical reaction between H2S and NO where NO reacts with H2S as 
well as their mutual contribution in regulation of vascular tone [61]. 

Administration of a NaHS, a H2S donor in vivo resulted in an increased 
blood pressure at 10 μmol kg− 1 min− 1, while 25 μmol kg− 1 min− 1 NaHS 
led to a decrease in blood pressure [62]. This demonstrates the hormetic 
effects of H2S, conceivably through inhibition of endothelial NO syn-
thase [62]. 

Tubular function is regulated by H2S through modulation of the renal 
blood flow (RBF) and consequently, glomerular filtration rate (GFR). An 
increase in tubular H2S levels stimulates diuresis, natriuresis and 
kaliuresis by inhibiting the Na+/K+/2Cl- cotransporter (NKCC) in 
chronically salt-loaded rats [63,64]. Both the H2S donor NaHS and the 
H2S precursor L-cysteine increase GFR in a dose-dependent manner in 
rat, which was abolished by concomitant inhibition of CBS and CSE. 
Inhibition both CBS and CSE alone (by AOAA and PPG, respectively) 
results in decreased H2S levels and a decrease in tubular function [63]. 
Interestingly, in mice with acute bilateral renal ischemia, addition of 
NaHS accelerated regeneration of damaged tubular cells, while admin-
istrating PPG slowed their regeneration [65]. Hence, generation of 
endogenous H2S in renal endothelial cells leads to a reduced blood 
pressure, while increasing glomerular filtration rate and tubular 
function. 

2.6.2. Modulation of gene expression by H2S is relevant for blood pressure 
regulation 

The spontaneously hypertensive rat (SHR) model was developed by 
selectively breeding naturally hypertensive rats [66]. The onset of hy-
pertension is associated with a decreased CSE activity in arteries, as 
demonstrated in thoracic aorta [67]. Further, plasma levels of H2S are 
reduced prior to onset of hypertension, while administration of NaHS 
(partially) precludes the onset of hypertension [68]. As low levels of 
endogenous H2S induce vasodilation and the lack of CSE is associated 
with hypertension in mice, it is likely that the reduced levels of H2S play 
a role in the pathophysiology of hypertension in the SHR model. In 
addition, administration of NaHS in the SHR model downregulates the 
expression of important components of the RAS system, including renin 
(Ren), angiotensinogen (Agt), angiotensin-converting enzyme (Ace) and 
angiotensin II receptor, type 1a (Agtr1a) to levels below those observed 
in normotensive control rats [69]. Similarly, administration of NaHS 
downregulates Ren expression and reduces plasma renin levels in the 
two-kidneys-one-clip (2K1C) rat model for hypertension [70]. In the 
2K1C rat model hypertension is induced by temporarily restricting blood 
flow to one kidney, which activates the renin-angiotensin axis and in-
duces hypertension [71]. In a mouse model of hypertension induced by 
treatment with angiotensin II, reduced levels of miR-129 (an epigenetic 
regulator) is associated with an inflammatory response [72]. Treatment 

Fig. 1. Metabolism of H2S. In the canonical 
pathway of H2S production, L-homocysteine is 
converted to cystathionine by CBS, which is then 
converted to L-cysteine by CSE. H2S is produced 
from L-cysteine by both CBS and CSE. A second 
pathway is the production of H2S by conversion of 
D-cysteine or α-ketoglutarate to 3-mercaptopyru-
vate by DAO and CAT respectively, which is sub-
sequently converted to H2S by 3-MST. H2S 
catabolism occurs through persulfidation of pro-
teins, via the formation of sulfane sulfur species, 
such as thiosulfate via SQR. Catabolism also occurs 
through the production of methyl mercaptan, also 
known as methanethiol, to form dimethyl sulfide. 
A non-enzymatic pathway allows H2S to bind to 
methemoglobin to form sulfhemoglobin.   
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with GYY4137 (an H2S releasing molecule) restored miR-129 expression 
to normal, thereby mitigating renal inflammation. Potentially, gene 
expression changes are governed by epigenetic regulation by H2S. 
Maternal hypertensive rats treated with NaHS produce offspring with an 
increased methylation of the Agtr1b (angiotensin II receptor, type 1b) 
and decreased levels of the angiotensin II receptor AT1R [73]. Thus, H2S 
affects the expression of genes (for example Ren, Agt and Agtr1a) that 
play essential roles in blood pressure regulation, which is potentially 
mediated through epigenetic regulation, as well as miRNA expression. 

2.6.3. H2S protects against kidney injury via protein persulfidation 
Persulfidation, also known as “S-sulfhydration”, represents the 

oxidative modification of a cysteine sulfhydryl group where another 
thiol moiety (originating from H2S, H2S donors or another persulfide) is 
covalently attached to the corresponding cysteine sulfhydryl group ul-
timately forming the persulfide [5,74] (Fig. 2). Persulfidation modifies 
protein function and alter protein-protein interactions. First, persulfi-
dation can either increase or decrease function and activity of target 
proteins. Persulfidation of cysteine residue C150 of mitochondrial 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), increases its 
enzymatic activity [74], while persulfidation on C156 or C152 leads to a 
profound decreased activity [75]. Second, persulfidation can also alter 
protein-protein binding kinetics and thereby protein localization, as is 
the case in the transcription factor Nrf2. Persulfidation of C150 of 
cytosolic Keap1 initiates dissociation of the bound transcription factor 
Nrf2 and allows translocation of Nrf2 to the nucleus and enhancement of 
expression of genes coding for proteins of the antioxidant stress response 
[76]. Nrf2 has been implicated to protect kidney injury after experi-
mental IR in several studies [77,78]. Finally, persulfidation also protects 
proteins against detrimental post-translational modifications, such as 
S-nitrosylation or oxidation during nitrosative and/or oxidative stress 
conditions [79]. Persulfidation mostly occurs on protein cysteine resi-
dues, protecting this moiety from being oxidized by ROS, thus protecting 
protein function. S-nitrosylation of GAPDH at the aforementioned C150 
nullifies enzymatic activity, leading to a marked decrease in ATP pro-
duction [80]. By persulfidation of GAPDH, but also ATP5a, H2S can 
rescue ATP production. It is known that in AKI, maintaining ATP pro-
duction is crucial for proper recovery of renal function [81]. Together, 

H2S safeguards renal function after injury through protein persulfidation 
(see Fig. 3). 

2.6.4. H2S modulates redox homeostasis, sodium excretion and blood 
pressure through protein persulfidation 

In the kidney, persulfidation of proteins regulate blood pressure and 
renal sodium handling. Persulfidation of the endothelial growth factor 
receptor (EGFR) cysteine residues C797/C798 induces endocytosis of 
the Na+/K+-ATPase, resulting in loss of function of the Na+/K+-ATPase 
in renal tubular epithelial cells [64]. Through these mechanisms, H2S 
induces water and sodium excretion in rats, decreasing blood pressure 
[64]. Further, persulfidation of the angiotensin II receptor, AT1R, by 
NaHS or L-cysteine attenuates hypertension in angiotensin II-induced 
hypertensive mice [82]. Thus, protein persulfidation induced by H2S 
influences protein activity, but can also modulate gene expression by 
affecting protein-protein interactions and expression of miRNAs. The net 
effect of these layers of signaling are unclear, but are imperative in 
maintaining redox homeostasis as well as regulation of renal sodium 
handling and blood pressure. 

2.6.5. H2S maintain scellular homeostasis upon proteotoxic stress by 
modulating autophagy 

Misfolded proteins are potentially toxic through ER stress and 
excessive cell death, as is the case in acute kidney injury [83]. Damaged 
organelles and misfolded proteins are cleared by (macro)autophagy, 
which is modulated by H2S. Exogenous H2S (NaHS) inhibits autophagy 
in neonatal rat cardiomyocytes in an in vitro hypoxia-reoxygenation 
(HR) model, via PI3K/GSK3β signaling [84] and also in hepatocellular 
carcinoma (HCC) cells, as illustrated by downregulation of genes in the 
PI3K/AKT/mTOR pathway[85]. In contrast, in a rat model of 
ischemia-reperfusion (IR), NaHS addition upregulates genes in the 
AMPK/mTOR pathway, thereby promoting autophagy and protecting 
against IR injury [85,86]. It is conceivable that under normal circum-
stances, H2S signaling keeps the rate of autophagy within physiological 
bounds, while under the circumstances of severe proteotoxic stress, H2S 
can highly increase autophagic flux. By protecting cells from IR injury 
via modulating autophagy, H2S signaling attenuates kidney injury after 
IR. 

2.6.6. H2S attenuates proteotoxic stress through protein persulfidation 
The endoplasmic reticulum (ER) is indispensable for synthesis, 

folding, post-translational modification and transport of proteins, and is 
the first line of defense in protein folding defects [87]. In addition to 
regulating autophagy, H2S can both induce and inhibit proteasomal 
degradation of proteins to attenuateproteotoxic stress in response to a 
sustained unfolded protein response (UPR). The proteasome selectively 
degrades misfolded, ubiquitin-tagged proteins, with Nrf2 as a regulator 
of the UPR [88,89]. Treatment with Na2S partly rescues 
ischemia-induced heart failure in wild type mice, but not in mice lacking 
Nrf2. Presumably, effects of Na2S are mediated by inducing trans-
location of Nrf2 after persulfidation of Keap1, as described above [76]. 
Thus, H2S enhances cardiac proteasome activity and thereby attenuates 
ER stress with cytoprotective effects [90]. On the other hand, in human 
umbilical vein endothelial cells (HUVECs), H2S prevents the proteaso-
mal degradation of eNOS via persulfidation of eNOS [91]. Notably, 
proteotoxic stress upregulates CSE at low concentrations of doxorubicin 
and H2O2 in H9c2 myoblasts, while the expression of CSE decreases 
upon exposure to higher concentrations of doxorubicin and H2O2. 
Addition of NaHS, but also N-acetylcysteine (NAC), rescues cell viability 
and diminishes ROS accumulation through rescuing CSE expression and 
H2S production [92]. In line with these results, addition of NaHS 
reduced proteotoxic stress induced by formaldehyde in PC12 cells, but 
also in nucleus pulposus (NP) cells challenged with IL-1β [93]. Thus, H2S 
is both capable of enhancing the entire proteasomal degradation system, 
but at the same time prevents specific proteins from being degraded by 
the very same proteasomal degradation system. Next to modulation 

Fig. 2. PTP1B persulfidation attenuates ER stress. In endoplasmic reticulum 
stress, a condition caused by accumulation of mis- or unfolded proteins, protein 
kinase R-like endoplasmic reticulum kinase (PERK) is phosphorylated. This 
renders protein tyrosine phosphatase 1B (PTP1B) active, which contributes to 
ER stress. PERK phosphorylation also leads to translocation of the transcription 
factor Activating transcription factor 4 (ATF4), which enhances expression of 
CSE. CSE then produces H2S, which persulfidate active PTP1B at Cys215, 
rendering it inactive and attenuating ER stress. 
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autophagy and proteasome activity, H2S reduces proteotoxic stress by 
upregulation protective signaling routes by persulfidation of specific 
transcription factors. 

2.6.7. H2S attenuates proteotoxic stress by persulfidation of epigenetic 
modifiers and transcription factors 

Addition of NaHS reduces proteotoxic stress and rescues cell viability 
presumably through upregulation of silent mating type information 
regulator 2 homolog 1 (SIRT-1) [94]. Increased activity of SIRT-1 can 
occur through persulfidation [95]. An alternative explanation for the 
increase in SIRT-1 activity is modification of a transcriptional regulator 
of SIRT-1. As such, persulfidation of NF-κβ, an upstream transcriptional 
regulator of SIRT-1 [96] leads to increased transcriptional activity of 
NF-κβ and thereby SIRT-1 [97]. Additionally, H2S activates PI3K/Akt, 
ERK1/2 and ATF4 pathways, for example through persulfidation of 
proteins in these pathways, which reducesER stress (Fig. 2) [98,99]. 
Recent studies show that persulfidation of SIRT1 and thereby decreasing 
its deacetylation activity plays a major role in regulation of its epigenetic 
function [95]. Thus, H2S plays an important role in regulating ER 
function by modulating proteasome activity and inducing protective 
pathways upon proteotoxic stress by persulfidation of upstream tran-
scription factors and epigenetic modifiers. 

Whether H2S alleviates proteotoxic stress by H2S within ER or 
through other mediators is not precisely known yet. However, results 
obtained in HeLa cells, mouse liver and zebrafish using an ER-targeted 
H2S probe, reveal specific localization of H2S to ER [100]. It remains 
to be studied whether local levels of H2S within ER are regulated by 
specific modulation substrate availability or translocation of H2S-pro-
ducing enzymes into the ER. Interestingly, the different H2S-producing 
enzymes seem to fulfill different roles in alleviating proteotoxic stress. 
During thapsigargin-induced ER stress in HEK293 cells, the generation 
of carbon monoxide (CO) inhibits CBS by binding to its heme group, 
which lowers cystathionine production. As cystathionine is an inhibitor 
of CSE function, its depletion causes CSE to produce more H2S to 

attenuate proteotoxic stress [101]. Collectively, this evidence suggests 
that H2S is a potent modulator of proteotoxic stress through selective 
modulation of the proteasome and corresponding protein cysteine res-
idues via persulfidation, leading to upregulation of protective signaling 
routes. 

2.6.8. H2S attenuates kidney injury through maintaining mitochondrial 
function 

Maintaining ATP production during IR or in AKI is crucial for renal 
function and recovery. Most ATP is produced by oxidative phosphory-
lation in mitochondria, with substrates derived from the citric acid cycle 
to fuel the electron transport chain. Alternatively, H2S can also serve as 
an electron donor in oxidative phosphorylation. Goubern et al. [102] 
revealed that H2S is a substrate of oxidative phosphorylation at nano-
molar concentrations. CBS, CSE and 3-MST either reside in the mito-
chondrion or can translocate there under specific conditions, to 
contribute to ATP production directly [103]. As such, hypoxia triggers 
CBS translocation to mitochondria [22,104]. Mitochondrial CBS levels 
increase 6-fold within 1 h of hypoxia [22]. Another consequence of 
hypoxia is suppression of oxygen-dependent mitochondrial catabolism 
(e.g. CoQ-dependent SQR activity) of H2S that leads to accumulation of 
H2S in cells. This observation was recently demonstrated by using mass 
spectrometry based H2S-selective chemical probes in ischemic animal 
tissue and in the organ preservation model system [105] as well as by 
using H2S-sensitive fluorescent sensor in anoxic cell culture [106]. 

In hypoxia both CSE and CBS activity are associated with elevated 
ATP production [104,107]. Blockade of CBS or CSE by AOAA/shRNA or 
PPG, respectively, abrogates the effects of these enzymes on ATP pro-
duction [107,108]. Stimulating 3-MST function by adding its substrate 
3-mercaptopyruvate, increases intramitochondrial H2S levels and stim-
ulates the production of ATP [29]. Apart from electron donation of H2S, 
persulfidation of ATP synthase and GAPDH increases their activity, 
thereby stimulating ATP production. Mice lacking CSE have profoundly 
lowered levels of ATP synthase and GADPH persulfides, associated with 

Fig. 3. Renal H2S signaling can be cyto-
protective. Spatiotemporal H2S anabolism 
is regulated by local pH, enzyme optima 
(table inset), enzyme localization and sub-
strate availability. H2S metabolites such as 
sulfane sulfur or acid-labile pools can 
reversibly contribute to H2S production and 
signaling. H2S signaling regulates renal 
blood pressure via interaction with NO 
signaling, and systemic blood pressure by 
regulating gene expression of components of 
the renin-angiotensin system. ROS species 
are directly and indirectly (via glutathione 
and others) scavenged by H2S. At low con-
centrations H2S is an alternative electron 
donor for oxidative phosphorylation, main-
taining ATP production in hypoxic condi-
tions. Further, cysteine persulfidation by 
H2S modulates protein activity, localization, 
protein-protein interactions, transcription 
factor activity and protects cysteine moieties 
from detrimental post-translational modifi-
cations. During proteotoxic stress, H2S acti-
vates the UPR, modulates autophagic flux 
and proteasome activity. Thereby renal H2S 
signaling is cytoprotective, and contributes 
to renal functioning. AL-H2S: acid-labile 
H2S, OxPhos: oxidative phosphorylation, 
RAS axis: renin-angiotensin system axis, TF 
activity: transcription factor activity, TRX: 
thioredoxin, UPR: unfolded protein 

response. Synthesizing enzymes are shown if known, bolder characters indicate more experimental evidence. When no enzyme is mentioned, studies were performed 
with H2S donors or the producing enzyme is simply not known. Figure created with BioRender.com.   
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reduced ATP production [74,103]. Thus, H2S can stimulate ATP pro-
duction by donating electrons and by persulfidation of enzymes 
involved in mitochondrial ATP production. Furthermore, H2S reduces 
cytochrome c very efficiently to stimulate the electron flow through the 
respiratory chain [106]. The same study shows that both endogenous 
and exogenously applied H2S were able to induce cytochrome c 
dependent protein persulfidation that suppresses the apoptotic response 
by persulfidation of catalytically active cysteine residue of caspase-9 and 
inhibiting its pro-apoptotic function. In contrast to low levels of 
endogenous H2S, administration of exogenous H2S profoundly reduce 
mitochondrial function by inhibiting cytochrome c oxidase (complex IV) 
through binding to ferric iron (Fe3+), thereby halting aerobic ATP 
generation at alveolar concentrations of >100 ppm [2]. Presumably 
through this mechanism, exposure to a concentration of 80 ppm H2S can 
(reversibly) suppress metabolic rate and thereby toxicity in mice[109]. 

Together, while low levels of (endogenous) H2S can stimulate ATP 
production by donating electrons to the electron transport chain and 
modulating enzymatic activity, high levels of (exogenous) H2S may 
exert toxic effects by inhibiting cytochrome c oxidase. Thus, H2S 
maintains ATP production, crucial for renal function after kidney injury. 

2.6.9. H2S stimulates antioxidant production, which dampens ROS-induced 
inflammation 

Upon metabolic stress, H2S can overcome the deleterious effects of 
mitochondrial dysfunction by stimulating ATP production and exerting 
anti-oxidant effects by scavenging free radicals, protecting protein res-
idues from being oxidized through persulfidation, and upregulating anti- 
oxidant mechanisms. The oxidative stress induced by H2O2 in Xenopus 
laevis kidney epithelial cells, was abolished by (pre)treatment with 
NaHS [110]. While H2S directly scavenges free radicals - for example 
peroxynitrite - to form sulfinyl nitrite (HSNO2), H2S also upregulates 
important anti-oxidant mechanisms including glutathione, a major 
antioxidant [111]. H2S reduces extracellular cysteine to cystine, fol-
lowed by cellular uptake by the cystine/glutamate antiporter [34]. 
Further, H2S enhances the activity of γ-glutamyl cysteine synthetase 
(γ-GCS), one of the two enzymes required to produce glutathione [112, 
113]. The mechanism by which H2S affects the γ-GCS activity is not 
entirely clear, however, γ-GCS expression and protein levels are not 
affected by H2S and likely, post-translation modification by persulfida-
tion accounts for the higher γ-GCS activity upon H2S stimulation. Next to 
scavenging free radicals and upregulating glutathione levels, H2S exerts 
its protective effects through induction of the antioxidant stress response 
via Nrf2 [114]. Hence, in addition to stimulating ATP production, H2S 
alleviates the damaging effects of mitochondrial dysfunction by reduc-
tion of oxidative stress. 

The effects of H2S on mitochondrial function may explain its pro-
tective effects against renal IR injury, thereby dampening inflammation 
and reducing structural damage induced by IR [115]. Mice lacking CSE 
are more prone to acute kidney injury induced by IR, associated with a 
reduced survival [18]. Expression of inflammatory genes and the release 
of cytokines are reduced through increased persulfidation of transcrip-
tion factors such as NF-κβ in renal IR. Therefore, H2S acts as an anti-
oxidant through increasing antioxidant glutathione levels and 
upregulation of the antioxidant stress response. Interestingly, a recent 
study has demonstrated opposite, pro-inflammatory CSE-dependent ef-
fects in a mouse model of acute ischemic kidney injury. Here, decreased 
cellular damage and reduced levels of pro-inflammatory interleukins 
and cytokines were observed in CSE− /- mice [116]. The observed dif-
ference in experimental results between similar studies may be partly 
explained by the difference in the genetic background of the animal 
species and their corresponding phenotypes. 

Finally, oxidative stress not only affects cellular homeostasis and cell 
survival, it also affects renal sodium handling by oxidizing phosphatase 
and tensin homolog (PTEN), thereby augmenting activity of the 
epithelial sodium channel (ENaC), which facilitates Na+ absorption 
[117]. The effect of oxidative stress on ENaC is abolished by 

pretreatment with NaHS [117], potentially by protecting PTEN against 
oxidation by persulfidating the protein, similar to how H2S-mediated 
persulfidation can prevent S-nitrosylation-induced loss of PTEN enzy-
matic function [118]. Together, precluding mitochondrial dysfunction 
(i.e. stimulating ATP generation and lowering oxidative stress) pre-
cludes kidney dysfunction and damage induced by oxidative stress. 

3. Conclusion 

The production of H2S is tightly controlled, both quantitatively as 
well as spatially by catabolic and anabolic processes. Factors such as 
substrate availability, protein abundance, local pH and storage capacity 
control H2S anabolism, while oxygen concentration, enzymatic and non- 
enzymatic mechanisms control H2S catabolism. H2S metabolites, such as 
H2S bound as sulfane sulfur or acid-labile pools of H2S can still exert 
signaling functions. H2S affects renal blood flow by affecting NO levels 
and thereby, vascular function, as well as regulation of expression of 
genes responsible for local and systemic blood pressure and sodium 
excretion. Regulation of protein production and proteotoxic stress is 
achieved through modulation of autophagic flux, proteasome activity, 
clearance of aggregated proteins and the UPR via H2S signaling, which is 
relevant to attenuate AKI. H2S is an important antioxidant by directly 
scavenging free radicals, but moreover, it enhances the cellular antiox-
idant response by serving as a substrate for glutathione production. By 
forming protein persulfides, H2S modulates enzymatic activity, but also 
transcription factor activity by affecting protein-protein interactions in 
the cytosol, which induces translocation of the transcription factor to the 
nucleus. Under hypoxic conditions, H2S maintains ATP synthesis by 
acting as an alternative electron donor. Given the protective effects of 
H2S upon metabolic stress in the kidney, pharmacological targets of H2S 
may be exploited to treat hypertension, or avert damage during acute 
kidney injury, occurring during for example ischemia/reperfusion, renal 
transplantation or sepsis. 
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[50] D. Ezeriņa, Y. Takano, K. Hanaoka, Y. Urano, T.P. Dick, N-acetyl cysteine 
functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane 
sulfur production, Cell Chem. Biol. 25 (2018) 447–459, e4. 

[51] Yuki Ogasawara, Kazuyuki Ishii, Tadayasu Togawa, S. Tanabe, Determination of 
bound sulfur in serum by gas dialysis/high-performance liquid chromatogaphy, 
Anal. Biochem. (1993) 73–81. 

[52] M.R. Hellmich, C. Szabo, Chemistry, Biochemistry and Pharmacology of 
Hydrogen Sulfide 230 (2015) 233–241. 

[53] W. Guo, et al., Hydrogen sulfide as an endogenous modulator in mitochondria 
and mitochondria dysfunction, Oxid. Med. Cell. Longev. (2012), https://doi.org/ 
10.1155/2012/878052. 

[54] G. Yang, et al., H2S as a physiologic vasorelaxant: hypertension in mice with 
deletion of cystathionine γ-lyase, Science 322 (2008) 587–590. 

[55] N. Shibuya, Y. Mikami, Y. Kimura, N. Nagahara, Vascular endothelium expresses 
3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide 146 (2009) 
623–626. 

[56] S. Saha, et al., Cystathionine β-synthase regulates endothelial function via protein 
S-sulfhydration, Faseb. J. 30 (2016) 441–456. 

[57] C.M. Klingerman, N. Trushin, B. Prokopczyk, P. Haouzi, H2S concentrations in 
the arterial blood during H2S administration in relation to its toxicity and effects 
on breathing, Am. J. Physiol. Regul. Integr. Comp. Physiol. 305 (2013) 
R630–R638. 

[58] E.A. Peter, et al., Plasma free H 2 S levels are elevated in patients with 
cardiovascular disease, J. Am. Heart Assoc. 2 (2013), e000387. 

[59] S. Materazzi, et al., Vasodilator activity of hydrogen sulfide (H2S) in human 
mesenteric arteries, Microvasc. Res. (2017), https://doi.org/10.1016/j. 
mvr.2016.11.001. 

[60] R. Hosoki, N. Matsuki, H. Kimura, The possible role of hydrogen sulfide as an 
endogenous smooth muscle relaxant in synergy with nitric oxide, Biochem. 
Biophys. Res. Commun. (1997), https://doi.org/10.1006/bbrc.1997.6878. 
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