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Symbiodinolide is a polyol marine natural product with a molecular weight of 2860. Herein, a streamlined synthesis of the

C79—C97 fragment of symbiodinolide is described. In the synthetic route, a spiroacetalization, a Julia—Kocienski olefination, and a

Sharpless asymmetric dihydroxylation were utilized as the key transformations.

Findings

A 62-membered polyol marine natural product, symbiodinolide
(1, Figure 1), was isolated from the 80% aqueous ethanol
extract of the cultured symbiotic dinoflagellate Symbiodinium
sp. in 2007 [1]. Symbiodinolide shows voltage-dependent
N-type Ca2* channel-opening activity at 7 nmol/L and COX-1
inhibitory effect at 2 umol/L (65% inhibition). Furthermore, 1
ruptures the tissue surface of the acoel flatworm Amphiscolops
sp. at 2.5 umol/L. The entire planar structure of 1 was estab-

lished by the detailed 2D NMR spectroscopic analysis.

However, the complete stereostructural determination of 1
with its 61 chirality centres and a molar mass of 2860 has

been an unsolved issue. Therefore, in order to complete the

configurational elucidation of 1, we are now investigating
its chemical degradation [1-3] and chemical synthesis of the
fragments [4-11].

Previously, we reported the stereoselective synthesis of the
spiroacetal C79—-C96 fragment [4], which is summarized in
Scheme 1. Triflate 2 was reacted with the lithium acetylide
prepared from alkyne 3 to give the desired coupling product 4.
The TBDPS ether 4 was transformed to TIPS ether 5 because of
the lability of the TBDPS protecting group under the following
Birch conditions. The alkyne 5 was subjected to the Birch
reduction to afford the trans-alkene 6, wherein the benzyl
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Figure 1: Structure of symbiodinolide (1).
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Scheme 1: Our previous synthesis of the C79-C96 fragment 7.

moiety was deprotected. The alkene 6 was derivatized to the
spiroacetal C79—C96 fragment 7 in four steps including the
benzyl protection and Sharpless asymmetric dihydroxylation
(AD). Although the desired spiroacetal fragment 7 was synthe-
sized stereoselectively, the transformation starting with the
coupling between 2 and 3 to the final product 7 needed eight
steps. Therefore, we decided to examine the more efficient
synthesis of the spiroacetal fragment. Herein, we report the im-
proved synthesis of the spiroacetal fragment by utilizing
Julia—Kocienski olefination as the coupling reaction.

The new retrosynthetic analysis of the C79-C97 fragment 8 is
described in Scheme 2. We envisaged that the diol 8 could be
synthesized by the Julia—Kocienski olefination [12-14] between
aldehyde 9 and 1-phenyl-1H-tetrazol-5-yl (PT)-sulfone 10 and
subsequent Sharpless AD [15], wherein the target molecule 8
could be prepared in two steps from the coupling. The carbon
framework of 9 could be constructed through the stereo-

selective spiroacetalization of dihydroxyketone 11.

First, we commenced the stereocontrolled synthesis of alde-
hyde 20 (Scheme 3). Treatment of epoxide 13, which was
prepared from L-aspartic acid (12) by the known procedure [8],
with 3-butenylmagnesium bromide/Cul [16] provided the
corresponding secondary alcohol. Protection of the alcohol with
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Scheme 2: Retrosynthetic analysis of the C79-C97 fragment 8.

TBSCI afforded TBS ether 14 in 91% yield in two steps. Alkene
14 was reacted with m-CPBA to produce epoxide 15 as a 1:1
diastereomeric mixture. Epoxide 15 was coupled with alkyne 16
[4] in the presence of n-BuLi/BF3-OEt, [17] to give the desired
product 17 in 92% yield from 15. Hydrogenation of the alkyne
moiety of 17 followed by TPAP oxidation [18] yielded ketone
18. Removal of the three TBS protecting groups and subse-
quent stereoselective spiroacetalization were performed in one-
pot with CSA in MeOH to provide spiroacetal 19 as a single
stereoisomer [19,20]. The stereochemistry of 19 was elucidated
by the observed NOE correlations between H-83 and H-91 as
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indicated by an arrow. The plausible rationale for the stereo-
selective formation of 19 is the thermodynamic stability due to
the double anomeric effect. Oxidation of the alcohol 19 with
SO3-pyr/Et3N/DMSO [21] afforded aldehyde 20.

Next, we carried out the synthesis of PT-sulfones 23 and 24
which were the coupling partners of the aldehyde 20
(Scheme 4). The synthesis started from commercially available
methyl (5)-3-hydroxy-2-methylpropanoate (21), which was
converted to alcohol 22 by the known method [22]. Alcohol 22
was treated with 1-phenyl-1H-tetrazole-5-thio/DEAD/PPhj to
furnish the corresponding PT-sulfide, which was oxidized with

Me Me
HO__~ —
~">Co,Me HO\/ZZ\/\OTBDPS
21

1) 1-phenyl-1H-tetrazole-5-thiol
DEAD, PPh3, THF, 0 °C Me

PTOZS\/;?/\OTBDPS

2) H20,, (NH4)eM07024-4H,0
EtOH, 0 to 40 °C
69% (2 steps)

1) CSA, MeOH, 40 °C Me
PTOZS\/24\/\OTBS

2) TBSCI, imidazole, CH,Cly, rt
92% (2 steps)

Scheme 4: Synthesis of PT-sulfones 23 and 24.
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Scheme 3: Synthesis of aldehyde 20.
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H>0,/Mo(VI) [23] to yield PT-sulfone 23. The TBDPS
protecting group of 23 was transformed to the TBS group in
two steps to provide PT-sulfone 24.

With the coupling precursors aldehyde 20 and PT-sulfones 23
and 24 in hand, we next examined the Julia—Kocienski olefina-
tion [12-14] of these compounds (Table 1). Deprotonation of
the PT-sulfone 23 with KHMDS, followed by addition of the
aldehyde 20, gave rise to the desired coupling product (£)-25
along with (Z)-25 in 27% combined yield at a 3.5:1 diastereo-
meric ratio (Table 1, entry 1). When NaHMDS was used as the
base, the chemical yield was improved to 77%, however, the
E/Z ratio was decreased to 1.3:1 (Table 1, entry 2). When LDA
was used as the base, the chemical yield and diastereomeric
ratio were increased to 98% and 2.6:1, respectively (Table 1,
entry 3). Reaction of PT-sulfone 24 using LDA gave the
coupling products (E)- and (Z)-26 in 86% yield, wherein the
diastereomeric ratio was increased to 5.0:1 (Table 1, entry 4).
The configurations of the coupling products were elucidated by
their coupling constants between H-93 and H-94 (15.3 Hz in
(E)-25 and (E)-26, 10.7 Hz in (£)-25 and (Z)-26). Finally, the
desired alkene (£)-26 was subjected to the Sharpless AD [15]
with AD-mix-f to furnish the C79-C97 fragment 27 in 72%
yield as a single diastereomer (Scheme 5). The configuration of
the resulting two vicinal hydroxy groups at C93 and C94 of 27
were unambiguously confirmed by the modified Mosher

method, respectively (see Supporting Information File 1).
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Scheme 5: Synthesis of the C79-C97 fragment 27.

In conclusion, we have achieved the stereoselective synthesis of
the C79-C97 fragment. The synthetic route has featured a
stereoselective spiroacetalization, a Julia—Kocienski olefination,
and a Sharpless asymmetric dihydroxylation. This synthesis of
the spiroacetal fragment, wherein the two-step sequence was
conducted and the overall yield was 52% from the coupling, has
been improved over the previous synthesis wherein the eight-
step transformation was needed and the overall yield was 31%
from the coupling. Further synthetic effort of symbiodinolide
toward the complete structural elucidation is currently under-

way and will be reported in due course.

Table 1: Julia—Kocienski olefination between aldehyde 20 and PT-sulfones 23 and 24.

BnO

BnO

OP
9
(E)-25: P = TBDPS
(E)-26: P =TBS
base 3Jho3Ho4 = 15.3 Hz
+ THF, 78 °C + '
Me BnO
PTO,S._ - h
2 \/\/\OP
23: P = TBDPS (2)-25:P=TBDPS Me oP
24: P =TBS (Z)-26: P=TBS
3JH93,H94 =10.7 Hz
Entry PT-Sulfone Base Yield (%)@ Ratio (E:Z)P
1 23 KHMDS 27 3.5:1
2 23 NaHMDS 77 1.3:1
3 23 LDA 98 2.6:1
4 24 LDA 86 5.0:1

a|solated yield from 20. PDetermined by "H NMR spectroscopy.
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Supporting Information

Supporting Information File 1

Experimental procedures, spectroscopic data, and NMR
spectra of all new compounds.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-9-228-S1.pdf]
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