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At the onset of the corona virus disease 19 (COVID-19) pandemic, there were concerns

that patients with sickle cell disease (SCD) might be especially vulnerable to severe

sequelae of SARS-CoV-2 infection. While two reports support this conclusion, multiple

studies have reported unexpectedly favorable outcomes in patients with SCD. However,

mechanisms explaining these disparate conclusions are lacking. Here, we review recent

studies indicating that the majority of patients with SCD express elevated levels of anti-

viral type 1 interferons (IFNα/β) and interferon stimulated genes, independent of COVID-

19, during their baseline state of health. We also present our data from the pre-COVID-19

era, illustrating elevated expression of a well-characterized interferon stimulated gene

in a cohort of patients with SCD, compared to race-matched controls. These type 1

interferons and interferon stimulated genes have the potential to contribute to the variable

progression of COVID-19 and other viral infections in patients with SCD. While the

majority of evidence supports a protective role, the role of IFNα/β in COVID-19 severity

in the general population remains an area of current investigation. We conclude that type

1 interferon responses in patients with SCD may contribute to the variable COVID-19

responses reported in prior studies. Additional studies investigating the mechanisms

underlying IFNα/β production and other clinical consequences of IFNα/β-mediated

inflammation in SCD disease are warranted.

Keywords: sickle cell disease, type 1 interferons, COVID-19, myxovirus resistance interferon stimulated genes,

SARS-CoV-2

INTRODUCTION

Certain comorbidities are associated with an increased severity of corona virus disease
19 (COVID-19) resulting from SARS-CoV-2 infection (1). Given that patients with sickle
cell disease (SCD) have underlying chronic inflammation, significant cardiopulmonary
dysfunction, and immune deficiency due in part to hyposplenism, concern exists regarding
the severity of COVID-19 in patients with SCD (2). In March of 2020, the National
Haemoglobinopathy Panel in the United Kingdom deemed that patients with SCD and
other rare hemoglobinopathies are exceptionally vulnerable populations requiring strict
self-isolation (3). In November, the Center for Disease Control added SCD to the list
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Graphical Abstract | Hypothesis: Baseline type I interferon activity may contribute to variable COVID-19 progression in SCD. (Top) At early stages of SARS-CoV-2

infection, high baseline IFNα/β activity may contribute to the anti-viral response in patients with SCD. Recognition of damage-associated molecular patterns by pattern

recognition receptors (PRRs) induces IFNα/β production. Heme released from hemolyzed sickle cells binds Toll-like receptor 4 (TLR4), which may induce IFNα/β in

vascular endothelial cells. IFNα/β bind to the IFNα/β receptor (IFNAR) in neutrophils and other cells types, leading to production of MxA and other interferon-stimulated

genes (ISGs). ISGs can directly inhibit viral replication and promote B cell production of neutralizing antibodies. The IFNα/β response is one of multiple responses,

including production of IL-6, TNFα, and IL-1b, by innate and adaptive immune cells that have the potential to limit COVID-19 progression. (Bottom) In contrast,

reduced or absent IFNα/β activity may increase susceptibility to viral infection, leading to airway epithelial cell death and COVID-19. Dashed lines indicate potentially

connected pathways, while solid lines are supported by prior studies.

of comorbidities that may increase the severity of COVID-
19 (https://www.cdc.gov/coronavirus/2019-ncov/need-extra-
precautions/people-with-medical-conditions.html).

Multiple case series and reports have described the disease
course of patients with SCD and COVID-19. One common
finding is that COVID-19, like H1N1 influenza and other
respiratory infections, can trigger acute chest syndrome and vaso-
occlusive crises (4, 5). However, it is unclear whether patients
with SCD have a more or less severe COVID-19 disease course
than those without SCD. Minniti et al. reported that pre-existing
co-morbidities, including renal and cardiopulmonary disease, are
associated with poor COVID-19 outcomes in patients with SCD
(6). In addition, Singh et al. found an increase in hospitalizations
and pneumonia, but no increase in mortality, when comparing
patients with SCD to race-matched controls with comorbidities
(7). In contrast, smaller studies have reported favorable outcomes
in patients with SCD (4, 8–11). As reviewed by Sahu et al., most

SARS-CoV-2 infected patients with SCD experience mild disease
with few patients requiring respiratory support (12). While these
outcomes may be due to early diagnosis and treatment in an at-
risk population, underlying inflammatory mechanisms in SCD
may also influence COVID-19 progression.

Following SARS-CoV-2 infection, multiple cell types produce
cytokines, including IL-1b, TNFα, and IL-6, which contribute
to the anti-viral response and inflammation (13). Patients
with SCD have chronic inflammation at baseline, characterized
by leukocytosis, endothelial damage, oxidative stress, and
production of pro-inflammatory cytokines. Interleukin-6 is
induced during COVID-19, and there are reports of improved
COVID-19 outcomes following anti-IL-6 therapy in patients
with SCD (14, 15). In addition, there is particular interest in
the role of anti-viral type 1 interferons (IFNα/β) produced
following SARS-CoV-2 infection. IFNα/β, including IFNβ, IFNω

and 12 subtypes of IFNα, were discovered in 1957 for their
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FIGURE 1 | MxA expression is increased in patients with SCD, compared to controls. MxA expression in whole blood measured by MxA Protein Human ELISA

(BioVendor). (A) MxA expression in de-identified remnant samples from patients with (n = 13) or without SCD (n = 37). (B) MxA expression in patients with SCD (n =

24) and race-matched controls (n = 12) summarized in Table 1. (C) Percentage of subjects summarized in Table 1 with detectable levels of MxA. (D) MxA expression

of patients with SCD (n = 24) who were not tested or tested positive (n = 4) or negative (n = 11) for SARS-CoV-2 by PCR. n.s., not significant by Kruskal Wallis test

with a Dunn’s post-test. *p < 0.05, ****p < 0.0001 by Mann-Whitney U-test. Bars represent the mean. Circles represent values from individual patient or control

samples, and error bars represent the standard deviation.

critical role in anti-viral immunity (16). During infection,
viral nucleic acids bind pattern recognition receptors and
induce IFNα/β, which in turn activate signaling via the IFNα/β
receptor to produce interferon-stimulated genes (ISGs) that
interfere with viral replication and promote the production of
neutralizing antibodies. Independent of COVID-19, Hounkpe
et al. performed a meta-analysis of gene expression studies and
identified a cluster of ISGs enriched in patients with SCD (17).
In addition, Hermand et al. recently reported that serum IFNα

and ISGs produced by neutrophils are elevated in children with
SCD, compared to healthy blood donors (18). Here, we assessed
the baseline expression of a well-characterized ISG, Myxovirus
Resistance Protein 1 (MxA), in adults with SCD compared to
race-matched controls, and describe SARS-CoV-2 test results and
COVID-19 hospitalization outcomes in one patient cohort.

METHODS AND RESULTS

Discovered in 1962 for its role in resistance to orthomyxoviruses,
including influenza, MxA is a GTPase that targets nucleocapsid
proteins and inhibits viral transcription and replication (19,

20). MxA has since been reported to be a clinically applicable
biomarker of IFNα/β activation (21). In the pre-COVID era,
we utilized an ELISA-based assay (BioVendor, Czech Republic)
to quantify MxA levels in the whole blood of patients with
and without SCD, according to manufacturer instructions.
Initially, 13 SCD and 37 control de-identified remnant type
and screen samples were randomly selected from the blood
bank. All samples were analyzed within 72 h of the blood
draw. In this initial analysis, patients with SCD expressed
a significantly elevated level of MxA, compared to controls
(Figure 1A).

Given that these initial samples were de-identified and the
health status of patients and controls was unknown, a second
study comparing MxA levels in patients with SCD seen in out-
patients clinics for routine care and race-matched controls was
initiated. Blood was drawn from 24 patients and 12 controls in
their baseline state of health. 22 patients had Hgb SS, 1 had Hgb
SC, and 1 had Sβ0 disease (Table 1). Exclusion criteria included
acute illness or crisis, pregnancy, and lack of competency to
provide informed consent. The study was approved by the Yale
Institutional Review Board.
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TABLE 1 | Demographics of subjects enrolled in second study.

SCD Control

Gender Male (%) 7 (29%) 6 (50%)

Female (%) 17 (71%) 6 (50%)

Mean age in years (Std Dev) 29.3 (9.8) 41.2 (13.7)

Hgb S disease SS (%) 22 (92%)

SC (%) 1 (4%)

Sβ0 (%) 1 (4%)

Gender, age, and hemoglobinopathy of subjects. SCD, sickle cell disease; Std Dev,

standard deviation.

In this second study, MxA was also significantly elevated in
patients with SCD compared to control subjects (Figure 1B). 83%
of patients with SCD had detectable MxA, compared to 33% of
controls (Figure 1C). It is noteworthy that expression of MxA,
as well as IFNα and other ISGs (18), is highly variable amongst
patients with SCD, which may contribute to differences in anti-
viral immunity. In addition, MxA was detected in four of 12
controls, which may reflect the role of IFNα/β and MxA in other
diseases, including autoimmunity and viral infections (19, 21).

Finally, we retrospectively examined SARS-CoV-2 testing
results and COVID-19 severity of patients with SCD enrolled in
the second study. Fifteen of the 24 patients had test results of
SARS-CoV-2 PCR documented in the electronic medical record.
Eleven patients had only negative test results and four patients
tested positive. Three of the four with positive PCR results
were admitted to the hospital: two were diagnosed with acute
chest syndrome and received supplemental oxygen but neither
required intubation; all patients survived. MxA levels of these
patients, according to SARS-CoV-2 test results, are shown in
Figure 1D. There were no significant differences in MxA levels
between untested patients, patients with negative results, and
patients with positive results.

DISCUSSION

Data presented here, in combination with prior studies (17,
18), indicate that patients with SCD express an IFNα/β gene
signature. As IFNα/β and ISGs are upregulated as a result
of SARS-CoV-2 infection and vaccination (22), it is worth
noting that these laboratory studies were completed prior to the
COVID-19 pandemic. This allowed for baseline measurement
of MxA without the potential variable of SARS-CoV-2 infection
or vaccination. While SARS-CoV-2 test results and COVID-19
hospitalization outcomes were examined, based on the sample
size, no definitive conclusions can be drawn about baseline MxA
levels and the risk of SARS-CoV-2 infection or disease severity.
While it is plausible that elevated baseline anti-viral IFNα/β and
ISGs, including MxA, contribute to the variable progression of
COVID-19 and other viral infections in patients with SCD, it is
certain that other inflammatory responses, including production
of IL-1b, TNFα, and IL-6, also significantly contribute to the
anti-viral response (23).

Multiple groups have investigated the role of IFNα/β in
COVID-19 disease progression, independent of SCD. Utilizing
mass cytometry and Nanostring technology, Hadjadj et al.
performed immune profiling of 50 COVID-19 patients and
observed an impaired IFNα/β response in severe and critically
ill patients, compared to those with mild to moderate disease
(24). Also in support of a protective role of IFNα/β, another
group found inborn errors of IFNα/β immunity and an increased
prevalence of autoantibodies against IFNα/β, including IFNα and
IFNω, in critically ill COVID-19 patients, compared to those with
mild disease or asymptomatic infection (25, 26). These results are
consistent with recent reports of reduced COVID-19 associated
mortality in patients treated with IFNβ (27, 28), and reduced
duration of detectable virus and inflammation in a cohort treated
with IFN-α2b (29).

Conversely, another group concluded that the IFNα/β
response can also exacerbate deleterious COVID-19 induced
inflammation. Utilizing single cell RNA sequencing, Lee et al.
observed that an IFNα/β response was absent in mild disease
but co-existed with Tumor Necrosis Factor α (TNFα) and IL-
1b production in severe COVID-19 disease (13). However, it
is unclear whether the correlation between IFNα/β and severe
disease in this study is causal or responsive. In addition,
Ziegler et al. demonstrated that angiotensin converting enzyme
2 (ACE2), a receptor for the SARS-CoV-2 spike protein, is
an ISG expressed by multiple pulmonary cell types, suggesting
that the virus may exploit the IFNα/β response to gain viral
entry (30).

Although evidence supporting a protective role of IFNα/β
outweighs that supporting a deleterious role in COVID-19
disease progression, it remains an area of current investigation.
Ongoing clinical trials have shown conflicting results. A phase
2 trial of inhaled IFNβ showed clinical improvement (31), while
data from theWorld Health Organization Solidarity trial indicate
that IFNβ is not effective in improving mortality or other
endpoints (32). Others have postulated that the timing of IFNα/β
responses may impact the outcomes of the aforementioned
studies (33). Early robust responses and early treatment with
inhaled IFNβ may lead to reduced viral load; whereas delayed
and dysregulated IFNα/β responses or IFNα/β-based treatments
may exacerbate deleterious hyperinflammation at later stages of
disease (34, 35).

It is noteworthy that IFNα/β has also been implicated in
the pathogenesis of autoimmune diseases, including rheumatoid
arthritis, myositis, Sjögren’s syndrome (SS), systemic sclerosis
and systemic lupus erythematosus (SLE) (36–40). Approximately
two-thirds of adult patients and nearly all children with SLE
express an IFNα/β gene signature (41, 42), and more than
50% of SLE-associated genetic variants have been linked to
the IFNα/β pathway (43). In addition, approximately 25% of
patients with SLE produce anti-IFNα/β autoantibodies, which
are associated with decreased disease activity (44, 45). Due to
the IFNα/β gene signature and the use of hydroxychloroquine
in patients with SLE, many groups have investigated COVID-
19 disease progression in patients with SLE and have reported
variable results (46, 47). Unfortunately, it has been difficult
to separate the effects of baseline IFNα/β activity and the use
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of immunosuppressive therapies, which result in an increased
incidence of multiple viral infections in patients with SLE (48).

Specific mechanisms leading to IFNα/β activation during viral
infection or SLE are fairly well-characterized. However, IFNα/β-
inducing stimuli and pathways in SCD have not been identified.
Heme-induced inflammation is one of many candidates yet to
be investigated. Heme, released from hemolyzed RBCs, binds to
Toll-like receptor 4 and induces NFκb-mediated production of
pro-inflammatory cytokines, including IL-6, IL-12, and TNFα
(49). However, its role in IFNα/β activation has not been
reported, and many other ligands and pathways are worthy
of investigation. Moreover, while anti-IFNα/β antibodies that
prevent IFNα/β-induced inflammation have been described in
patients with autoimmune polyendocrinopathy syndrome, SLE
and COVID-19 (25, 50, 51), it is unclear whether they are
produced by patients with SCD and whether they contribute to
the variable disease progression during viral infection.

Finally, unlike in viral infection and autoimmunity, the
contribution of IFNα/β activation to chronic inflammation and
the numerous sequelae of SCD are unknown and warrant
investigation. For example, endothelial damage is a hallmark of
SCD associated with vaso-occlusive crises, including acute chest
syndrome and cerebrovascular accidents, and mortality (52, 53).
IFNα/β has been shown to induce endothelial damage in patients
with anti-phospholipid syndrome, thrombotic microangiopathy,
and SLE, and recipients of IFNα/β therapy (54–57). However,
the role of IFNα/β in endothelial damage, and its associated
adverse events, in SCD has not been investigated. In addition,
prior studies reported that IFNα/β is a critical regulator of
RBC alloimmunization in transfusion mouse models (58–61).
Alloantibody production against minor RBC antigens can lead
to significant hemolytic events and severely limit availability of
blood products for alloimmunized patients. As patients with
SCD have the highest incidence of RBC alloimmunization
(62) compared with any other disease population, the role of
IFNα/β in RBC alloimmunization in patients with SCD warrants
further study.

In conclusion, data presented here, in combination with
other studies, indicate that the majority of patients with SCD
express an IFNα/β gene signature. While the impact of IFNα/β
and ISGs on SARS-CoV-2 infection risk or COVID-19 disease

severity remains to be fully determined, baseline IFNα/β activity
may contribute to the variable disease progression reported
in prior studies. Additional studies investigating mechanisms
underlying IFNα/β production and clinical consequences of
IFNα/β-mediated inflammation in SCD are needed. Future
studies elucidating the role of IFNα/β in chronic inflammation,
RBC alloimmunization, and vaso-occlusive events could lead
to targeted therapies to mitigate severe sequelae in patients
with SCD.
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