

Review Article

Hepatocyte growth factor/MET in cancer progression and biomarker discovery

Kunio Matsumoto,1 Masataka Umitsu,2 Dinuka M. De Silva,3 Arpita Roy3 and Donald P. Bottaro3

¹Division of Tumor Dynamics, Cancer Research Institute, Kanazawa University, Kanazawa; ²Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan; ³Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland,

Key words

Biomarker, drug resistance, HGF, MET, receptor tyrosine kinase

Correspondence

Donald P. Bottaro, Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10 CRC Room 2-3952, 10 Center Drive MSC 1107, Bethesda, Maryland 20892-1107. USA.

Tel: +1-301-402-6499; Fax: +1-301-402-0922;

E-mail: don.bottaro@nih.gov

and

Kunio Matsumoto, Division of Tumor Dynamics, Cancer Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan. Tel.: +81-76-264-6745;

Fax: +81-234-4513;

E-mail: kmatsu@staff.kanazawa-u.ac.jp

Funding Information

Japan Society for the Promotion of Science (15K14473); Japan Agency for Medical Research and Development; US National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Received November 25, 2016; Revised December 26, 2016; Accepted January 3, 2017

Cancer Sci 108 (2017) 296-307

doi: 10.1111/cas.13156

Signaling driven by hepatocyte growth factor (HGF) and MET receptor facilitates conspicuous biological responses such as epithelial cell migration, 3-D morphogenesis, and survival. The dynamic migration and promotion of cell survival induced by MET activation are bases for invasion-metastasis and resistance, respectively, against targeted drugs in cancers. Recent studies indicated that MET in tumor-derived exosomes facilitates metastatic niche formation and metastasis in malignant melanoma. In lung cancer, gene amplification-induced MET activation and ligand-dependent MET activation in an autocrine/paracrine manner are causes for resistance to epidermal growth factor receptor tyrosine kinase inhibitors and anaplastic lymphoma kinase inhibitors. Hepatocyte growth factor secreted in the tumor microenvironment contributes to the innate and acquired resistance to RAF inhibitors. Changes in serum/plasma HGF, soluble MET (sMET), and phospho-MET have been confirmed to be associated with disease progression, metastasis, therapy response, and survival. Higher serum/plasma HGF levels are associated with therapy resistance and/or metastasis, while lower HGF levels are associated with progression-free survival and overall survival after treatment with targeted drugs in lung cancer, gastric cancer, colon cancer, and malignant melanoma. Urinary sMET levels in patients with bladder cancer are higher than those in patients without bladder cancer and associated with disease progression. Some of the multi-kinase inhibitors that target MET have received regulatory approval, whereas none of the selective HGF-MET inhibitors have shown efficacy in phase III clinical trials. Validation of the HGF-MET pathway as a critical driver in cancer development/progression and utilization of appropriate biomarkers are key to development and approval of HGF-MET inhibitors for clinical use.

The *MET* oncogene was first isolated on the basis of its transforming activity, caused by a fusion of genes composed of the translocated promoter region (TPR) locus on chromosome 1 and MET sequence on chromosome 7 (TPR-MET). Isolation of the full-length MET proto-oncogene sequence revealed that it encoded a transmembrane receptor tyrosine kinase (TK). MET was thereafter identified as the receptor for hepatocyte growth factor (HGF). Hepatocyte growth factor was identified and cloned as a mitogenic protein for hepatocytes, while subsequent studies indicated that it was the same as scatter factor, an epithelial cell motility factor derived from fibroblasts and mesenchymal cells.

Conspicuous responses that are driven by the HGF-MET receptor pathway are dynamic 3-D morphogenesis and survival of cells. The induction of epithelial branching tubulogenesis in a 3-D collagen matrix by HGF had particular impact, because HGF was the first bioactive molecule to induce epithelial tubulogenesis. (9) Impairment in the hepatic progenitor cell survival

and the migration of myogenic precursor cells seen in *MET* knockout mice indicate potent actions of HGF in dynamic migration and promotion of cell survival. (10) It was easy to speculate that the dynamic migration induced by HGF could also contribute critically to the biological basis of invasion and metastasis in tumor tissues. Meanwhile, involvement of the HGF-MET pathway in acquisition of a resistant phenotype against molecular targeted drugs was elucidated. (11,12) The potent action of HGF to promote cell survival is a prevalent biological basis for drug resistance in cancers.

Both HGF and MET are targets in anticancer drug discovery. (13) More than 10 different HGF-MET inhibitors entered into clinical trials, many of which were completed with unsatisfactory results. Recently, previously overlooked mutations in *MET*, resulting in deletions in the cytoplasmic juxtamembrane (JM) domain, have been found to be potential oncoprotein in non-small-cell lung cancer (NSCLC). Clinical studies have indicated favorable responses to MET inhibitors in patients

with this variant MET. (14,15) We describe here recent progress in HGF-MET research on tumor biology and biomarker discovery.

Structures and Regulation of HGF-MET

The mature form of MET is composed of a 50-kDa β-chain and 145-kDa α-chain (Fig. 1a). The extracellular region is composed of SEMA, plexin-semaphorin-integrin (PSI), and immunoglobulin-like fold-plexin-transcription factor (IPT) 1-IPT4 domains. The intracellular region contains JM and TK domains. The binding of HGF to MET induces MET clustering and phosphorylation of Y1234 and Y1235, followed by phosphorylation of Y1349 and Y1356 in the carboxyl terminal region, to which adaptor molecules associate and transmit signals downstream. (7,8,f3) Hepatocyte growth factor is secreted as a single-chain precursor (pro-HGF) and extracellular processing into a two-chain mature HGF is coupled to the activation of HGF (Fig. 1b). Hepatocyte growth factor-activator and matriptase are the main proteases responsible for the processing of HGF. (16) Hepatocyte growth factor binds to MET through two interfaces: the NK1 (N-terminal and first kringle domains) binds with high affinity whereas the β-chain binds with low affinity. The structure of the complex between the β-chain of HGF and the SEMA-PSI domains of MET were revealed by crystallographic analysis (Fig. 1c). (17) The activation of MET receptor by bivalent MET-binding macrocyclic peptides indicate that stable dimerization of MET with ligands of appropriate length provides a fundamental structural basis for activation of MET. (18)

The JM domain, which is composed of 47 highly conserved amino acids, contains two protein phosphorylation sites and acts as a negative regulator in terms of MET-dependent signal transduction. One is Y1003 phosphorylation and the other is S985 phosphorylation. The CBL ubiquitin ligase binds phosphorylated Y1003, and this CBL binding results in MET ubiquitination, endocytosis, and degradation. The CBL-mediated degradation of activated MET provides a mechanism that either attenuates or terminates MET-mediated signaling. Ser985 is phosphorylated by protein kinase-C and is dephosphorylated by protein phosphatase-2A. When MET-S985 is phosphorylated, HGF-induced MET activation and subsequent biological responses are suppressed.

Metastasis and Tumor Microenvironment

A definitive role of stromal fibroblasts in invasion of cancer cells into 3-D collagen was first noted using human oral squamous cell carcinoma cells, (21) and subsequent study indicated neutralization of HGF inhibited 3-D invasion induced by stromal fibroblasts. Independently, induction of invasiveness into collagen by HGF/scatter factor was noted during characterization of scatter factor. (6) These early studies showed the importance of HGF as a fibroblast-derived factor that facilitates the aggressive invasion of cancer cells.

The metastatic tumor microenvironment (premetastatic/metastatic niche) emerged as an important player in metastatic colonization and growth. A variety of stromal cells, such as macrophages, inflammatory cells, endothelial cells, and cancerassociated fibroblasts contribute to the formation of the metastatic microenvironment. (22) Growth factors play promoting roles in forming the metastatic microenvironment. Hepatocyte growth factor functions as a stromal cell-derived factor that strongly influences cancer cell invasiveness in the tumor

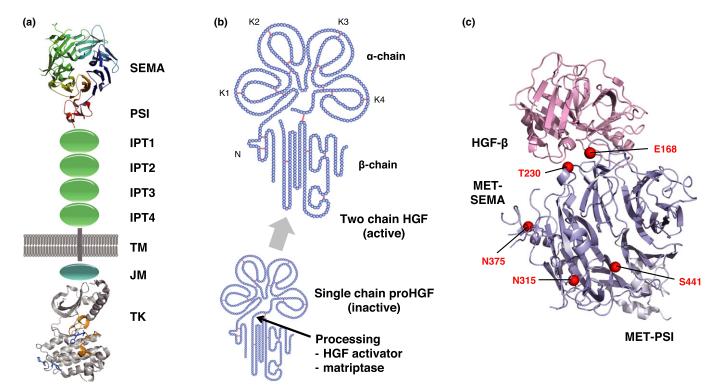
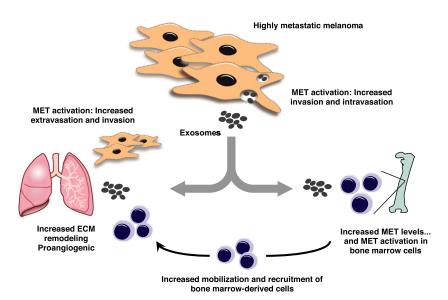



Fig. 1. Structures of MET (a), hepatocyte growth factor (HGF) (b), and the complex between the β -chain of HGF and SEMA and plexin-semaphorin-integrin (PSI) domains of MET (c). In (a), tyrosine residues (Y1234, Y1235, Y1349, and Y1356) phosphorylated following HGF stimulation in the tyrosine kinase (TK) domain are shown in blue. In (c), positions of missense mutations found in cancer patients are indicated by red balls. The image of PDB ID 1SHY (Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C. Crystal structure of the HGF β -chain in complex with the Sema domain of the Met receptor. EMBO J. 23: 2325, 2004) was created with PyMOL.

Fig. 2. Outline of the mechanism for metastasis promoted by the hepatocyte growth factor (HGF)-MET pathway and tumor-derived exosomes in advanced metastatic melanoma. Peinado *et al.* showed that tumor-derived exosomes from advanced metastatic melanoma contained high levels of MET, and the exosomes induced an increase in the phosphorylated/activated MET in bone marrow-derived cells, thereby resulting in a mobilization of the bone marrow-derived cells to the lungs and lymph nodes, where they initiated metastatic niche formation. (28) Collectively, HGF facilitates local invasion, extravasation, and intravasation, and MET in exosomes facilitates angiogenesis and metastatic niche formation.

microenvironment. Selective inhibition of the HGF-MET pathway suppressed metastasis in experimental models. (7,8,13)

A recent topic in cancer metastasis is the involvement of exosomes in metastasis. (23) MET in exosomes promotes metastatic microenvironment formation in metastatic melanoma (Fig. 2). (23) The exosomes from highly metastatic mouse and human melanoma cells contained high levels of MET, and exosomes in circulation localized to sites of metastatic tissues and increased vascular permeability, which promotes the migration of tumor cells. The exosomes also increased activated MET in bone marrow-derived cells, thereby being reprogrammed to a proangiogenic phenotype, and the bone marrow-derived cells mobilized to lungs where they could aid angiogenesis, invasion, and metastasis. Administration of exosomes that contained high levels of MET facilitated metastasis of melanoma cells with lower metastatic ability. (24)

Drug Resistance

The tumor microenvironment participates not only in cancer metastasis but also resistance to molecular-targeted drugs. Stromal cells influenced the sensitivity to anticancer drugs, and proteomic analysis revealed that stromal cell-derived HGF is a predominant factor that confers resistance to molecular-targeted drugs such as RAF inhibitor. The biochemical basis as to how HGF so potently promotes survival as well as cell motility might relate to the adaptor protein GRB2-associated binding protein 1 (GAB1). The GAB1 protein has a unique recognition structure "MET-binding domain" that mediates its binding to phosphorylated MET. Indeed, phenotypes in MET^{-/-} and GAB1^{-/-} mice showed extensive similarities.

Non-small-cell lung cancer patients developed acquired resistance to epidermal growth factor receptor (EGFR) TK inhibitors (TKIs) within a few years, and 20–25% of the patients showed intrinsic resistance to EGFR-TKIs. As an acquired resistance mechanism, the T790M second mutation in EGFR occurs in approximately half of all patients. (28) As a bypass pathway, MET activation caused by *MET* gene amplification (11) and HGF-dependent MET activation (12) have been noted as mechanisms by which NSCLC acquires resistance to EGFR-TKIs. *MET* gene amplification was detected in 5–10% of patients with acquired resistance to EGFR-TKIs, and overexpression of HGF was seen in approximately 61%

and 29% of patients with acquired and intrinsic resistance, respectively. (29)

After the discovery of *EML4-ALK* as a driver oncogene in patients with NSCLC, (30) alectinib was developed as a selective anaplastic lymphoma kinase (ALK) TKI. (31) Based on its high objective response rate, long median progression-free survival, and favorable toxicity profile, alectinib has been approved in Japan and the USA. However, patients eventually acquire resistance to alectinib. Among several different mechanisms, alectinib-resistant EML4-ALK-positive NSCLC cells can acquire the ability to express HGF and the ensuing autocrine activation of MET caused by cancer cell-derived HGF confers acquired resistance to alectinib. (32) Collectively, the expression of HGF in cancer cells and/or stromal cells in the tumor microenvironment participates in the resistance to EGFR and ALK TKIs.

MET Mutations

The tight association between MET mutation and cancer development was first reported in hereditary and sporadic forms of papillary renal cell carcinoma. (33) Germline and somatic missense mutations (M1131T, V1188L, L1195V, V1220I, D1228N/H, Y1230C/H, M1250T/I) located in the TK domain of MET are found in papillary renal carcinomas (Fig. 3), and these are likely to be gain-of-function mutations. Missense mutations have been found in childhood hepatocellular carcinoma, head and neck squamous cell carcinoma, ovarian cancer, and small-cell lung cancer. (34)

The JM-deleted MET generated by exon 14 skipping (MET-Δexon14) due to intronic mutations was noted in NSCLC cancer tissues and cells. The expression of MET-Δexon14 in cells resulted in the loss of association with the CBL E3 ubiquitin ligase, decreased ubiquitination and prolonged activation of signaling molecules. Considering the notion that MET-Y1003 phosphorylation in the JM domain provides CBL-binding for ubiquitination, MET-Δexon14 variant may have a longer lifespan in terms of protein stability and signaling.

Another mutant variant of MET with deleted extracellular IPT domains was found in approximately 6% of high-grade gliomas. (36) The mutation is caused by intronic mutations and the skipping of exon 7 (encoding a part of IPT1) and exon 8 (encoding a part of IPT2) generates a single pseudo-IPT domain. This MET exon 7–8 skipping variant is mainly

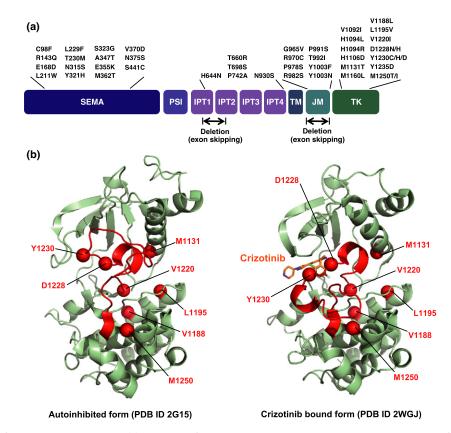


Fig. 3. MET mutations found in cancer patients. (a) Positions of missense and deletion mutations in each domain of MET. The deletion mutations in extracellular immunoglobulin-like fold–plexin–transcription factor (IPT) domains and the intracellular juxtamembrane (JM) domain are caused by exon skipping. (43–45) (b) Crystal structures of MET tyrosine kinase (TK) domain and positions of missense activating mutations found in patients with papillary renal cell carcinoma. Amino acids changed by missense mutations are indicated by red balls. The autoinhibited form (left panel, PDB ID 2G15) and crizotinib (a dual inhibitor for anaplastic lymphoma kinase and MET) bound form (right panel, PDB ID 2WGJ) are shown. The structural change of the activation loop (A1221–K1248, colored red) occurs following Y1234/Y1235 phosphorylation and upregulates enzymatic activity. The images of PDB ID 2G15 (left) (Wang W, Marimuthu A, Tsai J, Kumar A, Krupka HI, Zhang C, Powell B, Suzuki Y, Nguyen H, Tabrizizad M, Luu C, West BL. Structural characterization of autoinhibited c-Met kinase produced by coexpression in bacteria with phosphatase. Proc Natl Acad Sci USA. 103: 3563-3568, 2006) and PDB ID 2WGJ (right) (Cui JJ, Tran-Dubé M, Shen H, Nambu M, Kung PP, Pairish M, Jia L, Meng J, Funk L, Botrous I, McTigue M, Grodsky N, Ryan K, Padrique E, Alton G, Timofeevski S, Yamazaki S, Li Q, Zou H, Christensen J, Mrocz-kowski B, Bender S, Kania RS, Edwards MP. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 54: 6342-6363, 2011) were created with PyMOL.

present as an unprocessed single chain form and located in the cytoplasm, suggesting an impairment in biosynthetic processing and subsequent translocation to the cell membrane. Missense mutations in MET have been found in a variety of cancers, and the positions of mutational changes are located not only in the intracellular domains, but also extracellular regions (Figs 1C,3A). The significance of these extracellular mutations is unknown.

Discovery of HGF/MET as Biomarkers

Collectively, HGF and sMET in blood, tissues, and/or urine are associated with changes in tumor characteristics and therapeutic responses in several types of tumors, indicating the significance of HGF, sMET, and related molecules as possible biomarkers for evaluation of tumor characteristics and therapeutic responses (Table 1). A substantial number of reports have documented increased circulating levels of HGF in a wide spectrum of cancers, and robust and sensitive immunoassays of soluble HGF protein have become widely available. Inflammatory mediators, including interleukin-1 α (IL-1 α), IL-1 β , tumor necrosis factor- α , and prostaglandin E₂ increase gene expression of HGF in stromal cells.⁽³⁷⁾ Because these

inflammatory mediators are increased in the tumor microenvironment and contribute to a drug-resistant and/or metastatic tumor microenvironment, it is likely that these inflammatory mediators participate in upregulation of HGF in tumors.

MET gene amplification and/or protein overexpression also frequently occur in cancer, which has accelerated investigations into MET gene copy number in tumors or by circulating soluble DNA, as well as MET protein content and phosphorylation (activation) state in tumor samples using a variety of approaches. Technical difficulties associated with the lability of MET and phospho-MET in formalin-fixed, paraffinembedded samples have hindered the development of clinically validated assays for use with archival tumor specimens, but recently reported assays for use with flash-frozen biopsy samples have provided reliable alternatives. (38) Athauda et al. (39) developed two-site electrochemiluminescent immunoassays of MET in flash-frozen samples and sMET ectodomain for plasma, serum, and urine samples, later adapting the assay to detect phospho-MET. (40) Efforts along these lines have identified specific contexts in which HGF/MET signaling contributes to cancer, and for some cancers, may help identify those patients in whom pathway inhibition is likely to have therapeutic benefit.

Table 1. Changes in serum/plasma/tissue hepatocyte growth factor (HGF) levels, soluble MET, and MET expression/phosphorylation in tumors

Tumor type	Subtype, specification	Marker type	Changes and significance as biomarkers	References	
Gastric cancer	Resection	Serum HGF	Higher preoperative HGF levels than the control group (391 vs 193 pg/mL)	41	
	Response to trastuzumab	Serum HGF	Lower HGF levels in the responsive group (PR+SD) than in those with PD. Association between high HGF levels with worse OS	42	
	<i>Helicobacter</i> <i>pylori-</i> infected	Plasma sMET	Lower sMET levels compared to matched controls (1.390 vs 1.610 ng/mL)	43	
	Resection	Serum sMET, tissue MET, serum and tissue HGF	Association between advanced progression and preoperative serum HGF. Correlation of tissue MET with lymphatic vessel invasion, lymph node metastasis, maximum tumor diameter, and OS. No correlation between serum HGF and tissue HGF or MET content	42	
Lung cancer	Small-cell lung cancer	Serum HGF	Higher HGF levels compared to healthy individuals (1886 pg/mL vs 1131 pg/mL). Association between higher HGF levels and worse PFS and liver metastases. Increased HGF levels at progression after two to three cycles of chemotherapy. Longer OS in patients with decreased HGF levels at response time from baseline levels than patients with increased levels. Shorter OS in patients with higher HGF levels than those with lower HGF levels. Association with tumor epithelial—mesenchymal transition markers in patients with high HGF levels (>median)	44	
	Small-cell lung cancer	Serum HGF	Higher HGF levels compared to and healthy subjects. No difference with cancer stage	45	
	Small-cell lung cancer	Tissue MET, tissue pMET	MET overexpression and increased pMET in 54% and 43% patients, respectively. Correlation between pMET status and OS	46	
	Lung adenocarcinoma	Tissue HGF	High HGF immunoreactivity in patients with acquired gefitinib resistance in the absence of T790M EGFR mutation and <i>MET</i> gene amplification. Low HGF immunoreactivity in majority of responders to gefitinib	12	
	Lung adenocarcinoma	Plasma HGF	High HGF levels in 13% of patients resistant to EGFR-TKI without detectable T790M circulating DNA. High HGF levels in 25% of patients resistant to EGFR-TKI with detectable T790M circulating DNA	47	
	Lung adenocarcinoma	Plasma HGF	Higher HGF levels than normal and pretreatment with EGFR-TKI. Increase after administration of EGFR-TKI. Higher HGF levels in patients with PD compared to PR and SD (724.1 \pm 216.4 pg/mL vs 381.7 \pm 179.0 pg/mL and 396.5 \pm 148.3 pg/mL, respectively)	48	
	Lung adenocarcinoma	Plasma HGF	Higher HGF levels in gefitinib non-responders than in responders. Association between low HGF levels and longer RFS and OS independent of EGFR mutation status	49	
	Lung adenocarcinoma	Plasma sMET, tissue MET	Association between sMET and tissue MET expression level. Decrease in sMET levels after surgical resection to levels close to those in disease-free volunteers	50	
	Lung adenocarcinoma	Plasma sMET, tissue MET	Association between sMET levels and tissue MET expression levels in advanced patients. Association between high sMET levels and poor OS (9.5 vs 22.2 months)	51	

Table 1 (Continued)

Tumor type	Subtype, specification	Marker type	Changes and significance as biomarkers	Reference
Breast cancer	Stage II/III	Serum HGF	Higher HGF levels in CR or PR in patients treated with neoadjuvant chemotherapy doxorubicin and docetaxel. Longer RFS in patients with highest HGF levels when HGF levels were divided into four groups	52
		Tissue HGF	Association between high tissue HGF levels and lymph node metastasis. Higher sensitivity to chemotherapy (CR, PR, and SD) in HGF-low patients than in HGF-high patients	53
	Meta-analysis	MET levels	Association between MET overexpression and worse PFS compared to normal expression	54
	Breast cancer cell	Reverse phase	Higher pMET (Y1234/35) levels in triple-negative	55
	lines	protein array	(negative for estrogen receptor, progesterone receptor, and ERBB2/HER2) cases	
		Tissue MET and pMET by reverse phase protein array	Determination of dichotomized values of MET and pMET as significant prognostic factors for RFS and OS. Association between high MET levels and worse RFS and OS in hormone receptor-positive cases. Association between high pMET levels and worse RFS and OS in HER2-positive cases. Higher risk of recurrence and death in patients with high MET. Higher risk of recurrence in patients with high pMET	56
Prostate cancer		Plasma HGF	Higher median HGF level in prostate cancer patients compared to control group (505 vs 397 pg/mL). Higher HGF levels in subset of patients with lymph node and/or seminal invasion	57
		Urinary sMET	Higher sMET levels in patients with metastatic cancer than in localized cancer	58
		Plasma sMET	Higher sMET levels in patients than those in healthy group	40
Renal cell carcinoma	Clear cell type	Serum HGF	Higher HGF levels in patients than healthy individuals. Higher median HGF level in stage 3–4 than stage 1–2 (1252.9 vs 948.7 pg/mL). Higher HGF levels in patients with distant metastasis than those without metastasis (1375 vs 836.6 pg/mL)	59
	Clinical trial with pazopanib	Plasma HGF	Correlation between low HGF baseline level and larger decrease in tumor burden after pazopanib treatment. Correlation between low baseline HGF levels and PFS (48.1 vs 32.1 weeks)	60
	Clinical trial with rilotumumab	Plasma HGF and sMET, tissue MET	No correlation of these values with treatment efficacy	61
Malignant melanoma		Serum HGF	Higher HGF levels in advanced disease. Higher HGF levels in patients with progressive disease. Correlation of baseline high level (above median) with lower PFS and OS	62
		Serum sMET	Lower sMET levels in metastasis-free patients and healthy donors than those with metastatic disease. Superior changes in sMET than those in lactate hydrogenase and S100 for liver function	63

Table 1 (Continued)

Tumor type	Subtype, specification	Marker type	Changes and significance as biomarkers	References
Multiple myeloma		HGF mRNA in bone marrow	Higher HGF mRNA expression levels in patients than those of healthy individuals. No relation to the number of myeloma cells	64
		Serum HGF	Higher median HGF levels at diagnosis vs in remission (2001 vs 1049 pg/mL); Higher median HGF levels in relapsed vs in remission patients (1370 vs 1049 pg/mL)	65
		Serum sMET	No significant difference in sMET between patients and healthy individuals; Negative correlations of sMET with disease stage and bone marrow plasma cell percentage	66
Colon cancer	Patients underwent carcinoma resection	Serum HGF	Correlation of higher HGF levels with advanced stage (stage III/IV), tumor size, lymph node metastasis, and distant metastasis. Poor prognosis in patients with elevated HGF	67
	Metastatic cancer, treated with anti- EGFR antibody KRAS wild-type	Serum HGF	Correlation between low HGF levels and longer PFS and OS	68
Hepatocellular carcinoma		Serum HGF	Correlation between higher HGF levels post- hepatectomy with metastasis. Higher HGF levels in patients with hepatocellular carcinoma than those with C-viral chronic hepatitis or liver cirrhosis	69–71
		Serum HGF	Higher pre-hepatectomy portal HGF levels than peripheral HGF levels. Higher post-hepatectomy portal HGF levels compared to pre-hepatectomy portal levels	69
	Metastatic patients treated with sorafenib \pm erlotinib	Plasma HGF	Correlation of higher baseline HGF levels with poor OS regardless of treatment compared to those with lower HGF levels	72
	Clinical trial of tivantinib	Serum HGF	Correlation of low baseline HGF with longer OS. Longer OS in patients treated with tivantinib with low HGF than in those with high HGF	73
Ovarian cancer		Serum HGF	Higher preoperative HGF levels than those with benign tumors or borderline tumors. Higher HGF levels in advanced-stage (III/IV) patients than those in early stage (I/II). Correlation of higher preoperative HGF levels with lower OS (23 vs 41 months). Longer disease-free survival in patients with low preoperative HGF	74
Bladder cancer		Urinary sMET	Higher sMET levels in bladder cancer patients compared to individuals in the same urology clinic but negative for any genitourinary malignancy. Distinguishable by urinary sMET between bladder cancer patients with muscle-invasive disease from those with non-muscle-invasive disease	75
Glioma	Treated by radiotherapy	Serum HGF	Lower median serum HGF in patients with high and moderately differentiated tumors than those with poorly differentiated tumors (964.8 pg/mL vs 1576.1 pg/mL). Different median time to progression (6 vs 17 months) for patients with HGF levels below vs above value of overall median serum HGF level (1219.5 pg/mL)	76

CR, complete response; EGFR, epidermal growth factor receptor; ERBB2, Erb-B2 receptor tyrosine kinase 2; HER2, human epidermal growth factor receptor 2; OS, overall survival; PD, progressive disease; PFS, progression-free survival; pMET, phosphorylated MET; PR, partial response; RFS, relapse-free survival; SD, stable disease; sMET, soluble MET; TKI, tyrosine kinase inhibitor.

Table 2. Clinical trials of hepatocyte growth factor (HGF)-MET inhibitors

Drug	Design	Phase	Patient population	Combinations
INCB28060/(INC280)	Safety/tolerability	1	c-MET-dependent advanced solid tumors	
Cabozantinib (XL184)	Safety/PK	I	Hepatic impaired adult subjects	
Onartuzumab (MetMAb)	Safety/efficacy	II	NSCLC	Bevacizumab/platinum/paclitaxel and pemetrexed/platinum
Onartuzumab (MetMAb)	Safety/efficacy	II	NSCLC	Paclitaxel/platinum
Cabozantinib (XL184)	Safety/efficacy	III	Previously treated, symptomatic castration- resistant prostate cancer	Mitoxantrone/prednisone
Crizotinib (PF02341066)	Safety/efficacy	II	Altered ALK and/or MET in locally advanced and/or metastatic anaplastic large cell lymphoma, inflammatory myofibroblastic tumor, papillary renal cell carcinoma type 1, alveolar soft part sarcoma, clear cell sarcoma, and alveolar rhabdomyosarcoma	
Crizotinib (PF02341066)	Safety/efficacy	I	Advanced malignancies	Vemurafenib, sorafenib
INCB28060/(INC280)	Safety	I	Japanese patients with advanced solid tumors	
Crizotinib (PF02341066)	Safety/efficacy	1	Advanced malignancies	Pemetrexed or pazopanib
Cabozantinib (XL184)	Safety/efficacy	I	Multiple myeloma with bone disease	
Cabozantinib (XL184)	Efficacy	II	Solid tumors	
Onartuzumab (MetMAb)	Safety/efficacy	II	Gastric cancer	mFOLFOX6
Cabozantinib (XL184)	Efficacy	II	Castration-resistant prostate cancer with bone metastases	
LY2875358	Safety	I	Japanese participants with advanced cancer	Erlotinib or gefitinib
Cabozantinib (XL184)	Safety/efficacy	III	Metastatic castration-resistant prostate cancer previously treated with docetaxel and abiraterone or MDV3100	Prednisone
Crizotinib (PF02341066)	Safety	I	Younger patients with relapsed or refractory solid tumors or anaplastic large cell lymphoma	Cyclophosphamide, dexrazoxane, doxorubicin, topotecan, vincristine
INCB28060/(INC280)	Safety/efficacy	lb/II	NSCLC, EGFR-mutated, c-MET-amplified, EGFR-inhibitor insensitive	Gefitinib
Cabozantinib (XL184)	Safety/efficacy	II	Advanced NSCLC, KIF5B/RET-positive	
Crizotinib (PF02341066)	Safety/efficacy	I	Diffuse intrinsic pontine glioma, high grade glioma, pediatric	Dasatinib
SAR125844	Safety/efficacy/PD	I	Asian advanced malignant solid tumor patients	
Onartuzumab (MetMAb)	Safety/efficacy	III	Metastatic gastric cancer, HER2—, Metpositive	mFOLFOX6
Cabozantinib (XL184)	Expanded access		Medullary thyroid cancer	
Cabozantinib (XL184)	Safety	I	Advanced prostate cancer	Docetaxel, prednisone
Cabozantinib (XL184)	Efficacy	II	Advanced urothelial cancer	
Rilotumumab (AMG 102)	Efficacy	III	Locally advanced/metastatic gastric or esophagogastric junction adenocarcinoma	
Cabozantinib (XL184)	Efficacy	III	Castration-resistant prostate cancer	= 1 × 2
Cabozantinib (XL184)	Efficacy		Stage IV NSCLC, EGFR wild-type	Erlotinib
Crizotinib (PF02341066) Cabozantinib (XL184)	Safety/efficacy Efficacy	1/11 11	NSCLC Persistent or recurrent ovarian epithelial cancer, fallopian tube, or peritoneal cancer	HSP90 inhibitor AT13387 Randomized vs paclitaxel
BMS-777607	Safety	1	Advanced or metastatic solid tumors	
(ASLAN002)				
INCB28060 (INC280)	Safety/efficacy	II	Advanced hepatocellular carcinoma with c- MET dysregulation	
Cabozantinib (XL184)	Safety/efficacy	II	Metastatic triple-negative breast cancer	
Cabozantinib (XL184)	Efficacy	II	Adults with advanced soft tissue sarcoma	

Table 2 (Continued)

Drug	Design	Phase	Patient population	Combinations
Volitinib savolitinib/ AZD6094/HMPL-50	Safety/PK	I	Advanced solid tumors	
Rilotumumab (AMG	Safety/efficacy	I/Ib	Japanese subjects with advanced solid	
102)			tumors or advanced or metastatic gastric	
			or esophagogastric junction	
			adenocarcinoma	
MSC2156119J/ EMD1214063	Safety/efficacy	I	Solid tumors	
Cabozantinib (XL184)	Efficacy	II	Castration-resistant prostate cancer with visceral metastases	
Met RNA CAR T cells	Safety/efficacy	I	Metastatic breast cancer, triple-negative breast cancer	
Cabozantinib (XL184)	Safety/efficacy	III	Subjects with metastatic renal cell carcinoma	Randomized vs everolimus
INCB28060 (INC280)	Safety/efficacy	Ib/II	Recurrent glioblastoma	Buparlisib
LY2875358	Efficacy	II	Gastric cancer	
Onartuzumab (MetMAb)	Safety/efficacy	III	Met-positive, stage IIIb or IV NSCLC with activating EGFR mutation	Erlotinib
Onartuzumab (MetMAb)	Safety/PK	lb	Advanced hepatocellular carcinoma	Alone or sorafenib
LY2875358	Efficacy	II	NSCLC with activating EGFR mutations	Erlotinib
LY2875358	Efficacy	II	NSCLC	Erlotinib
Cabozantinib (XL184)	Safety/efficacy	III	Subjects with hepatocellular carcinoma who have received prior sorafenib treatment	Randomized <i>vs</i> placebo
INCB28060 (INC280)	Safety	I	Met-positive NSCLC	Erlotinib
MGCD265	Safety	I	Healthy subjects in fasting state	
NCB28060 (INC280)	Safety/efficacy	II	Advanced hepatocellular carcinoma after progression or sorafenib intolerance	
Onartuzumab (MetMAb)	Safety/PK	lb	Advanced solid malignancies	Vemurafenib, and/or cobimetinib
LY2801653	PK/radiolabeled	I	Healthy participants	
MSC2156119J	Safety/efficacy	1/11	Advanced NSCLC	Gefitinib
MSC2156119J	Safety/efficacy	1/11	Asian subjects with hepatocellular carcinoma	
Crizotinib (PF02341066)	Safety	1	Advanced solid tumors	Axitinib
AMG 337	Efficacy	II	MET-amplified gastric/esophageal adenocarcinoma or other solid tumors	
NCB28060 (INC280)	Efficacy	II	Papillary renal cell carcinoma	
<u>Onartuzumab</u> (MetMAb)	Safety/efficacy	I	Chinese patients with locally advanced or metastatic solid tumors	
Onartuzumab (MetMAb)	Efficacy	III	Met-positive, incurable stage IIIb or IV NSCLC	Erlotinib
Foretinib (GSK1363089)	Efficacy	II	Genomic subpopulations of NSCLC	
Y2875358	Safety/efficacy	1/11	Advanced cancer	Ramucirumab
AMG 337	Safety/efficacy	1/11	Advanced solid tumor, gastric/esophageal adenocarcinoma or other solid tumors	
MSC2156119J	Safety/efficacy	1/11	Second-line hepatocellular carcinoma	
Volitinib Savolitinib/ AZD6094/HMPL-50	Safety/efficacy	II	Papillary renal cell cancer	
Crizotinib (PF02341066)	Efficacy	II	Patients with stage IV NSCLC that has progressed after crizotinib treatment	Pemetrexed disodium
Rilotumumab (AMG 102)	Efficacy	III	Gastric cancer	Cisplatin and capecitabine vs placebo
Volitinib Savolitinib/ AZD6094/HMPL-50	Safety/efficacy	lb	EGFR mutation-positive advanced lung cancer	AZD9291
INCB28060 (INC280)	Safety/efficacy/PK	1	Squamous cell carcinoma of head and neck	Cetuximab
INCB28060 (INC280)	Safety/efficacy/PK	II	Metastatic colorectal cancer	

Table 2 (Continued)

Drug	Design	Phase	Patient population	Combinations
INCB28060 (INC280)	Safety/efficacy	II	Chinese patients with advanced NSCLC	
Ficlatuzumab (AV-299)	Safety/efficacy	I	Ficlatuzumab, cisplatin, and IMRT in locally advanced squamous cell carcinoma of the head and neck	Cisplatin and intensity modulated radiotherapy
Ficlatuzumab (AV-299)	Safety/efficacy	I	Recurrent/metastatic squamous cell carcinoma of the head and neck	Cetuximab
SAIT301	Safety	I	Subjects with advanced c-MET-positive solid tumors followed by expansion in selected tumor types	
AMG 337	Safety/efficacy	1/11	Advanced stomach or esophageal cancer	Fluorouracil, oxaliplatin, leucovorin
Volitinib Savolitinib/	Safety/PK/preliminary	1b	EGFR mutation-positive NSCLC patients that	Gefitinib
AZD6094/HMPL-50	efficacy		progressed on EGFR tyrosine kinase inhibitor	
INCB28060 (INC280)	Efficacy	II	Advanced NSCLC patients that have received one or two prior lines of therapy	
Crizotinib (PF02341066)	Safety/efficacy			
Volitinib Savolitinib/	Safety/efficacy	II	Advanced gastric adenocarcinoma patients	Docetaxel
AZD6094/HMPL-50			with MET overexpression as a second-line treatment	
Volitinib Savolitinib/	Safety/efficacy	Ib/II	Phase 1b in any solid cancer and sequential	Docetaxel
AZD6094/HMPL-50			phase II in advanced gastric adenocarcinoma patients with MET amplification as a second line treatment	
Volitinib Savolitinib/ AZD6094/HMPL-50	Safety/efficacy	II	Advanced gastric adenocarcinoma patients with MET amplification as a third-line treatment	
INCB28060 (INC280)	Drug–drug interaction: PK of midazolam and caffeine	I	Patients with MET-dysregulated advanced solid tumors	Midazolam, caffeine
Crizotinib (PF02341066)	Safety/efficacy	II	Met or Ron-positive metastatic urothelial cancer	
INCB28060 (INC280)	Drug–drug interaction: PK of digoxin and rosuvastatin	I	Patients with MET-dysregulated advanced solid tumors	Digoxin, rosuvastatin
Volitinib Savolitinib/ AZD6094/HMPL-50	Safety/PK	I	Ras wild-type colorectal cancer	Cetuximab
Volitinib Savolitinib/ AZD6094/HMPL-50	Safety/efficacy	I	Locally advanced or metastatic kidney cancer	Randomized multi-arm study comparing cabozantinib, crizotinib, volitinib, or sunitinib
Rilotumumab (AMG 102)	Efficacy	Ш	Stage IV SCLC	Hydrochloride or erlotinib
INC280	Safety/efficacy	I	Glioblastoma multiforme, gliosarcoma, colorectal cancer, renal cell carcinoma	
Capmatinib (INC280)	Safety	П	Malignant NSCLC with exon14 alteration	
JNJ-38877605	Safety/efficacy	 I	Advanced or refractory solid tumors	
SGX523	Safety/efficacy	1	Advanced cancer	

Experimental therapeutics (left column) are listed by generic name or alphanumeric identifier. For brevity, this table lists only those trials not tabulated in a prior comprehensive review by Cecchi et al. (13) A complete listing of trials with links to several relevant cancer information sources can be found online (https://ccrod.cancer.gov/confluence/display/CCRHGF/Home). ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; HSP90, heat shock protein 90; IMRT, intensity-modulated radiation therapy; mFOLFOX6, 5-fluorouracil, leucovorin, oxaliplatin; NSCLC, non-small-cell lung cancer; PD, pharmacodynamics; PK, pharmacokinetics; SCLC, small-cell lung cancer.

Experimental Cancer Therapeutics Targeting the HGF/MET Pathway

The prevalence of HGF/MET pathway activation in human malignancies has driven rapid growth in drug development programs. The most advanced agents currently under development as HGF/MET pathway inhibitors include mAbs directed at HGF and low molecular weight compounds that

competitively antagonize ATP binding to MET (Table 2). Although some of the multi-kinase inhibitors that target MET have received regulatory approval in several indications, it remains unclear whether the MET kinase is a primary target. None of the more selective MET inhibitors have shown efficacy in phase II or III clinical trials, although few of these agents have reached this level of development.

A recent topic in HGF/MET pathway inhibition is clinical studies in lung cancer patients with MET-Dexon14 alteration. Paik et al. (14) reported that MET- Dexon14 mutation is approximately 4% of lung adenocarcinoma, and three out of four patients with stage IV lung adenocarcinomas harboring MET-∆exon14 mutation had a response to MET TKI. Among 38 028 cancer patients, MET-∆exon14 mutations were found in 221 cases, and MET-Δexon14 mutations are detected most frequently in lung adenocarcinoma (3%), but also frequently in other lung neoplasms (2.3%) and brain glioma (0.4%). In 11 205 lung cancers profiled by comprehensive genomic profiling, 298 (2.7%) carcinomas harbored MET-∆exon14 alterations. (77) Eight patients harboring MET-∆exon14 showed controlled responses, including four cases with partial responses, two cases with complete responses, and two cases with stable disease. (77) Among 1296 Chinese patients with NSCLC, 12 patients (0.9%) had MET-△exon14 mutation, suggesting a difference in frequency by ethnicity. (78) It is anticipated that ongoing clinical studies will reveal the significance of MET-Δexon14 alteration as a biomarker and therapeutic target for clinical use of HGF-MET inhibitors.

Conclusions

Therapeutic resistance and metastasis are major obstacles to achieving durable clinical responses with molecular-targeted therapies. Signaling pathways driven by HGF and MET participate in invasion, metastasis, and resistance to molecular-targeted drugs. Although selective MET inhibitors have yet shown efficacy in phase II and III clinical trials, ongoing clinical trials have indicated favorable response to MET

References

- 1 Cooper CS, Park M, Blair DG et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 1984; 311: 29–33
- 2 Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G. Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. *Proc Natl Acad Sci USA* 1987; 84: 6379–83.
- 3 Bottaro DP, Rubin JS, Faletto DL et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251: 802-4.
- 4 Nakamura T, Nishizawa T, Hagiya M et al. Molecular cloning and expression of human hepatocyte growth factor. Nature 1989; 342: 440–3.
- 5 Miyazawa K, Tsubouchi H, Naka D et al. Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor. Biochem Biophys Res Commun 1989; 163: 967–73.
- 6 Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W. Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 1990; 111: 2097–108.
- 7 Gherardi E, Birchmeier W, Birchmeier C, Vande Woude GF. Targeting MET in cancer: rationale and progress. *Nat Rev Cancer* 2012; **12**: 89–103.
- 8 Sakai K, Aoki S, Matsumoto K. Hepatocyte growth factor and Met in drug discovery. J Biochem 2015; 157: 271–84.
- 9 Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. *Cell* 1991; 67: 901–8.
- 10 Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. *Nature* 1995; 376: 768–71.
- 11 Engelman JA, Zejnullahu K, Mitsudomi T et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007; 316: 1039–43.
- 12 Yano S, Wang W, Li Q *et al.* Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor activating mutations. *Cancer Res* 2008; **68**: 9479–87.
- 13 Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16: 553–72.

inhibitors in patients with NSCLC expressing variant MET deleted within the JM domain. Biomarker discovery and the utilization of appropriate biomarkers to validate HGF-MET signaling as a driver in cancer development, metastasis, and drug resistance appears to be key for regulatory approval of HGF-MET inhibitors for clinical use.

Because HGF is biosynthesized as a zymogen-like single chain inactive precursor (capable of MET binding but incapable of MET activation) and the processing to two-chain HGF is coupled to its activation, the measurement and evaluation of HGF activation is also key to understanding the tumor microenvironment that permits tumor metastasis and drug resistance. In the future, elucidation of the 3-D structure(s) of the HGF-MET complex and the MET activation process will provide an opportunity to discover molecular tools applicable to sensitive and specific detection of activation of HGF and MET for diagnosis and evaluation of therapeutics.

Acknowledgments

Research in K.M.'s laboratory was supported by KAKENHI Grant Number 15K14473 by the Japan Society for the Promotion of Science and by the Project for Cancer Research and Therapeutic Evolution (P-CREATE) by the Japan Agency for Medical Research and Development. Research in D.B.'s laboratory was supported in part by the Intramural Research Program of the US National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Disclosure Statement

The authors have no conflict of interest.

- 14 Paik PK, Drilon A, Fan PD et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov 2015; 5: 842–9.
- 15 Frampton GM, Ali SM, Rosenzweig M et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 2015; 5: 850–9.
- 16 Kawaguchi M, Kataoka H. Mechanisms of hepatocyte growth factor activation in cancer tissues. *Cancers* 2014; 6: 1890–904.
- 17 Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C. Crystal structure of the HGF β-chain in complex with the Sema domain of the Met receptor. *EMBO J* 2004; **23**: 2325–35.
- 18 Ito K, Sakai K, Suzuki Y et al. Artificial human Met agonists based on macrocycle scaffolds. Nat Commun 2015; 6: 6373.
- 19 Peschard P, Fournier TM, Lamorte L et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 2001; 8: 995–1004.
- 20 Nakayama M, Sakai K, Yamashita A, Nakamura T, Suzuki Y, Matsumoto K. Met/HGF receptor activation is regulated by juxtamembrane Ser985 phosphorylation in hepatocytes. *Cytokine* 2013; 62: 446–52.
- 21 Matsumoto K, Horikoshi M, Rikimaru K, Enomoto S. A study of an *in vitro* model for invasion of oral squamous cell carcinoma. *J Oral Pathol Med* 1989; 18: 498–501.
- 22 Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. *Cancer Metastasis Rev* 2012; 31: 195–208.
- 23 Peinado H, Alečković M, Lavotshkin S et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18: 883–91.
- 24 Adachi E, Sakai K, Nishiuchi T, Imamura R, Sato H, Matsumoto K. Cell-autonomous changes in Met receptor expression regulate the growth and metastatic characteristics in malignant melanoma. *Oncotarget* 2016; 7: 70779–93.
- 25 Straussman R, Morikawa T, Shee K et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012; 487: 500–4.
- 26 Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. *Nature* 1996; 384: 173–6.

- 27 Sachs M, Brohmann H, Zechner D et al. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 2000; 150: 1375-84.
- 28 Kobayashi S, Boggon TJ, Dayaram T et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. New Engl J Med 2005; 352: 786–92.
- 29 Yano S, Takeuchi S, Nakagawa T, Yamada T. Ligand-triggered resistance to molecular targeted drugs in lung cancer: roles of hepatocyte growth factor and epidermal growth factor receptor ligands. Cancer Sci 2012; 103: 1189-94.
- 30 Soda M, Choi YL, Enomoto M et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448:
- 31 Sakamoto H, Tsukaguchi T, Hiroshima S et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell 2011; 19: 679-90.
- 32 Isozaki H, Ichihara E, Takigawa N et al. Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases. Cancer Res 2016; 76: 1506-16.
- 33 Schmidt L, Duh FM, Chen F et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997: 16: 68-73.
- 34 Petrini I. Biology of MET: a double life between normal tissue repair and tumor progression. Annal Transl Med 2015; 3: 82.
- 35 Kong-Beltran M, Seshagiri S, Zha J et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res 2006; 66: 283-9.
- 36 Navis AC, van Lith SA, van Duijnhoven SM et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol 2015; 130: 131-44.
- 37 Matsumoto K, Nakamura T. Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int 2001; 59: 2023-38.
- 38 Srivastava AK, Hollingshead MG, Weiner J et al. Pharmacodynamic response of the MET/HGF receptor to small-molecule tyrosine kinase inhibitors examined with validated, fit-for-clinic immunoassays. Clin Cancer Res 2016: **22**: 3683–94.
- 39 Athauda G, Giubellino A, Coleman JA et al. c-Met ectodomain shedding rate correlates with malignant potential. Clin Cancer Res 2006; 12: 4154-62.
- 40 Kaye DR, Pinto PA, Cecchi F et al. Tumor and plasma Met levels in nonmetastatic prostate cancer. PLoS ONE 2016; 11: e0157130.
- 41 Noguchi E, Saito N, Kobayashi M, Kameoka S. Clinical significance of hepatocyte growth factor/c-Met expression in the assessment of gastric cancer progression. Mol Med Rep 2015; 11: 3423-31.
- 42 Takahashi N, Furuta K, Taniguchi H et al. Serum level of hepatocyte growth factor is a novel marker of predicting the outcome and resistance to the treatment with trastuzumab in HER2-positive patients with metastatic gastric cancer. Oncotarget 2016; 7: 4925-38.
- 43 Yang JJ, Yang JH, Kim J et al. Soluble c-Met protein as a susceptible biomarker for gastric cancer risk: a nested case-control study within the Korean Multicenter Cancer Cohort. Int J Cancer 2013; 132: 2148-56.
- 44 Cañadas ITA, González I, Villanueva X et al. High circulating hepatocyte growth factor levels associate with epithelial to mesenchymal transition and poor outcome in small cell lung cancer patients. *Oncotarget* 2014; **5**: 5246–56.
- 45 Takigawa N, Segawa Y, Maeda Y, Takata I, Fujimoto N. Serum hepatocyte growth factor/scatter factor levels in small cell lung cancer patients. Lung Cancer 1997: 17: 211-8.
- 46 Arriola E, Canadas I, Arumi-Uria M et al. MET phosphorylation predicts poor outcome in small cell lung carcinoma and its inhibition blocks HGFinduced effects in MET mutant cell lines. Br J Cancer 2011; 105: 814-23.
- 47 Umeguchi H, Sueoka-Aragane N, Kobayashi N et al. Usefulness of plasma HGF level for monitoring acquired resistance to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Oncol Rep 2015; 33: 391-6.
- 48 Tanaka H, Kimura T, Kudoh S et al. Reaction of plasma hepatocyte growth factor levels in non-small cell lung cancer patients treated with EGFR-TKIs. Int J Cancer 2011; 129: 1410-6.
- 49 Han JY, Kim JY, Lee SH, Yoo NJ, Choi BG. Association between plasma hepatocyte growth factor and gefitinib resistance in patients with advanced non-small cell lung cancer. Lung Cancer 2011; 74: 293-9.
- 50 Lv H, Shan B, Tian Z, Li Y, Zhang Y, Wen S. Soluble c-Met is a reliable and sensitive marker to detect c-Met expression level in lung cancer. Biomed Res Int 2015; 2015: 626578.
- 51 Gao HF, Li AN, Yang JJ et al. Soluble c-Met levels correlated with tissue c-Met protein expression in patients with advanced non-small-cell lung cancer. Clin Lung Cancer 2016; 7: 39535-43.
- 52 Kim H, Youk J, Yang Y et al. Prognostic implication of serum hepatocyte growth factor in stage II/III breast cancer patients who received neoadjuvant chemotherapy. J Cancer Res Clin Oncol 2015; 142: 707-14.
- 53 Yang H, Zhang C, Cui S. Expression of hepatocyte growth factor in breast cancer and its effect on prognosis and sensitivity to chemotherapy. Mol Med Rep 2015; 11: 1037-42.
- 54 Wang F, Li S, Zhao Y, et al. Predictive role of the overexpression for CXCR4, C-Met, and VEGF-C among breast cancer patients: a meta-analysis. Breast 2016; 28: 45-53.

- 55 Hochgrafe F, Zhang L, O'Toole SA et al. Tyrosine phosphorylation profiling reveals the signaling network characteristics of Basal breast cancer cells. Cancer Res 2010: 70: 9391-401.
- 56 Raghav KP, Wang W, Liu S et al. cMET and phospho-cMET protein levels in breast cancers and survival outcomes. Clin Cancer Res 2012; 18: 2269-77.
- Gupta A, Karakiewicz PI, Roehrborn CG, Lotan Y, Zlotta AR, Shariat SF. Predictive value of plasma hepatocyte growth factor/scatter factor levels in patients with clinically localized prostate cancer. Clin Cancer Res 2008; 14: 7385-90.
- 58 Russo AL, Jedlicka K, Wernick M et al. Urine analysis and protein networking identify met as a marker of metastatic prostate cancer. Clin Cancer Res 2009; 15: 4292-8.
- Tanimoto S, Fukumori T, El-Moula G et al. Prognostic significance of serum hepatocyte growth factor in clear cell renal cell carcinoma: comparison with serum vascular endothelial growth factor. J Med Invest 2008; 55: 106 - 11.
- Tran HT, Liu Y, Zurita AJ et al. Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials. Lancet Oncol 2012; 13: 827-37.
- 61 Schoffski P, Garcia JA, Stadler WM et al. A phase II study of the efficacy and safety of AMG 102 in patients with metastatic renal cell carcinoma. B.IU Int 2011: 108: 679-86.
- 62 Hugel R, Muendlein A, Volbeding L et al. Serum levels of hepatocyte growth factor as a potential tumor marker in patients with malignant melanoma. Melanoma Res 2016; 26: 354-60.
- 63 Barisione G, Fabbi M, Gino A et al. Potential role of soluble c-Met as a new candidate biomarker of metastatic uveal melanoma. JAMA Ophthalmol 2015; 133: 1013-21.
- 64 Rampa C, Tian E, Vatsveen TK et al. Identification of the source of elevated hepatocyte growth factor levels in multiple myeloma patients. Biomark Res 2014: 2: 8.
- Minarik J, Pika T, Bacovsky J, Petrova P, Langova K, Scudla V. Prognostic value of hepatocyte growth factor, syndecan-1, and osteopontin in multiple myeloma and monoclonal gammopathy of undetermined significance. ScientificWorldJournal 2012; 2012: 356128.
- Wader KF, Fagerli UM, Holt RU, Borset M, Sundan A, Waage A. Soluble c-Met in serum of patients with multiple myeloma: correlation with clinical parameters. Eur J Ĥaematol 2011; 87: 394-9.
- Toiyama Y, Miki C, Inoue Y, Okugawa Y, Tanaka K, Kusunoki M. Serum hepatocyte growth factor as a prognostic marker for stage II or III colorectal cancer patients. Int J Cancer 2009; 125: 1657-62.
- Takahashi N, Yamada Y, Furuta K et al. Serum levels of hepatocyte growth factor and epiregulin are associated with the prognosis on anti-EGFR antibody treatment in KRAS wild-type metastatic colorectal cancer. Br J Cancer 2014; 110: 2716-27.
- 69 Chau GY, Lui WY, Chi CW et al. Significance of serum hepatocyte growth factor levels in patients with hepatocellular carcinoma undergoing hepatic resection. Eur J Surg Oncol 2008; 34: 333-8.
- 70 Junbo H, Li Q, Zaide W, Yunde H. Increased level of serum hepatocyte growth factor/scatter factor in liver cancer is associated with tumor metastasis. In Vivo 1999; 13: 177-80.
- Yamagami H, Moriyama M, Matsumura H et al. Serum concentrations of human hepatocyte growth factor is a useful indicator for predicting the occurrence of hepatocellular carcinomas in C-viral chronic liver diseases. Cancer 2002; 95: 824-34.
- 72 Zhu AX, Kang YK, Rosmorduc O et al. Biomarker analyses of clinical outcomes in patients with advanced hepatocellular carcinoma treated with sorafenib with or without erlotinib in the SEARCH trial. Clin Cancer Res 2016; 22: 4870-9.
- 73 Rimassa L, Abbadessa G, Personeni N et al. Tumor and circulating biomarkers in patients with second-line hepatocellular carcinoma from the randomized phase II study with tivantinib. Oncotarget 2016; 7: 72622-33.
- 74 Aune G, Lian AM, Tingulstad S et al. Increased circulating hepatocyte growth factor (HGF): a marker of epithelial ovarian cancer and an indicator of poor prognosis. Gynecol Oncol 2011; 121: 402-6.
- 75 McNeil BK, Sorbellini M, Grubb RL et al. Preliminary evaluation of urinary soluble Met as a biomarker for urothelial carcinoma of the bladder. J TranslMed 2014; 12: 199.
- 76 Liang QL, Mo ZY, Wang P, Li X, Liu ZX, Zhou ZM. The clinical value of serum hepatocyte growth factor levels in patients undergoing primary radiotherapy for glioma: effect on progression-free survival. Med Oncol 2014; 31: 122
- 77 Schrock AB, Frampton GM, Suh J et al. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations. J Thorac Oncol 2016; 11: 1493-502.
- 78 Liu SY, Gou LY, Li AN et al. The unique characteristics of MET exon 14 mutation in chinese patients with NSCLC. J Thorac Oncol 2016; 11: 1503-10.