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The delicate balance of melanoma immunotherapy
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The strategy of immune modulation for the treatment of cancer is being refined with the introduction of multiple new

therapeutic agents into the clinic. Melanoma is a disease where many of these agents have demonstrated efficacy. The

mechanisms of action of these agents exploit the counter-regulatory mechanisms of the immune response. However, these

agents are also associated with immune-related adverse events (IRAEs), which represent tissue-specific inflammatory responses.

These IRAEs highlight the delicate balance of immunologic homeostasis and, with some interventions, may occur more

frequently in patients who sustain a therapeutic response. This review will discuss melanoma immunogenicity and

immunotherapy. Furthermore, the spectrum and distinction between a reversible immune adverse event and autoimmunity

will be highlighted.
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One of the fundamental roles of the immune system is distinguishing
self from non-self.1 Two disease processes that skirt this dichotomy
are autoimmunity and cancer. The immune system is designed to
prevent autoimmunity, and, in general, autoimmune disease
represents a failure of regulatory mechanisms to maintain tolerance
to self-antigens. On the contrary, although there are systems in place
by which the immune system eradicates malignant cells, increasing
evidence points to a multitude of complex mechanisms by which
tumors avoid immune recognition. The development of new, effective
agents for immunotherapy of cancer has been coupled with
the emergence of a new panel of toxicities, which have been
termed immune-related adverse events (IRAEs). Although most of
these immune events are medically manageable, evidence suggests
that some immunotherapies are also eliciting immune-mediated
inflammation of normal tissues.

Melanoma is a disease where major insights have been made
using immunotherapeutic approaches. This review discusses mela-
noma tumor antigen expression, associated endogenous antitumor
immune responses and mechanisms of action of new immunothera-
pies. The review further discusses how IRAEs may be related to
antitumor responses and how these adverse events reveal mechanistic
insights to better understand and utilize novel immunotherapeutics.

EVIDENCE FOR MELANOMA IMMUNOGENICITY

In the late 1950s, Burnet and Thomas introduced the hypothesis of
cancer immune surveillance, suggesting that cancers may develop
new antigens that could ‘provoke an effective immunological
reaction with regression of the tumor’.2 Burnet3 went on to

describe immunosurveillance as an ‘evolutionary necessity’ to
eliminate mutant cells.

A seminal discovery in the field of tumor immunity by Shankaran
et al.4 introduced the concept of tumor immunoediting, a
process where tumors are shaped by the host immune system. The
authors demonstrated that carcinogen-induced tumors derived from
immunocompetent hosts could be transplanted into syngeneic wild-
type littermates, because they had been edited to allow for growth.
In contrast, tumors from immunocompromised hosts could only
grow after being transplanted into syngeneic immunocompetent hosts
half the time.4 This observation suggested that tumors arising in
immunocompromised mice were not modified by the immune
system and remained immunogenic, whereas the tumors arising
in immunocompetent mice underwent T-cell-dependent editing,
allowing the tumor to be less immunogenic and grow in all
animals.5 Immunoediting has since been defined as having three
key components: elimination (tumor eradication after antigen
recognition), equilibrium (maintenance of tumor stability by
immune control) and escape (tumor growth).5,6

Approximately 3% of melanoma patients present with metastatic
disease without an identifiable primary lesion, also know as mela-
noma of unknown primary. This phenomenon may represent a
clinical illustration of immunoediting (Figure 1).7 The hypothesis is
that the melanoma initiates an immune response inducing primary
tumor ‘elimination’. In some patients with melanoma of unknown
primary, a patch of vitiligo at the postulated site of the original lesion
may represent immune recognition of the melanoma, supporting this
hypothesis. However, elimination fails at the site of melanoma
metastasis. These cells remain in a state of ‘equilibrium’ either in a
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regional lymph node or at a distant site until a further event allows
the tumor to ‘escape’. At this point, the patient presents with clinically
significant metastatic disease. Whether the tumor that escapes has an
‘edited’ antigen profile remains unknown as the primary is usually
undetectable at the time of discovery of the metastasis.

The unpredictable natural history of many patients with melanoma
is also suggestive of immunoediting. Late recurrences and distant
metastases in the setting of patients with early-stage melanoma sug-
gest prolonged periods of tumor equilibrium. The strongest clinical
evidence for melanoma immunogenicity comes from a small number
of cases of melanoma transmission to organ transplant recipients via
their engrafted organs.8–11 In one of these cases, the organ donor had
been disease-free from a localized (non-metastatic) melanoma for 16
years.11 Both kidneys were donated, and immunosuppression of the
recipients after transplantation allowed the malignant cells held in
equilibrium for decades to escape. One recipient developed rapid
widespread metastatic disease and, despite cessation of immuno
suppression and interferon (IFN) therapy, died 22 months post
transplant. The second recipient developed a localized mass at the
site of the transplanted kidney 2 years post transplant. The
transplanted kidney was removed following systemic therapy
demonstrating necrotic melanoma; this patient remained disease-
free 2 years later. The different trajectories of these two transplant
recipients further demonstrates the complex interaction of the
immune system with tumor antigens.

The reason underlying the immunogenicity of melanoma is
unclear. One hypothesis relates to the high mutation rate seen within
melanomas compared with other tumor types.12 A recent study
investigating the mutational landscape in melanoma found a median
of 171 mutations in melanomas of sun-exposed regions compared
with nine mutations in sun-shielded regions.13 This compares to
approximately 80 mutations in an average colon or breast tumor.14

The majority of these mutations are passenger mutations that are
non-essential for the survival of the tumor but offer an opportunity
for immune recognition. Each breast and colon cancer develops
on average 10 and 7 novel and unique HLA-A 0201 epitopes,15

respectively, while in melanoma, where the mutation rate is higher,
the chance of generating a mutation with the capacity to bind
major histocompatibility complex could also be higher. Others have
argued that the extensive research in melanoma immunology is
largely opportunistic and stems from the failure of standard
chemotherapeutic agents, leaving a therapeutic void for patients
with metastatic disease.16

Vitiligo and melanoma
Vitiligo is a cutaneous disorder manifested by areas of hypopigmenta-
tion due to melanocyte loss. The pathogenesis of this depigmentation
is likely autoimmune with autoantibodies against melanocyte-differ-
entiation antigens such as tyrosinase found in the serum of a
significant proportion of these patients.17,18 Even stronger evidence
comes from in vitro studies demonstrating that sera from patients
with vitiligo are able to destroy cultured human melanocytes19 as are
CD8þ cytotoxic T cells extracted from cutaneous lesions.20 A recent
genome-wide association study looking for susceptibility loci in
patients with generalized vitiligo identified novel single-nucleotide
polymorphisms (SNPs) involving the major allele of the TYR gene
encoding for tyrosinase.21 By contrast, SNPs in the TYR gene
associated with susceptibility to melanoma are found in the minor
allele.22,23 These findings may help explain the threefold lower lifetime
prevalence of melanoma in patients with vitiligo.24

Interestingly, the development of vitiligo in patients with mela-
noma is associated with an improved prognosis both in the setting of
early and advanced disease.25,26 The majority of cells infiltrating both
the tumor and the patches of vitiligo in these patients are CD8þ ;27

however, there may also be a role for Th17 cells.28 Mouse models
suggest that the development of vitiligo in the setting of primary
tumor resection-induced antitumor immune response is associated
with an effector memory phenotype. This could be associated with
protection against a secondary tumor challenge, as compared with
mice without vitiligo that displayed a central memory phenotype.29

These effector memory T cells home preferentially to peripheral

Figure 1 Suggested mechanisms of immunoediting in melanoma of unknown primary.
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tissues, maintain specificity to tumor antigens and are able to provide
long-term protection against a secondary tumor challenge.29

Melanoma antigens
Many crucial discoveries in the role of immunity in cancer immu-
nosurveillance have been made using melanoma models. In patients
with melanoma, T cells were identified specifically targeting tumor
antigens,30 and the role of interleukin-2 (IL-2) in promoting this
response was also elucidated.31 Furthermore, the first specific tumor
antigen (MAGE-1), targeted by human reactive T cells, was charac-
terized in melanoma.32 Melanoma antigens can be categorized into
four main groups: germ cell/cancer testis antigens (silenced in somatic
cells but reactivated in melanoma cells), differentiation antigens
(expressed on normal melanocytes), overexpressed antigens
(mutated self-antigens) and sequestered antigens (ubiquitous self-
antigens that are usually hidden from immune detection) (Box 1).
Not all melanomas express all melanoma antigens and, over time,
variability in levels of antigen expression can be seen within a
tumor.33 Tumor-infiltrating lymphocytes (TILs) within melanomas
contain both effector and regulatory T cells (T reg) with specificity for
the expressed tumor antigen.34 The expansion of the latter may
explain the consistent failure of vaccine strategies aimed at these
melanoma-specific antigens.

Immune escape
Tumors utilize a number of pathways to avoid immune detection.
Antigen expression and presentation mechanisms may be suppressed
through decreased major histocompatibility complex class I expres-
sion.35 Tumors are also able to limit an immune response by releasing
immunosuppressive paracrine mediators including adenosine, trans-
forming growth factor-b, vascular endothelial growth factor-A and
indoleamine 2,3-dioxygenase (IDO) to suppress T-cell activation.
Dampening of T-cell activity also occurs through the regulatory
pathways such as upregulation of cytotoxic T-lymphocyte antigen-4
(CTLA)-4 on T cells, or engagement of programmed death-1 (PD-1),
an inhibitory T-cell co-receptor, with its ligand, B7-H1 (PD-L1) on
tumor cells (Box 2). Finally, tumors further create an immunosup-
pressive microenvironment by recruiting other cell populations, such
as T regs and myeloid-derived suppressor cells to the tumor
microenvironment.

The same mechanisms that the immune system employs to prevent
autoimmunity can also limit effective antitumor responses. Research
has demonstrated multiple reasons that anti-melanoma responses can
be ineffective. T cells within melanomas often have low levels of self-
reactivity, partly because they are positively selected during thymic
maturation.36 As a result of this weak T-cell receptor affinity, there
may be tolerance to the tumor antigen and priming is restricted.37

This post-thymic tolerance is driven in part by CD4þCD25þFoxP3þ

T regs that are recruited to tumors to dampen the local immune
response by a number of immunosuppressive mechanisms. These
include release of chemoattractant cytokines (CCL2 and CCL22),38

immunosuppressive cytokines (transforming growth factor-b and
IL-10)39 and upregulation of IDO expression causing T-cell
anergy.40 Antigen-presenting cells (APCs) including plasmacytoid
dendritic cells can also express IDO in order to recruit mature T
regs, further contributing to tumor tolerance.41 The importance of
these local factors in inhibiting the immune response is suggested by
the success of adoptive T-cell therapy. In this model, the infiltrating T
cells are removed and cultured ex-vivo in the presence of growth
factors. Reinfusion after local ablative therapy with chemotherapy or
total body irradiation results in response rates 450%.42

In mouse models, T reg depletion can enhance melanoma
immunity.43–45 Furthermore, in patients with melanoma, an in-
creased fraction of circulating T regs is seen in peripheral blood
compared with healthy controls.39 These circulating T regs recognize
numerous melanoma-associated antigens of different classes.46

Studying the tumor microenvironment demonstrates a worse
outcome in patients with an increased proportion of T regs within
TILs.47,48

Recent evidence suggests that PD-L1 expression by tumors is an
adaptive ‘escape’ mechanism to counter an antitumor immune
response.49 Not only are TILs found to colocalize with PD-L1
expressing tumor cells, but laser capture microdissection suggests
that the PD-L1 expression is driven by IFN-g release from these TILs.
Patients with high expression of PD-L1 in metastatic melanoma
deposits had longer survival than those without, suggesting that these
tumors elicit an antitumor response and may have been held in
immune equilibrium for some time. These findings differ from
observations in other tumor types where PD-L1 expression is a
poor prognostic indicator.50–52 This seeming contradiction may
reflect the increased role of immune regulation in melanoma and
the heavy pre-treatment of these melanoma patients with immuno-
therapy. However, it also highlights the complicated interplay between
factors within a tumor.

These immunological insights have accompanied the development
of a number of novel therapeutic agents targeting specific aspects of
the immune system. These agents are described below with a
discussion of lessons learned from IRAEs.

Box 1 Examples of melanoma-specific antigens

1. Cancer testis antigens—NY-ESO, MAGE, BAGE and GAGE.

2. Differentiation antigens—tyrosinase, tyrosinase-related protein 1 (TYRP1),

gp100, melan-A/MART-1 and dopachrome tautomerase (DCT).

3. Mutated antigens—mutations in b-catenins and cyclin-dependent kinase 4

(CDK4).

4. Sequestered antigens.

Box 2 Co-inhibitory mechanisms

Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is normally found in intracellular

stores within T cells and is transported to the cell surface upon T-cell activation

via the T-cell receptor (TCR).126 Once expressed on the cell surface, CTLA-4

competes with the co-stimulatory molecule CD28 for CD80 and CD86 (B7.1

and B7.2) on APCs to deliver a negative signal to the TCR.127,128 The ligand for

CTLA-4 is not expressed on tumor cells.

By contrast, programmed death-1 (PD-1) is expressed on chronically stimulated

activated T cells, B cells and monocytes, and its ligands PD-L1 (B7-H1) and

PD-L2 (B7-H2) are expressed on APCs, tumor cells and non-hematopoietic cells

within tumors.90 Upon ligation, PD-1 is phosphorylated leading to

downregulation of TCR signaling. The expression of the ligand for PD-1 on

tumor cells suggests an adaptive immune tolerance.

LAG 3 is highly expressed on T regs and has an immunosuppressive role by

enhancing T reg function. It also has an independent role in inhibiting CD8þ

effector T-cell function.129

Tim 3 is expressed on T cells and inhibits T-helper cell responses. It binds to

galectin 9, which is expressed in a number of cancer types.130
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MELANOMA IMMUNOTHERAPY—NOVEL AGENTS AND

CHANGING PARADIGMS

Physicians for over a century have been enamored with the idea of
utilizing immune defenses to eradicate cancer. William Coley, a
surgeon at the Memorial Hospital in New York from 1892 to 1936,
was the first major proponent of such therapy, infecting patients with
live and subsequently killed bacteria, later known as Coley’s toxin.53

Despite some successes, the unpredictability of this therapy and
the increasing availability of external beam radiotherapy sidelined
immunotherapy for much of the next half century.

The first agent to show a significant activity in the adjuvant setting
in patients with high-risk melanoma was IFN-a2b.54 The mechanism
of action is multifaceted with a definite immunomodulatory
effect55,56 as well as an antiangiogenic effect.56 IFN-a2b has been
studied extensively and delays relapse-free survival consistently.
However, further studies failed to demonstrate a consistent overall
survival benefit of IFN, which has been more recently shown in a
meta-analysis.57 Only recently, long-term follow-up suggested a
possible benefit of treatment in the subset of patients with early-
stage, ulcerated melanomas.58 The clinical activity of this drug is
associated with significant systemic toxicity, which prompts
thoughtful discussions between patients and physicians to weigh the
risk-benefit profile, especially in the adjuvant setting.57,59

A major breakthrough in the development of immunotherapy was
the discovery of the T-cell growth factor IL-2.60 This was the first
targeted agent used in humans to utilize systematic immune
manipulation to treat patients with metastatic melanoma.61 As has
been demonstrated with multiple immune modifiers since, the
radiographic response rate to IL-2 therapy is low with an objective
response rate of approximately 16%;62 however, a subset is
durable.62,63 This trend is in clear distinction from cytotoxic
chemotherapy and molecular targeted therapy where durable
responses are rare. Based upon this activity, IL-2 was approved by
the Food and Drug Administration in 1998. Management of
toxicities, including capillary leak syndrome, during administration
of IL-2 requires hospitalization and close surveillance.

Checkpoint blockade
The latest clinical advances in melanoma immunotherapy have
targeted immune response by blocking critical inhibitory checkpoint
molecules. The best characterized of these are CTLA-4 and PD-1,
which have been used with great success in melanoma as discussed
below. Other checkpoint molecules being studied included lympho-
cyte activation gene 3 (LAG3), T-cell membrane protein 3 (Tim 3),
B7H3 and others (summarized in Pardoll64) (Box 2). As the field
evolves, additional therapies are being investigated for use including
OX40 agonists65 and GITR agonists.66 It is important to remember
that although blockade of a negative signal has been met with success,
potentiation of a positive co-stimulatory signals with CD28 agonist
was associated with severe cytokine storm,67 and an agonist antibody
to CD137 (4-1BB) was associated with fatal hepatotoxicity in early-
dose-ranging study.68

Cytotoxic T-lymphocyte antigen-4
CTLA-4 is a negative regulator of the immune system. It is expressed
on T regs and within intracellular compartments in resting effector T
cells. Following activation, CTLA-4 is expressed at increased levels on
the extracellular surface of T cells. The cell intrinsic action of CTLA-4
is through competitive inhibition of the co-stimulatory molecule
CD28, for the B71 and B72 ligands.69–72 CTLA-4 has also been shown
to have a cell extrinsic role resulting in removal of B7 molecules from

APCs.73,74 The critical role of CTLA-4 in immune modulation is
illustrated by CTLA-4 null mice, which die within 4 weeks of birth
due to systemic lymphoproliferation.75

The exact mechanism leading to tumor rejection by CTLA-4
blockade remains unclear. Initially, CTLA-4 blockade was thought
to act primarily via CD8þ T cells,76 as treated mice experienced both
tumor rejection and vitiligo that were dependent on CD8þ T and
natural killer cells. Additional studies have shown that blockade of
CTLA-4 on both T-effector and T reg compartments is important in
antitumor immunity.77 More recently, mechanistic insights have been
gained through the conditional knockout (KO) of the CTLA-4 gene
from T regs in mice.78 These mice develop a multiorgan immune
infiltrate after 7 weeks of age associated with fatal autoimmune
cardiomyopathy. Although the autoimmunity in this conditional KO
model is less severe than the CTLA-4 KO mice, it highlights the role of
CTLA-4 in T reg function. Further investigation has suggested a role
of Fc-dependent depletion of intratumoral T regs.79 Anti-CTLA-4
antibodies that bind Fc receptors lead to a dramatic reduction in
intratumoral T regs and an associated increase in the intratumoral
T-effector to T reg ratio compared with non-Fc-binding mutant
antibodies.

Encouraging preclinical data led to the development of two fully
human monoclonal antibodies to CTLA-4—ipilimumab and treme-
limumab. Two phase III randomized controlled trials using ipilimu-
mab demonstrated a significant improvement in overall survival in
patients with metastatic melanoma with a reduction in risk of death
in ipilimumab-treated patients of 28–34%.80,81 These were the first
large-scale trials designed to specifically target an immune inhibitory
pathway. Long-term follow-up of patients from some of the earliest
phase I studies of ipilimumab underscores the durability of responses;
the majority of patients who experienced a complete response (14/15)
continued to be disease-free at 54–99 months of follow-up.82 The
results of a phase III trial of tremelimumab were not as impressive;
however, a number of long-term responses were seen, and the general
pattern of clinical activity and adverse events resulting from
tremelimumab treatment were similar to those shown by
ipilimumab.83

Efforts to identify markers of response to CTLA-4 blockade have
identified inducible costimulator (ICOS), a marker of activated T
cells84 as a potential candidate. Induction of CD4þ ICOShi T cells in
peripheral blood from patients with metastatic melanoma treated
with ipilimumab correlates significantly with clinical response at 24
weeks as well as with overall survival.85 Another predictor of clinical
response is the absolute lymphocyte count measured in peripheral
blood after the first two doses of ipilimumab. Patients with absolute
lymphocyte count of 41000ml�1 had a significantly improved
clinical benefit rate as well as an improved overall survival.86,87

Programmed death-1
The primary role of the PD-1/PD-L1/2 pathway is to limit T-cell
activity in the setting of an inflammatory response.88,89 PD-1 is
expressed on activated T, B and natural killer cells, whereas its ligands
PD-L1 (B7-H1) and PD-L2 (B7-H2) are expressed on immune cells as
well as on many non-hematopoietic cells, including tumors.90 PD-1 is
highly expressed on TILs as well as on circulating melanoma antigen-
specific T cells,91,92 and tumor expression of PD-L1 is able to induce
T-cell anergy and immunosuppression.93 In chronic viral illness, PD-1
is upregulated on viral specific T cells that display an ‘exhaustive’ or
anergic phenotype, which was reversed by PD-1, but not CTLA-4
blockade.94 Together, this data suggested a role for PD-1 blockade in
antitumor immunity.
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Based upon robust preclinical data, several PD-1- or PD-L1-
blocking antibodies have been developed. Clinical activity for three
of these reagents, nivolumab (BMS, Princeton, NJ, USA),95 MK-3475
(Merck, Whitehouse Station, NJ, USA),96 and BMS-936559,97 have
been reported so far. Topalian et al.95 in a phase I study of a specific
anti-PD-1 antibody (Nivolumab; BMS-936558) revealed a response
rate of 28% in patients with metastatic melanoma, with 50% of these
responses lasting more than 1 year. These data were recently updated
and presented at the European Society for Medical Oncology
reporting a 31% response rate in advanced melanoma.98

USING IRAES TO PREDICT RESPONSE AND GUIDE THERAPY

As described earlier, an immune response against melanoma can be
associated with autoimmune-type manifestations such as vitiligo. Not
surprisingly, many immunotherapies induce IRAEs. Hypothyroid-
ism,99 hyperthyroidism, the antiphospholipid syndrome,100 vitiligo
and other syndromes have all been described. A large prospective
study of patients receiving high-dose IFN by Gogas et al.101 found
that about one quarter of patients developed autoantibodies or
clinical manifestations of autoimmunity, and these patients
experienced a statistically significant improvement in relapse-free
and overall survival when compared with patients without evidence of
autoimmunity. Significantly, a higher number of patients were noted
with biochemical autoimmunity than with clinical symptoms.
Similarly, an association exists between IRAEs and a response to
IL-2, with tumor regression noted in 71% of patients who developed
biochemical hypothyroidism compared with regression in only 19%
of patients who remained euthyroid.102,103 In a large retrospective
series of patients treated with IL-2 therapy, 33% of patients with
vitiligo demonstrated a clinical response compared with only 10% of
patients without (Po10�6).103 In a small study of patients being
treated with IL-2 together with CD8 adoptive cell therapy, all patients
who developed vitiligo demonstrated tumor regression.104 These
observations are highly suggestive of a true association, yet detailed
mechanistic explanations are lacking. It is also possible that the
association is related to lead time bias, with patients responding to
therapy having time to develop autoimmune side effects with
multiple treatments.105

IRAEs are common with ipilimumab therapy and include colitis,
pruritis, dermatitis, hepatitis, hypophysitis and uveitis.86,106 These
IRAEs are independent of the underlying tumor burden and reflect
tissue-specific inflammation occurring in a dose-dependent manner.86

A similar, but somewhat milder, IRAE profile is seen in patients
treated with PD-1 blockade.95 Increasing experience has allowed
clinicians to better manage these through early diagnosis and
treatment if required. It is important to note that temporary
blockade of CTLA-4 and PD-1 for cancer treatment is associated
with short-lived immune events, the majority of which can be
reversed by cessation of therapy combined with corticosteroids or

rarely TNF-blocking of other immunosuppressive agents.107 This is in
strong contrast to autoimmune disease, where even chronic
immunosuppression often does not cure the individuals.108

An association between IRAEs and response was first described by
Attia et al.,109 with 36% of patients with IRAE demonstrating a
response to ipilimumab therapy compared with 5% without IRAE. In
another study, clinical benefit was seen in 60% of patients at 24 weeks
with grade 3 or 4 IRAE compared with only 22% for patients with
grade p2 IRAEs (Po0.01).85 Furthermore a dose-dependent
relationship between CTLA-4 blockade and IRAEs has been
suggested.86 Whether this is merely a reflection of patients who
were doing well and received more drugs or truly represents a causal
relationship between dose and toxicity is unknown. It is important to
note that all of the above studies also describe durable responses in
patients without any IRAEs.

The relationship between IRAEs and response to CTLA-4 blockade
is belied by increasing evidence of the role of co-inhibitory molecules
such as CTLA-4 and PD-1 in preventing autoimmune disease. CTLA-
4 has been associated with a number of autoimmune diseases.110 This
association has been exploited to prevent autoimmunity in mouse
models by generating a fusion protein composed of the extracellular
domain of CTLA-4 and the constant region of IgG to block the
CD28/B7 interaction.111,112 A similar protein has been generated for
use in humans (abatacept; BMS) and has shown efficacy in patients
with autoimmune diseases including rheumatoid arthritis,113 juvenile
idiopathic arthritis114 and psoriatic arthritis.115

SNPs in the CTLA-4 gene have been linked to a variety of
autoimmune diseases and to an increased susceptibility to a number
of cancer types.116 The CTLA-4 49A4G SNP has been particularly
well studied, and it is a non-synonymous Thr17Ala substitution in
exon 1 that encodes for the cell membrane signal peptide.117 The
CTLA-4 49A allele has been shown to be protective against
development of autoimmune thyroid disease118 and type 1 diabetes
mellitus.119 By contrast, in a meta-analysis of cancer susceptibility of
almost 15 000 patients and controls, the CTLA-4 49A4G SNP was
associated with increased susceptibility to numerous cancers.116 These
associations are not surprising given the enhanced receptor–ligand
interaction and stronger ability to downregulate T-cell proliferation
with the CTLA-4 49A4G SNP.120 Even more interestingly, in a study
of 152 patients with metastatic melanoma treated with an anti-CTLA-
4 antibody, the CTLA-4 49 allele was strongly predictive of response
with 78.3% of responders having the A allele (P¼ 0.009).117

Combination therapies and IRAEs in the clinic
To increase the efficacy of immunotherapy, combination therapies are
currently being investigated (Table 1).121,122 These aim to cause
immunogenic cell death and associated antigen presentation either
by using cytotoxic chemotherapy (such as fotemustine), molecular
targeted therapy (such as vemurafenib) or radiation therapy.

Table 1 Response rate and IRAEs

n Ipi dose (mg kg�1) CR (%) PR (%) SD (%) DCR PD (%) Any IRAE Grade 3/4 IRAE

Hodi79 Ipi alone 137 10 1.5% 9.5% 17.5% 28.5% 51.1% 61.1% 14.5%

Ipiþ gp100 306 10 0.2% 5.5% 14.4% 20.1% 59.3% 58.2% 10.2%

Robert80 IpiþDTIC 196 3 1.6% 13.6% 18.0% 33.2% 44.4% 77.7% 41.6%

Di Giacomo120 Ipiþ fotemustine 86 10 6.9% 22.1% 17.4% 46.4% 53.4% 71.0% 28.0%

Patel121 Ipiþ temezolemide 64 10 16.0% 16.0% 42.0% 74.0% 23.0% 88.0% 31.0%

Abbreviations: CR, complete response; DCR, disease control rate; DTIC, dacarbazine; Ipi, ipilimumab; IRAE, immune-related adverse events; PD, progressive disease; PR, partial response;
SD, stable disease.
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Alternatively, increased efficacy is being sought by combining
immune therapies to target multiple steps in the immune
modulatory pathway. Mouse models using B16 melanomas
demonstrated that combined antibody-based CTLA-4 and PD-1
blockade lead to a higher T-effector to T reg cell ratio within
tumors than when either agent was used alone.123

Clinical trials of these combination therapies are in early stages.
Understanding the mechanisms and side effects of each drug is
paramount in order to combine regimes safely. This is highlighted by
the significant rates of hepatotoxicity reported in the initial cohort of
patients receiving concomitant ipilimumab and vemurafenib.124

Other studies published to date also suggest that combination
therapies have increased response rates and also increased grade 3
and 4 adverse events (Figure 2).80,81,121,122 Most recently, the results of
a phase I study combining PD-1 blockade in escalating doses with
CTLA-4 blockade were reported. The response rate was highest in
patients receiving concurrent therapy (65%). In all, 40% of patients
had a response, with a majority of the responses resulting in X80%
tumor reduction. This response is clearly beyond what has been seen
with either agent alone. Although the incidence of grade 3 or 4
adverse events was also increased in patients undergoing concurrent
therapy (56%), the majority of these were reversible with anti-
inflammatory treatment. Interestingly, although the response rate
was higher in patients with PD-L1 expression on the tumor, many
patients without PD-L1 expression still responded to therapy.125 It
will be important to see whether these observations hold true in larger
phase III trials that are currently being planned. Importantly, now
that clinicians know how to identify and treat these events, the long-
term consequences of IRAEs are often minimal.

CONCLUSION

This review describes the complex interplay of immune tumor
surveillance, immunotherapy and autoimmunity. Major strides have
been made in cancer immunotherapy in recent years; however, in the
clinical setting with currently available therapies, response rates are
low. Lessons learned from initial experiences are highly relevant to
increase the efficacy of immunotherapy and to identify predictors of
response.
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