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Here we report a bio-statistical/informatics tool, ABioTrans, developed in R for gene
expression analysis. The tool allows the user to directly read RNA-Seq data files
deposited in the Gene Expression Omnibus or GEO database. Operated using any web
browser application, ABioTrans provides easy options for multiple statistical distribution
fitting, Pearson and Spearman rank correlations, PCA, k-means and hierarchical
clustering, differential expression (DE) analysis, Shannon entropy and noise (square of
coefficient of variation) analyses, as well as Gene ontology classifications.

Keywords: transcriptomics, correlation, entropy, noise, DEG (differentially expressed genes), RNA-seq,
clustering, gene expression data

INTRODUCTION

Large-scale gene expression analysis requires specialized statistical or bioinformatics tools to
rigorously interpret the complex multi-dimensional data, especially when comparing between
genotypes. There are already several such tools developed with fairly user-friendly features (Russo
and Angelini, 2014; Poplawski et al., 2016; Velmeshev et al., 2016). Nevertheless, there still is
a need for more specialized, focused and “click-and-go” analysis tools for different groups of
bioinformatics and wet biologists. In particular, software tools that perform gene expression
variability through entropy and noise analyses are lacking. Here, we focused on very commonly
used statistical techniques, namely, Pearson and Spearman rank correlations, Principal Component
Analysis (PCA), k-means and hierarchical clustering, Shannon entropy, noise (square of coefficient
of variation), differential expression (DE) analysis, and gene ontology classifications (Tsuchiya et al.,
2009; Piras et al., 2014; Piras and Selvarajoo, 2015; Simeoni et al., 2015).

Using R programming as the backbone, we developed a web-browser based user interface to
simply perform the above-mentioned analyses by a click of a few buttons, rather than using a
command line execution. Our interface is specifically made simple considering wet lab biologists as
the main users. Nevertheless, our tool will also benefit bioinformatics and computational biologists
at large, as it saves much time for running the R script files for analyses and saving the results in pdf.

MAIN INTERFACE AND DATA INPUT

Upon loading ABioTrans.R, the homepage window pops up and displays a panel to choose the
RNA-Seq data and supporting files (Figure 1). The data file, in comma-separated value (.csv)
format, should contain the gene names in rows and genotypes (conditions: wildtype, mutants,
and replicates, etc.) in columns, following the usual format of files deposited in the GEO database
(Clough and Barrett, 2016). Supporting files (if applicable) include gene length, list of negative
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control genes, and metadata file. If the data files contain raw
read counts, the user can perform normalization using 5 popular
methods: FPKM, RPKM, TPM, Remove Unwanted Variation
(RUV), or upper quartile in the pre-processing step (Mortazavi
et al., 2008; Trapnell et al., 2010; Wagner et al., 2012; Risso
et al., 2014). FPKM, RPKM, and TPM normalization requires
inputting gene length file, which should provide matching gene
name and their length in base pair in two-column csv file. RUV
normalization requires a list of negative control genes (genes that
are stably expressed in all experimental conditions), which should
be contained in a one-column csv file. If negative control genes
are not available, upper quartile normalization option will replace
RUV. The metadata file is required for DE analysis, and should
specify experimental conditions (e.g., Control, Treated, etc.) for
each genotype listed in the data file. Otherwise, the user can move
to the next option to perform/click all available analysis buttons
(scatter plot, distribution fit, and Pearson Correlation, etc.) once
a data file is loaded (whether normalized or in raw count).

DATA PRE-PROCESSING

Upon submitting data files and all supporting files (gene length,
negative control genes, and metadata table), the user can filter
the lowly expressed genes by indicating the minimum expression
value and the minimum number of samples that are required to
exceed the threshold for each gene. If input data contain raw read
counts, user can choose one of the normalization options (FPKM,
RPKM, TPM, upper quartile, and RUV) listed upon availability
of supporting files. FPKM, RPKM, and TPM option perform
normalization for sequencing depth and gene length, whereas
RUV and upper quartile eliminate unwanted variation between
samples. To check for sample variation, Relative Log Expression
(RLE) plots (Gandolfo and Speed, 2018) of input and processed
data are displayed for comparison.

SCATTER PLOT AND DISTRIBUTIONS

The scatter plot displays all gene expressions between any
two columns selected from the datafile. This is intended
to show, transcriptome-wide, how each gene expression
varies between any two samples. The lower the scatter,
the more similar the global responses and vice-versa
(Piras et al., 2014). That is, this option allows the user
to get an indication of how variable the gene expressions
are between any two samples (e.g., between 2 different
genotypes or replicates).

After knowing this information, the next process is to
make a distribution (cumulative distribution function) plot and
compare with the common statistical distributions. As gene
expressions are known to follow certain statistical distributions
such as power-law or lognormal (Furusawa and Kaneko, 2003;
Bengtsson et al., 2005; Beal, 2017; Bui et al., 2018), we
included the distribution test function. Previously, we have
used power-law distribution to perform low signal-to-noise
expression cutoff with FPKM expression threshold of less

than 10 (Simeoni et al., 2015). Thus, this mode allows the
user to check the deviation of their expression pattern with
appropriate statistical distributions to select reliable genes for
further analysis.

ABioTrans allows the comparison with (i) log-normal, (ii)
Pareto or power-law, (iii) log-logistic (iv) gamma, (v) Weibull,
and (vi) Burr distributions. To compare the quality of statistical
distribution fit, the Akaike information criterion (AIC) can also
be evaluated on this screen.

PEARSON AND SPEARMAN
CORRELATIONS

This mode allows the user to compute linear (Pearson)
and monotonic non-linear (Spearman) correlations, (i) in
actual values in a table or (ii) as a density gradient plot
between the samples.

PCA AND K-MEANS CLUSTERING

The PCA button plots the variance of all principal components
and allows 2-D and 3-D plots of any PC-axis combination.
There is also a slide bar selector for testing the number of
k-means clusters.

ENTROPY AND NOISE

These functions measure the disorder or variability between
samples using Shannon entropy and expressions scatter
(Shannon, 1948; Bar-Even et al., 2006). Entropy values
are obtained through binning approach and the number
of bins are determined using Doane’s rule (Doane, 1976;
Piras et al., 2014).

To quantify gene expressions scatter, the noise
function computes the squared coefficient of variation
(Gandolfo and Speed, 2018), defined as the variance (σ2)
of expression divided by the square mean expression
(µ2), for all genes between all possible pairs of samples
(Piras et al., 2014).

DIFFERENTIAL EXPRESSION ANALYSIS

ABioTrans provides users with 3 options to carry out DE
analysis on data with replicates: edgeR, DESeq2, and NOISeq
(McCarthy et al., 2012; Love et al., 2014; Tarazona et al.,
2015). In case there are no replicates available for any
of the experimental condition, technical replicates can be
simulated by NOISeq. edgeR and DESeq2 requires filtered
raw read counts, therefore, it is recommended that the user
provide input data file containing raw counts if DE analysis
is required using either of the two methods. On the other
hand, if only normalized gene expression data is available,
NOISeq is recommended.
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FIGURE 1 | ABioTrans main interface and snapshots of various analysis mode.
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To better visualize DE analysis result by edgeR and
DESeq, volcano plot (plot of log10-p-value and log2-fold
change for all genes) distinguishing the significant
and insignificant, DE and non-DE genes, is displayed.
Plot of dispersion estimation, which correlates to gene
variation, is also available in accordance to the selected
analysis method.

HIERARCHICAL CLUSTERING AND
HEATMAP

This function allows clustering of differentially expressed genes.
User can either utilize the result from DE analysis, or carry out
clustering independently by indicating the minimum fold change
between 2 genotypes.

For clustering independently, normalized gene expression
(output from pre-processing tab) first undergo scaling
defined by Zj

(
pi

)
=

(
xj

(
pi

)
−

(
x̄j

))
/σxj where Zj

(
pi

)
is the scaled expression of the jth gene, xj

(
pi

)
is

expression of the jth gene in sample pi, x̄j is the mean
expression across all samples and σxj is the standard
deviation (Simeoni et al., 2015). Subsequently, Ward
hierarchical clustering is applied on the scaled normalized
gene expression.

ABioTrans also lists the name of genes for each cluster.

GENE ONTOLOGY

This function is used to define the biological processes or
enrichment of differentially regulated genes in a chosen sample or

cluster. User can select among 3 gene ontology enrichment test:
enrichR, clusterProfiler and GOstats (Falcon and Gentleman,
2007; Yu et al., 2012; Kuleshov et al., 2016).

The user needs to create a new csv file providing the name
of genes (for each cluster) in 1 column (foreground genes).
Background genes (or reference genes), if available, should be
prepared in the same format. Next, the sample species, gene
ID type (following NCBI database (Clough and Barrett, 2016))
and one of the three subontology (biological process, molecular
function, or cellular component) need selection. The output
results in a gene list, graph (clusterProfiler), and pie chart
(clusterProfiler and GOstats) for each ontology.

TYPICAL ANALYSIS TIME ESTIMATION

The loading time of ABioTrans for a first time R user is about
30 min on a typical Windows notebook or Macbook. This
is due to the installation of the various R-packages that are
prerequisite to run ABioTrans. For regular R users, who have
installed most packages, the initial loading can take between a
few to several minutes depending on whether package updates
are required. Once loaded, the subsequent re-load will take
only a few seconds.

The typical time taken from pre- to post-processing using
all features in ABioTrans is between 10–20 min. Table 1 below
highlights the typical time taken for each execution for 3 sample
data deposited in ABioTrans Github folder (zfGenes, Biofilm-
Yeast, and Yeast-biofilm2).

ABioTrans has also been compared with other
similar freely available RNA-Seq GUI tools, and it

TABLE 1 | Time comparison of functionalities for different test data.

Type of analysis Time (s)

Test 1∗ Test 2# Test 3∧

Pre-processing TPM/RPKM/FPKM and RLE plot − − 0.6 s

Upper quartile normalization and RLE plot − 0.5 s 0.6 s

RUV normalization and RLE plot 1.7 s − −

Scatter plot 0.01 s 0.01 s 0.01 s

Distribution fitting (for all 6 distributions) 4.3 s 3.1 s 2.5 s

Correlation matrix 0.01 0.01 s 0.01 s

PCA calculation and plotting 0.01 0.01 0.01

DE analysis edgeR 7.89 1.52 s 5.23 s

DESeq2 15.4 s 3.1 s 11.3 s

NOISeq 29.6 s 22.87 s 31.0 s

Heat map and hierarchical clustering DE (using edgeR result) (5 clusters) 0.36 s 1.7 s 0.25 s

Independent (5 clusters) 30.4 s 7.7 s 4.6 s

Noise 3.2 s 1.3 s 3.9 s

Shannon entropy 0.03 s 0.02 s 0.08 s

GO analysis (using edgeR result) clusterProfiler 20.2 s 10.3 s 9.1 s

GOstats 26.6 s 10.2 s 12.3 s

EnrichR − − −

∗Risso et al., 2014: GEO accession number: GSE53334. #Bendjilali et al., 2017: GEO accession number: GSE85595. ∧Cromie et al., 2017: GEO accession
number: GSE85843.
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demonstrates better functionalities and capabilities
(Supplementary Table S1).

SUMMARY

ABioTrans is a user-friendly, easy-to-use, point-and-click
statistical tool tailored to analyse RNA-Seq data files. It can also
be used to analyse any high throughput data as long as they follow
the format listed in this technology report. The complete user
manual to operate ABioTrans is available as Supplementary Data
Sheet S1 in Supplementary Material posted online.

AVAILABILITY AND IMPLEMENTATION

ABioTrans is available at: https://github.com/buithuytien/
ABioTrans, Operating system(s): Platform independent
(web browser), Programming language: R (RStudio),
Other requirements: Bioconductor genome wide annotation
databases, R-packages (shiny, LSD, fitdistrplus, actuar, entropy,
moments, RUVSeq, edgeR, DESeq2, NOISeq, AnnotationDbi,
ComplexHeatmap, circlize, clusterProfiler, reshape2, DT,
plotly, shinycssloaders, dplyr, ggplot2). These packages will
automatically be installed when the ABioTrans.R is executed
in RStudio. No restriction of usage for non-academic.
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