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Background. Children are less susceptible to SARS-CoV-2 infection and typically have milder illness courses than adults, but 
the factors underlying these age-associated differences are not well understood. The upper respiratory microbiome undergoes sub-
stantial shifts during childhood and is increasingly recognized to influence host defense against respiratory pathogens. Thus, we 
sought to identify upper respiratory microbiome features associated with SARS-CoV-2 infection susceptibility and illness severity.

Methods. We collected clinical data and nasopharyngeal swabs from 285 children, adolescents, and young adults (<21 years) 
with documented SARS-CoV-2 exposure. We used 16S ribosomal RNA gene sequencing to characterize the nasopharyngeal 
microbiome and evaluated for age-adjusted associations between microbiome characteristics and SARS-CoV-2 infection status and 
respiratory symptoms.

Results. Nasopharyngeal microbiome composition varied with age (PERMANOVA, P < .001; R2 = 0.06) and between SARS-
CoV-2–infected individuals with and without respiratory symptoms (PERMANOVA, P  = .002; R2 = 0.009). SARS-CoV-2–infected 
participants with Corynebacterium/Dolosigranulum-dominant microbiome profiles were less likely to have respiratory symptoms 
than infected participants with other nasopharyngeal microbiome profiles (OR: .38; 95% CI: .18–.81). Using generalized joint at-
tributed modeling, we identified 9 bacterial taxa associated with SARS-CoV-2 infection and 6 taxa differentially abundant among 
SARS-CoV-2–infected participants with respiratory symptoms; the magnitude of these associations was strongly influenced by age.

Conclusions. We identified interactive relationships between age and specific nasopharyngeal microbiome features that are as-
sociated with SARS-CoV-2 infection susceptibility and symptoms in children, adolescents, and young adults. Our data suggest that 
the upper respiratory microbiome may be a mechanism by which age influences SARS-CoV-2 susceptibility and illness severity.

Keywords. COVID-19; pediatric microbiota; Corynebacterium; Dolosigranulum; generalized joint attribute modeling.

In contrast to most other respiratory viruses [1], children appear 
to be less susceptible to infection with severe acute respiratory 
coronavirus 2 (SARS-CoV-2), and typically have milder illness 
courses than adults. In a recent meta-analysis of 32 studies that 

included 41 640 children and adolescents and 268 945 adults, 
SARS-CoV-2 infection susceptibility was estimated to be 46% 
lower among children and adolescents relative to adults [2]. 
Further, a higher incidence of SARS-CoV-2 infection has been 
observed with increasing age, even among infants, children, 
and adolescents [3]. We previously demonstrated that up to 
one-third of SARS-CoV-2–infected children and adolescents 
are asymptomatic [4], and the vast majority of children who 
develop symptoms report mild respiratory symptoms [4, 5].  
Additionally, coronavirus disease 2019 (COVID-19) hospital-
ization rates and mortality among children are substantially 
lower than among adults of all ages [6]. These data suggest that 
changes in host biological or immunological factors that occur 
with age modify susceptibility to and severity of SARS-CoV-2 
infection.
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Given that the upper respiratory microbiome undergoes 
substantial shifts in early childhood [7, 8], and is increasingly 
recognized to play a key role in the pathogenesis of respiratory 
virus infections [9, 10], we hypothesized that age-associated 
changes in the upper respiratory microbiome might contribute 
to differences in SARS-CoV-2 susceptibility and illness severity 
among children and adults. In this study, we used 16S ribosomal 
RNA (rRNA) gene amplicon sequencing to characterize the na-
sopharyngeal microbiomes of 285 children, adolescents, and 
young adults with close contact with a SARS-CoV-2–infected 
individual and to identify microbiome features associated with 
SARS-CoV-2 infection and with the presence of respiratory 
symptoms among SARS-CoV-2–infected individuals.

METHODS

Study Procedures

The Duke Biospecimens from RespirAtory Virus-Exposed Kids 
(BRAVE Kids) Study is a prospective cohort study of children, 
adolescents, and young adults (<21 years of age) with confirmed 
SARS-CoV-2 infection or close contact with an individual with 
confirmed SARS-CoV-2 infection, as previously described [4]. 
Exposure, sociodemographic, and clinical data are collected at 
enrollment, and we record symptoms occurring up to 14 days 
prior to and 28 days after study enrollment. Nasopharyngeal 
samples are collected with nylon flocked swabs (Copan Italia, 
Brescia, Italy) and placed into RNAProtect (Qiagen, Hilden, 
Germany) prior to storage at −80°C. Participants are classi-
fied as SARS-CoV-2 infected if the virus is detected in either 
a clinical or research polymerase chain reaction (PCR) assay. 
For the analyses presented herein, we considered SARS-CoV-2– 
infected individuals to have respiratory symptoms if they re-
ported cough, rhinorrhea, nasal congestion, shortness of breath, 
sore throat, or anosmia at any point between 14 days prior to 
enrollment through 28 days after enrollment.

Processing of Nasopharyngeal Samples for 16S Ribosomal RNA Sequencing

The Duke Microbiome Core Facility extracted DNA from na-
sopharyngeal samples using Powersoil Pro extraction kits 
(Qiagen). DNA concentrations were determined using Qubit 
dsDNA high-sensitivity assay kits (ThermoFisher Scientific). 
Bacterial community composition was characterized by PCR 
amplification of the V4 variable region of the 16S rRNA gene 
[11]. Equimolar 16S rRNA PCR products were quantified and 
pooled prior to sequencing. Sequencing was performed by the 
Duke Sequencing and Genomic Technologies Core Facility on 
an Illumina MiSeq instrument configured for 250 base-pair 
paired-end sequencing. All samples were included in a single 
sample processing run with negative extraction and PCR con-
trols. We analyzed raw sequences using DADA2 version 1.16 
[12] and assigned taxonomy to amplicon sequence variants 
(ASVs) using the expanded Human Oral Microbiome Database 
version 15.1 [13]. We identified and removed presumed reagent 

contaminant ASVs (n = 35) (Supplementary Table 1) based 
on presence in negative control samples or negative correla-
tion with DNA concentration using the frequency method 
(threshold = 0.10) implemented in the decontam R package 
version 1.12 [14]. We excluded samples with less than 1000 
sequencing reads after quality filtering and contaminant re-
moval. We obtained a median (interquartile range [IQR]) of 
24 360 (18 117–33 371) high-quality sequencing reads from the 
285 samples included in these analyses. Sequencing reads were 
classified into 1854 ASVs representing 202 bacterial genera 
from 8 phyla.

Data Analysis

We calculated nasopharyngeal microbiome alpha diversity 
(Shannon diversity index and number of unique ASVs) using 
the phyloseq R package version 1.36 [15]. We fit linear regres-
sion models to evaluate associations between patient character-
istics and microbiome alpha diversity measures. The number 
of unique ASVs was not normally distributed and was log-
transformed for these analyses. We used the microbiome R 
package version 1.8.0 [16] to generate centered log-ratio (CLR)–
transformed sample counts to evaluate between-sample compo-
sitional differences [17]. We used k-medoids clustering and the 
Calinski-Harabasz index to classify samples into distinct naso-
pharyngeal microbiome profiles. We evaluated associations be-
tween patient characteristics and nasopharyngeal microbiome 
composition with permutational multivariate analysis of var-
iance (PERMANOVA) using the adonis function within the 
vegan R package version 2.5.7 [18]. To evaluate associations 
between patient characteristics and the relative abundances of 
specific ASVs within the nasopharyngeal microbiome, we used 
generalized joint attribute modeling (GJAM) implemented in 
the gjam R package version 2.3.5 [19]. Analyses conducted in 
gjam were limited to ASVs present in at least 5% of samples. 
We adjusted for participant age (as a continuous variable) and 
assessed the significance of interaction terms in all analyses to 
evaluate for interactive relationships between age and the rela-
tive abundances of specific ASVs on SARS-CoV-2 infection and 
SARS-CoV-2–associated respiratory symptoms. Our findings 
in all analyses were not substantively changed when we addi-
tionally adjusted for sex and race (data not shown). All analyses 
were conducted in R version 4.1 [20].

RESULTS

Patient Characteristics

Two hundred eighty-five children, adolescents, and young 
adults were included in these analyses (Table 1). Participants 
were classified as SARS-CoV-2 exposed but uninfected (n = 74, 
26%), SARS-CoV-2 infected without respiratory symptoms 
(n = 98, 34%), and SARS-CoV-2 infected with respiratory symp-
toms (n = 113, 40%). SARS-CoV-2–infected participants with 
respiratory symptoms were older than SARS-CoV-2–infected 
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participants without respiratory symptoms (median [IQR] age: 
14.1 [6.3–17.5] vs 9.3 [4.8–13.2] years; Wilcoxon rank-sum test, 
P  = .001) and SARS-CoV-2–uninfected participants (median 
[IQR] age: 14.1 [6.3–17.5] vs 9.5 [5.1–15.8] years; Wilcoxon 
rank-sum test, P  = .051). There were no significant differences 
in the prevalences of comorbidities or recent receipt of anti-
biotics or probiotics in these groups.

Nasopharyngeal Microbiome Diversity Differs Based on Age and SARS-
CoV-2 Infection Status

We first sought to describe changes in nasopharyngeal 
microbiome diversity that occur with age from infancy through 

early adulthood, and by SARS-CoV-2 infection and symptom 
status. Median (IQR) Shannon diversity and number of unique 
ASVs in nasopharyngeal samples were 1.49 (1.12–2.00) and 
67 (48–90), respectively. Nasopharyngeal microbiome di-
versity, as measured by the Shannon index, increased with 
increasing age (Figure 1A) (analysis of covariance [ANCOVA], 
P  < .0001), while observed richness (number of unique ASVs) 
was not associated with participant age (Figure 1B) (ANCOVA, 
P  = .27). Shannon diversity was similar in nasopharyngeal 
samples from SARS-CoV-2–infected and uninfected parti-
cipants (median [IQR]: 1.49 [1.16–2.02] vs 1.64 [1.20–2.04]; 
ANCOVA, P  = .39); however, observed richness was higher in 

Table 1. Characteristics of the Study Population

 

SARS-CoV-2 Exposed,  
Uninfected (n = 74)

SARS-CoV-2 Infected Without  
Respiratory Symptoms (n = 98)

SARS-CoV-2 Infected With  
Respiratory Symptoms

(n = 113)

Pa No. (or Median) % (or IQR) No. (or Median) % (or IQR) No. (or Median) % (or IQR) 

Age, years 9.5 (5.1–15.8) 9.3 (4.8–13.2) 14.1 (6.3–17.5) .01

Female sex 37 50% 53 54% 59 52% .87

Race/ethnicity <.0001

  Black or African-American 2 3% 6 6% 8 7%

  Latino or Hispanic-American 42 57% 86 88% 100 88%

  Non-Hispanic White 30 41% 6 6% 5 4%

Comorbiditiesb

  Asthma 8 11% 6 6% 9 8% .53

  Obesity (BMI ≥95th percentile for age) 20 27% 24 24% 40 35% .19

Environmental tobacco smoke in home 11 15% 9 9% 14 12% .51

Receipt of antibiotic in prior 30 days 1 1% 2 2% 3 3% >.99

Receipt of probiotic in prior 30 days 3 4% 0 0% 1 1% .09

Abbreviations: BMI, body mass index; IQR, interquartile range; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
aP values were estimated using chi-square or Fisher’s exact tests for categorical variables and Kruskal–Wallis tests for continuous variables.
bOther comorbidities included hypertension (n = 5), congenital heart disease (n = 3), chronic neurological disorder (n = 3), chronic kidney disease (n = 2), and malignancy (n = 1).

Figure 1. Nasopharyngeal microbiome alpha diversity by age. Shannon diversity (A) and the number of unique amplicon sequence variants (B) are shown by participant age. 
Each point represents an individual sample and lines correspond to the fit of the linear model between age and each alpha diversity measure. Abbreviation: ASV, amplicon 
sequence variant.
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SARS-CoV-2–infected participants than in SARS-CoV-2–un-
infected participants (median [IQR]: 69 [51–75] vs 59 [38–84]; 
ANCOVA, P  = .01). Measures of nasopharyngeal microbiome 
diversity were similar in SARS-CoV-2–infected individuals 
with or without respiratory symptoms (data not shown).

Nasopharyneal Microbiome Composition by Age, SARS-CoV-2 Infection, 
and COVID-19 Symptoms

Five bacterial genera accounted for more than 80% of the 
sequencing reads identified in nasopharyngeal samples: 
Corynebacterium (26%), Staphylococcus (21%), Moraxella 
(15%), Dolosigranulum (13%), and Streptococcus (5%). 
Nasopharyngeal microbiome composition varied with age 
(PERMANOVA, P  < .001; R2 = 0.06); specifically, increasing 
age was associated with decreases in the CLR-transformed abun-
dances of the bacterial genera Moraxella (Spearman’s rank cor-
relation; ρ = −0.40, P  < .0001) and Dolosigranulum (ρ = −0.32, 
P  < .0001) and increases in the CLR-transformed abundances 
of Corynebacterium (ρ = 0.24, P  < .0001) and Staphylococcus 
(ρ = 0.45, P  < .0001) (Figure 2). Two bacterial genera—
Lawsonella and Peptoniphilus—were highly prevalent in partici-
pants 12 years of age or older (78% and 69%, respectively), but 
were identified in only 21% and 19% of children 8 years of age 
or younger. Nasopharyngeal microbiome composition did not 
differ significantly in SARS-CoV-2–infected and SARS-CoV-2–
uninfected participants (PERMANOVA, P  = .10; R2 = 0.004). 
However, the composition of the nasopharyngeal microbiome 
of SARS-CoV-2–infected participants with respiratory symp-
toms differed from that of SARS-CoV-2–infected participants 

without respiratory symptoms (PERMANOVA, P  = .002; 
R2 = 0.009).

Associations Between Nasopharyngeal Microbiome Profile, Age, and 
SARS-CoV-2 Status

To further characterize differences in nasopharyngeal 
microbiome composition by age and SARS-CoV-2 status, 
we used unsupervised clustering to classify nasopharyn-
geal samples into 7 distinct microbiome profiles (Figure 3): 
Corynebacterium/Staphylococcus-dominant (profile 1; n = 54, 
19%), Corynebacterium/Dolosigranulum-dominant (pro-
file 2; n = 58, 20%), Corynebacterium-dominant (profile 3; 
n = 55, 19%), Moraxella-dominant (profile 4; n = 44, 16%), 
Staphylococcus-dominant (profile 5; n = 44, 15%), Streptococcus-
dominant (profile 6; n = 16, 6%), and Fusobacterium-dominant 
(profile 7; n = 10, 4%). Participant age differed markedly by na-
sopharyngeal microbiome profile (Table 2) (Kruskal–Wallis test, 
P  < .0001); however, there were no significant differences in 
other patient characteristics by microbiome profile. SARS-CoV-2 
infection prevalence varied from 69% to 82% by microbiome 
profile, with the lowest prevalence observed among participants 
with a Moraxella-dominant microbiome profile and the highest 
prevalence seen among participants with a Corynebacterium-
dominant microbiome profile. However, in analyses adjusting 
for age, there were no significant associations between naso-
pharyngeal microbiome profile and SARS-CoV-2 infection. 
Among SARS-CoV-2–infected participants, the prevalence of 
respiratory symptoms varied from 35% to 67% by nasopharyn-
geal microbiome profile, with the lowest prevalence seen among 

Figure 2. Relative abundances of highly abundant bacterial genera by age. Each bar depicts the mean relative abundances of highly abundant genera in nasopharyngeal 
samples from participants in a specific age category. Only the 9 most highly abundant genera within nasopharyngeal samples from the entire study population are shown. 
Age is shown as a categorical variable only for graphical representation; all statistical analyses included age as a continuous variable.
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participants with a Corynebacterium/Dolosigranulum-dominant 
microbiome profile and the highest prevalence observed among 
participants with Corynebacterium/Staphylococcus-dominant 

or Corynebacterium-dominant microbiome profiles. SARS-
CoV-2–infected individuals with a Corynebacterium/
Dolosigranulum-dominant microbiome profile were less likely 

Figure 3. Nasopharyngeal microbiome profiles identified by unsupervised clustering. A, Principal coordinate (PC) plot of Euclidean distances demonstrating clustering of 
nasopharyngeal samples by microbiome profile. Each dot corresponds to a single nasopharyngeal sample. Centroids are shown as the confluence of the lines arising from 
individual points from each microbiome profile. Ellipses define the regions containing 95% of all samples that can be drawn from the underlying multivariate t distribution. 
B, Each bar depicts the mean relative abundances of highly abundant genera in nasopharyngeal samples assigned to specific microbiome profiles. Only the 9 most highly 
abundant genera within nasopharyngeal samples from the entire study population are shown.

Table 2. Characteristics of Study Participants and Nasopharyngeal Microbial Communities by Microbiome Profile

 

Nasopharyngeal Microbiome Profilea

Pb 1 (n = 54) 2 (n = 58) 3 (n = 55) 4 (n = 48) 5 (n = 44) 6 (n = 16) 7 (n = 10) 

Age, median (IQR), 
years

16.5 (12.9–18.1) 7.6 (3.9–12.1) 15.9 (10.6–18.7) 3.8 (2.0–7.2) 9.8 (8.3–13.2) 7.7 (1.0–11.5) 7.0 (6.0–13.4) <.0001

Female sex, n (%) 29 (53%) 29 (50%) 33 (60%) 31 (65%) 17 (39%) 7 (44%) 3 (30%) .12

Race/ethnicity, n (%)

  Black or African-
American

5 (9%) 4 (7.0%) 4 (7%) 1 (2%) 1 (2%) 1 (6%) 0 (0%) .23

  Latino or Hispanic-
American

37 (69%) 46 (79%) 46 (84%) 38 (79%) 40 (91%) 11 (69%) 10 (100%)

  Non-Hispanic White 12 (22%) 8 (14%) 5 (9%) 9 (19%) 3 (7%) 4 (25%) 0 (0%)

Comorbidities, n (%)

  Asthma 5 (9%) 2 (3%) 5 (9%) 3 (6.3%) 8 (18%) 0 (0%) 0 (0%) .19

  Obesity (BMI ≥95th 
percentile for age)

20 (37%) 15 (26%) 18 (33%) 13 (27%) 11 (25%) 3 (19%) 4 (40%) .67

Environmental tobacco 
smoke in home

6 (11%) 9 (16%) 9 (16%) 4 (8.3%) 3 (7%) 3 (19%) 0 (0%) .52

Receipt of antibiotic in 
prior 30 days

2 (4%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 0 (0%) 0 (0%) .97

Receipt of probiotic in 
prior 30 days

3 (6%) 0 (0%) 0 (0%) 0 (0%) 1 (2%) 0 (0%) 0 (0%) .18

SARS-CoV-2 infection 39 (72%) 43 (74%) 45 (82%) 33 (69%) 32 (72%) 11 (69%) 8 (80%) .80

  With respiratory 
symptoms

26 (67%) 15 (35%) 30 (67%) 18 (55%) 13 (41%) 6 (55%) 5 (63%) .03

  Without respiratory 
symptoms

13 (33%) 28 (65%) 15 (33%) 15 (45%) 19 (59%) 5 (45%) 3 (38%)

Shannon diversity 
index, median (IQR)

1.64 (1.37–1.93) 1.15 (1.05–1.51) 1.04 (0.91–1.35) 0.91 (0.81–1.23) 0.96 (0.45–1.24) 1.5 (1.22–2.19) 1.72 (1.37–1.97) <.0001

Number of unique 
ASVs, median (IQR)

72 (45–92) 66 (45–83) 65 (49–82) 58 (42–78) 71 (53–101) 76 (59–91) 92 (57–106) .16

Abbreviations: ASV, amplicon sequence variant; BMI, body mass index; IQR, interquartile range; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
aCorresponding microbiome profiles are as follows: 1 = Corynebacterium/Staphylococcus-dominant, 2 = Corynebacterium/Dolosigranulum-dominant, 3 = Corynebacterium-dominant, 
4 = Moraxella-dominant, 5 = Staphylococcus-dominant, 6 = Streptococcus-dominant, 7 = Fusobacterium-dominant.
bP values were estimated using Fisher’s exact tests for categorical variables and Kruskal-Wallis tests for continuous variables.
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to have respiratory symptoms than SARS-CoV-2–infected par-
ticipants with other nasopharyngeal microbiome profiles in 
age-adjusted analyses (logistic regression; odds ratio: .38; 95% 
confidence interval: .18–.81).

Identification of Specific Bacterial Taxa Associated With SARS-CoV-2 
Infection and COVID-19 Symptoms

We next used GJAM to evaluate associations between specific 
ASVs and SARS-CoV-2 infection and SARS-CoV-2–associated 
respiratory symptoms. GJAM allows for the concurrent eval-
uation of distinct types of data derived from observations of 
ecological systems, where attributes of the system may be inter-
dependent. Because we observed associations between age and 
nasopharyngeal microbiome composition, as well as associ-
ations between age and SARS-CoV-2 infection and respiratory 
symptoms, we used GJAM to separately evaluate associations 
between specific bacterial ASVs and SARS-CoV-2 infection and 
SARS-CoV-2–associated respiratory symptoms in the context 
of interactions of these variables with participant age. We iden-
tified 9 ASVs that were associated with SARS-CoV-2 infection 
(Table 3); for 8 of these ASVs, the magnitude of the association 
varied by participant age. For example, the relative abundance 
of ASV1163 (Corynebacterium propinquum) decreased with 
increasing participant age and was also higher among SARS-
CoV-2–infected participants than uninfected participants 
independent of age. However, the difference in the relative 
abundance of ASV1163 between SARS-CoV-2–infected and 
uninfected participants decreased with age, such that the neg-
ative association between the relative abundance of ASV1163 
and SARS-CoV-2 infection was primarily observed among 
young children (Figure 4A). We next used GJAM to identify 
ASVs associated with respiratory symptoms among participants 
with confirmed SARS-CoV-2 infection. We identified 6 ASVs 
that were differentially abundant among SARS-CoV-2–infected 
participants with respiratory symptoms (Table 4); for 8 of these 
ASVs, the magnitude of the association varied by participant 
age. For example, the relative abundance of ASV336 (Moraxella 
lincolnii) decreased with increasing age and was independently 

lower among SARS-CoV-2–infected participants with respira-
tory symptoms. However, the difference in the mean relative 
abundance of ASV336 between SARS-CoV-2–infected partici-
pants with and without respiratory symptoms increased with 
increasing age, indicating that the negative association between 
the relative abundance of this ASV and the presence of SARS-
CoV-2–associated respiratory symptoms was observed only in 
younger age groups (Figure 4B).

DISCUSSION

We identified nasopharyngeal microbiome profiles and 
specific bacterial taxa associated with SARS-CoV-2 infec-
tion and the presence of respiratory symptoms in SARS-
CoV-2–infected children, adolescents, and young adults. 
We demonstrated that nasopharyngeal microbiome diver-
sity and composition are strongly associated with age, and 
that age modifies the associations between specific bacterial 
taxa and SARS-CoV-2 infection status and the presence of 
SARS-CoV-2–associated respiratory symptoms. Our findings 
suggest that the upper respiratory microbiome may be a pre-
viously unrecognized and potentially modifiable mechanism 
by which age influences SARS-CoV-2 susceptibility and res-
piratory symptoms.

There are accumulating data supporting a key role for the 
upper respiratory microbiome in the pathogenesis of respi-
ratory virus infections. Prior studies indicate that the upper 
respiratory microbiome modifies susceptibility to respiratory 
virus infections, as has been demonstrated in studies of house-
hold influenza virus transmission [9]. The upper respiratory 
microbiome may also influence the symptoms of respiratory 
virus–infected individuals [21]. For example, among young chil-
dren with respiratory syncytial virus (RSV), higher abundances 
of Haemophilus species in the nasopharyngeal microbiome are 
associated with a more exuberant host immune response [10, 
22]. Nasopharyngeal microbiome profiles are also associated 
with inflammatory cytokine levels in nasal wash samples and 
the development of symptomatic infection in adults following 

Table 3. Differentially Abundant Bacterial Amplicon Sequence Variants in SARS-CoV-2–Infected and Uninfected Participants in GJAM Analyses

ASV Bacterial Species 

Age SARS-CoV-2 Infection Age × SARS-CoV-2 Infection

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) 

306 Moraxella nonliquefaciens −.020 (−.023, −.016) −.108 (−.158, −.055) .005 (.001, .009)

629 Prevotella nanceiensis −.002 (−.003, −.001) −.022 (−.037, −.006) .002 (.0003, .003)

692 Prevotella intermedia −.002 (−.003, −.0004) −.020 (−.038, −.001) NS NS

712 Prevotella melaninogenica −.002 (−.003, −.0009) −.016 (−.032, −.0006) .001 (.0007, .0002)

1095 Corynebacterium tuberculostearicum .006 (.004, .007) .022 (.002, .041) −.003 (−.004, −.001)

1163 Corynebacterium propinquum −.004 (−.007, −.0002) .090 (.040, .142) −.004 (−.009, −.0004)

1165 Corynebacterium propinquum NS NS −.033 (−.059, −.007) .003 (.001, .006)

1488 Streptococcus mitis −.002 (−.004, −.001) −.202 (−.038, −.002) NS NS

1581 Gemella morbillorum −.003 (−.004, −.001) −.022 (−.040, −.003) .002 (.0003, .003)

ASV, amplicon sequence variant; CI, confidence interval; GJAM, generalized joint attribute modeling; NS, not significant; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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experimental rhinovirus challenge [23]. Further, in animal 
models, intranasal administration of live bacterial strains di-
rectly modulates immune responses to viral infections [24, 25]. 
While data from clinical studies are currently lacking, this work 
suggests that targeted manipulation of the upper respiratory 

microbiome could be a promising approach to prevent or treat 
respiratory virus infections.

To date, studies of the upper respiratory microbiome and 
SARS-CoV-2 infection have primarily been conducted among 
cohorts of adults presenting with clinical suspicion of COVID-19. 

Figure 4. Interactive relationships between participant age, the relative abundances of specific bacterial ASVs in the nasopharyngeal microbiome, and SARS-CoV-2 status. 
A, Bar chart depicting differences in the mean relative abundance of ASV1163 (Corynebacterium propinquum) among SARS-CoV-2–infected participants relative to unin-
fected participants in different age categories. The line was constructed using the GJAM estimates for the association of SARS-CoV-2 infection with the relative abundance 
of ASV1163 (intercept) and the association of the interaction term between SARS-CoV-2 infection and age with the relative abundance of ASV1163 (slope). Higher relative 
abundances of ASV1163 were observed in SARS-CoV-2–infected compared with uninfected participants across all ages, but these differences were more pronounced in 
young children. B, Differences in mean relative abundance of ASV336 (Moraxella lincolnii) between SARS-CoV-2–infected participants with respiratory symptoms and SARS-
CoV-2–infected participants without respiratory symptoms are depicted by age category. Dark (light) gray bars represent age categories in which ASV336 was more (less) 
abundant among SARS-CoV-2–infected participants with respiratory symptoms compared with SARS-CoV-2–infected participants without respiratory symptoms. The line 
was constructed using the GJAM estimates for the association of SARS-CoV-2–associated respiratory symptoms with the relative abundance of ASV336 (intercept) and the 
association of the interaction term between respiratory symptoms and age with the relative abundance of ASV336 (slope). The difference in the mean relative abundance of 
ASV336 between SARS-CoV-2–infected participants with and without respiratory symptoms differed by age, such that this ASV was less abundant in the context of SARS-
CoV-2–associated respiratory symptoms among young children and more abundant in the context of SARS-CoV-2–associated respiratory symptoms in older age groups. Lines 
were fit using the regression coefficients generated using GJAM. Age is shown as a categorical variable only for graphical representation; all statistical analyses included 
age as a continuous variable. Abbreviations: ASV, amplicon sequence variant; GJAM, generalized joint attribute modeling; SARS-CoV-2, severe acute respiratory syndrome 
coronavirus 2. 

Table 4. Differentially Abundant Bacterial Amplicon Sequence Variants in SARS-CoV-2–Infected Participants With and Without Respiratory Symptoms 
in GJAM Analyses

ASV Bacterial Species 

Age
SARS-CoV-2 Respiratory  

Symptoms
Age × SARS-CoV-2 Respiratory 

Symptoms

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) 

336 Moraxella lincolnii −.006 (−.008, −.004) −.081 (−.111, −.051) .007 (.004, .009)

339 Moraxella lincolnii −.002 (−.003, −.0008) −.018 (−.032, −.004) .002 (.0003, .003)

692 Prevotella intermedia NS NS .024 (.008, .039) −.002 (−.003, −.0002)

1283 Fusobacterium nucleatum .003 (.0009, .005) .038 (.008, .067) −.004 (−.007, −.002)

1519 Streptococcus pyogenes NS NS .043 (.002, .071) NS NS

2155 Mycoplasma lipophilum −.001 (−.002, −.0003) −.014 (−.027, −.001) NS NS

Abbreviations: ASV, amplicon sequence variant; CI, confidence interval; GJAM, generalized joint attribute modeling; NS, not significant; SARS-CoV-2, severe acute respiratory syndrome 
coronavirus 2.
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de Castilhos and colleagues [26] evaluated the oropharyn-
geal microbiome in 148 SARS-CoV-2–infected outpatients,  
124 hospitalized patients with COVID-19, and 74 healthy adults. 
They did not identify any significant alterations in microbiome 
composition between SARS-CoV-2–infected outpatients and 
healthy controls but found marked dysbiosis among patients 
hospitalized with severe COVID-19. Mostafa and colleagues 
[27] reported lower nasopharyngeal microbial diversity, a lower 
abundance of the bacterial family Propionibacteriaceae, and 
a higher abundance of Corynebacterium accolens in 40 SARS-
CoV-2–infected adults compared with 10 SARS-CoV-2–unin-
fected adults. In this study, we identified distinct bacterial ASVs 
associated with SARS-CoV-2 infection and SARS-CoV-2–asso-
ciated respiratory symptoms. Additionally, we observed a lower 
prevalence of respiratory symptoms among SARS-CoV-2–
infected subjects with Corynebacteriun/Dolosigranulum-
dominant microbiome profiles compared with infected subjects 
with other microbiome profiles.

Non-diphtheriae Corynebacterium species and 
Dolosigranulum pigrum were previously shown to have impor-
tant microbial interactions within the human nasopharynx. 
Corynebacterium abundance within the nasopharyngeal 
microbiome has been negatively associated with Streptococcus 
pneumoniae colonization among infants and children [28, 29].  
Moreover, Corynebacterium spp. influence innate immune 
responses to viral infection in murine models [30, 31]. 
Dolosigranulum pigrum is also generally considered to play a 
protective role against viral and bacterial infections [32]. Islam 
and colleagues [33] recently demonstrated that administration 
of specific D. pigrum strains enhanced resistance to SARS-
CoV-2 infection of cultured human respiratory epithelial cells. 
Further, Smith and colleagues [34] observed decreased abun-
dance of both Corynebacterium and Dolosigranulum spp. in pa-
tients with severe COVID-19 symptoms.

Several prior studies evaluated associations between res-
piratory health and upper respiratory microbiome profiles. 
Toivonen and colleagues [35] used similar unsupervised 
clustering methods to create longitudinal nasopharyngeal 
microbiome profiles for 697 Finnish children during the first 
2 years of life to evaluate associations between microbiome 
composition, antibiotic exposures, and later asthma develop-
ment. Despite marked differences in the patient populations 
and sampling protocols, they identified microbiome profiles 
dominated by bacterial genera that were also prevalent in our 
cohort. Teo and colleagues [36] identified similar nasopharyn-
geal microbiome profiles among Australian infants during the 
first year of life and at 5 years of age. Notably, they found that 
microbiome profiles dominated by Moraxella, Streptococcus, 
or Haemophilus were more prevalent in samples collected 
during acute respiratory infections, while profiles dominated 
by Staphylococcus, Dolosigranulum, or Corynebacterium were 
more prevalent during periods of health [36]. Finally, Kelly 

et al [29] identified 5 nasopharyngeal microbiome profiles 
among 319 children less than 2 years of age in Botswana. In 
this study, Streptococcus-dominant or Moraxella-dominant pro-
files were more common among children with pneumonia or 
upper respiratory infection symptoms, while the majority of 
children without respiratory symptoms had microbiome pro-
files co-dominated by Corynebacterium and Dolosigranulum 
[29]. Taken together, these studies demonstrate that the human 
upper respiratory microbiome is composed largely of species 
from relatively few bacterial genera, and that microbiome pro-
files dominated by these species are observed in varied patient 
populations.

We observed that nasopharyngeal microbiome composi-
tion undergoes significant, age-associated shifts during in-
fancy, childhood, and adolescence. Moreover, nearly all the 
associations between nasopharyngeal microbiome features and 
SARS-CoV-2 status that we identified in this study were mod-
ified by age, indicating that age-associated changes in the na-
sopharyngeal microbiome likely contribute to the susceptibility 
to and severity of SARS-CoV-2 infections. Much of our know-
ledge regarding nasopharyngeal microbiome composition is 
derived from studies of infants or older adults, and surprisingly 
little is known about how the upper respiratory microbiome 
changes during childhood and adolescence [7, 8, 37–39]. Our 
findings demonstrate that development of the nasopharyngeal 
microbiome continues throughout childhood and adolescence 
and highlight the need for future studies to identify the bio-
logical or environmental factors that contribute to the shifts in 
microbiome composition that occur after early childhood.

Our study had several limitations. First, nasopharyngeal 
samples were collected at a single time point after SARS-CoV-2 
exposure; therefore, we were unable to determine if the dif-
ferences in nasopharyngeal microbiome compositions ob-
served by SARS-CoV-2 infection status preceded, or were the 
consequence of, SARS-CoV-2 infection. Future studies will 
need to use longitudinal sampling to evaluate causal relation-
ships between upper respiratory microbiome composition and 
SARS-CoV-2 infection susceptibility and severity. Second, all 
SARS-CoV-2–infected study participants had relatively mild 
symptoms; thus, we were unable to identify microbiome features 
associated with severe COVID-19. Our use of 16S rRNA gene 
amplicon sequencing prevented us from evaluating other com-
ponents of the upper respiratory microbiome, including viruses 
and fungi. Additionally, 16S rRNA gene amplicon experiments 
have several well-documented biases [40], although we sought 
to minimize these biases in our study through inclusion of all 
samples in a single processing run and use of appropriate nega-
tive controls. Use of metagenomic sequencing in future studies 
would enable improved discrimination of bacterial species and 
analyses of other microbial kingdoms that are components of 
the nasopharyngeal microbiome. Finally, residual confounding 
by unmeasured factors remains possible.
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In conclusion, we found that age modifies the associations 
between specific bacterial taxa and both SARS-CoV-2 infection 
status and the presence of respiratory symptoms. These findings 
suggest that development of the nasopharyngeal microbiome 
during childhood and adolescence may contribute to the dif-
ferences in SARS-CoV-2 susceptibility and severity observed by 
age. Future studies should evaluate the potential of the upper 
respiratory microbiome to serve as a therapeutic target for the 
prevention and treatment of infections caused by SARS-CoV-2 
and other respiratory viruses.
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