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Abstract

Background: Resistance developed by leukemic cells, unsatisfactory efficacy on patients with chronic myeloid leukemia
(CML) at accelerated and blastic phases, and potential cardiotoxity, have been limitations for imatinib mesylate (IM) in
treating CML. Whether low dose IM in combination with agents of distinct but related mechanisms could be one of the
strategies to overcome these concerns warrants careful investigation.

Methods and Findings: We tested the therapeutic efficacies as well as adverse effects of low dose IM in combination with
proteasome inhibitor, Bortezomib (BOR) or proteasome inhibitor I (PSI), in two CML murine models, and investigated
possible mechanisms of action on CML cells. Our results demonstrated that low dose IM in combination with BOR exerted
satisfactory efficacy in prolongation of life span and inhibition of tumor growth in mice, and did not cause cardiotoxicity or
body weight loss. Consistently, BOR and PSI enhanced IM-induced inhibition of long-term clonogenic activity and short-
term cell growth of CML stem/progenitor cells, and potentiated IM-caused inhibition of proliferation and induction of
apoptosis of BCR-ABL+ cells. IM/BOR and IM/PSI inhibited Bcl-2, increased cytoplasmic cytochrome C, and activated
caspases. While exerting suppressive effects on BCR-ABL, E2F1, and b-catenin, IM/BOR and IM/PSI inhibited proteasomal
degradation of protein phosphatase 2A (PP2A), leading to a re-activation of this important negative regulator of BCR-ABL. In
addition, both combination therapties inhibited Bruton’s tyrosine kinase via suppression of NFkB.

Conclusion: These data suggest that combined use of tyrosine kinase inhibitor and proteasome inhibitor might be helpful
for optimizing CML treatment.
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Introduction

Imatinib mesylate (IM)/Gleevec/STI571, a rationally-designed

agent that occupies the ATP-binding site of BCR-ABL and

stabilizes the protein in its inactive conformation, has been a

remarkable success for the treatment of chronic myeloid leukemia

(CML)[1–4]. However, optimization of treatment for CML still

warrants investigation because a proportion of patients develop

IM-resistance[5–8], and patients with CML at accelerated phase

(AP) or blastic crisis (BC) often respond unsatisfactorily [9–11].

Moreover, some individuals on IM experience congestive heart

failure which was shown to be mediated by ABL inhibition and

endoplasmic reticulum stress [12–14]. In addition, ABL was

reported to be required in Eph-dependent tumor suppression, its

inhibition might potentially lead to promotion of epithelial tumor

progression[15]. A strategy to overcome IM resistance and to

improve the efficacy on CML in AP/BC is to develop novel BCR-

ABL kinase inhibitors. Interestingly, whether low dose IM-based

combinatory regimen containing agents of distinct but related

mechanisms could be an alternative strategy needs to be explored.

The ubiquitin-proteasome system (UPS) is the principle

pathway for diverse intracellular protein degradation [16].

Proteasome is a large proteolytic complex that consists of a 20S

catalytic complex and two 19S regulatory subunits. The 20S

proteasome is composed of two identical outer a-rings and two

identical inner b-rings, each composed of seven distinct subunits.
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The b1, b2, and b5 subunits mediate the caspase-like, trypsin-like,

and chymotrypsin-like activity, respectively [16]. Proteins that are

to be degraded are tagged with ubiquitin chains and bind to a

receptor on the 19S complex. Once recognized by the regulatory

complex, the ubiquitin chain is removed and the protein is

denatured and presented to the 20S proteasome for degradation

[16]. Though UPS is critical to normal cell survival and function,

proteasome has been shown to be an appropriate therapeutic

target for cancer. Bortezomib (BOR)/Velcade/PS-341 [17] and

the proteasome inhibitor I (PSI, Z-Ile-Glu(OtBu)-Ala-Leuc-

inal)[18] are two inhibitors of the b5 subunit and the chymotryptic

activity of the proteasome. One of the results of proteasome

inhibition is the accumulation of the normally proteasome-

degraded IkB in cytoplasm, leading to inhibition of the

translocation of NFkB from cytoplasm to nucleus. BOR prolonged

life span[19] and was shown to be superior to high-dose

dexamethasone for relapsed MM patients[20]. PSI was shown to

be a potent apoptosis inducer for myeloma and leukemic cells

[21,22]. Interestingly, BOR and PSI targeted the BCR-ABL

oncoprotein and induced apoptosis of CML cells sensitive or

resistant to IM, and exerted synergic effects with histone

deacetylase inhibitors and cyclin-dependent kinase inhibitor

flavopiridol [22–26]. However, the in vivo efficacy of proteasome

inhibitors on CML remains obscure, and whether proteasome

inhibitors could exert synergistic/additive effects with IM needs

more in-depth analysis.

In this study, we investigated the combined effects of BOR/PSI

with IM on CML in vivo and in vitro. Intriguingly, the results

showed that the combinatory regimens yielded enhanced thera-

peutic efficacies in CML murine models, potentiated effects on

CML cells, and triggered positive feedback signal networks

involving BCR-ABL, b-catenin, protein phosphatase 2A (PP2A),

NFkB and Bruton’s tyrosine kinase (BTK), suggesting potential

benefits of IM/BOR for CML patients.

Materials and Methods

Agents
IM was kindly provided by Novartis Pharma (Basel, Switzer-

land). BOR was attained from Millennium Pharmaceuticals Inc.

(Cambridge, MA), and PSI was purchased from Peptide Institute,

Inc (Osaka, Japan). FTY720 and okadaic acid (OA) were

purchased from Calbiochem Inc. (San Diego, CA).

Murine models and treatment
All animal studies were conducted according to protocols

approved by the Animal Ethics Committee of Guangzhou Institute

of Biomedicine and Health, Chinese Academy of Sciences.

Transfection of the retroviral vectors, co-cultivation with bone

marrow cells harvested from mice treat with 5-fluorouracil, and

injection of the BCR-ABL-expressing hematopoietic cells into

lethally irradiated BALB/c recipients were performed as described

[27]. Briefly, Bosc23 cells were cotransfected with MCV-ecopack

and Migr1-BCR/ABL–IRES-GFP at a 1:1 ratio by the calcium

phosphate precipitation method according the manual (Promega).

The retroviral supernatants were harvested after two days by

filtering through a 0.45-mm filter. To infect bone marrow cells,

2 ml infectious cocktail which mixed retroviral supernatant and

DMEM culture media supplemented with 8 mg/mL polybrene,

7 ng/ml recombinant (rm) IL-3, 12 ng/ml rmIL-6, 56 ng/ml rm

stem cell factor (SCF), 15% fetal bovine serum (FBS) and 5%

supernatant of WEHI-3B cells was added to 16106 cells in a 6-well

plate. After two rounds of infections, the bone marrow cells were

transplanted into the recipient mice by tail vein injection (26105

cells/mice). The survival end point was determined by either

spontaneous death of the animal or because of the presence of

moribund signs. Nude mice were inoculated subcutaneously in the

right flank with K562 cells in RPMI-1640 media [28,29].

Fourteen days after transplantation of BCR-ABL-expressing

donor cells, or when tumor was measurable (100–120 mm3 size),

mice were assigned randomly and received treatment indicated.

BOR or PSI was given intraperitoneally twice a week for 4 weeks,

IM was intraperitoneally injected daily until death. Mice of every

treatment group received the same injection regimens, using 0.9%

sodium chloride solution as treatment control. GFP positive cells

in peripheral blood were measured by flow cytometry. Caliper

measurements of the longest perpendicular tumor diameters were

performed every two days to estimate the tumor volume[30].

In situ cell death detection on tumor samples and
ultrastructural analysis

One hour after the last drug injection, mice were sacrificed,

tumor and heart were obtained, and TdT-mediated dUTP nick

end labeling (TUNEL) assay was performed to detect in situ

apoptosis on tumor and heart sections using a TACS TDT-

Fluorescein In Situ Apoptosis Detection Kit (R & D System,

Minneapolis, MN) [14,31]. Ultrastructural analysis of heart tissue

was performed as described [14].

Primary cells
CD34+ stem/progenitor cells were separated from bone

marrow (BM) mononuclear cells of 10 patients with t(9;22)

positive CML (6 at CP and 4 at AP/BP) and 4 healthy donors with

informed consent by using positive immunomagnetic column

separation (Miltenyi Biotech, Auburn, CA) as described [32]. The

purity of the cells ranged from 84% to 97% as determined by flow

cytometry, and the viability was above 90% as detected by trypan

blue exclusion assay.

Umbilical cord blood (UCB) was obtained from volunteer

mothers with informed consent. The collection of 3 UCB samples

was reviewed and approved by the Institutional Review Board.

UCB mononuclear cells were isolated by means of Ficoll density

gradient centrifugation (specific gravity, 1.077; Amersham Biosci-

ences, Uppsala, Sweden). CD34+ stem/progenitor cells were also

separated by using positive immunomagnetic column separation

(Miltenyi Biotech, Auburn, CA).

Cell culture
The K562, U937, mouse thymoma cell line EL-4, and primary

CD34+ leukemic cells isolated from CML patients were cultured as

described [32]. Alternatively, K562 cells were gradually exposed to

increasing concentrations of IM at a rate of 100 nM increment

every two weeks of culture. After one month, a subline of cells

growing in 0.2 mmol/L IM were maintained continuously in

culture in this dose, while others cells were continuously

maintained in the culture gradually increasing doses of IM up to

0.5 mM. After approximately three months, IM-resistant cells were

attained. MSCV-BCR-ABL-IRES/GFP (BCR-ABL/GFP) retro-

viral transducing vector [27] was obtained from Dr. Warren Pear

at University of Pennsylvania. Murine myeloid progenitor 32Dcl3

cells were cultured in RPMI 1640 supplemented with 0.5 ng/ml

IL-3 (R & D System, Minneapolis, MN), and BCR-ABL was

transfected into the cells using retroviral mediated gene transfer.

The cells were co-incubated with BOR/PSI, and/or IM at

indicated concentrations. Cell proliferation was analyzed by a Cell

Counting kit-8 (CCK-8; Dojin Laboratories, Japan) containing

WST-8 [2-(2-methoxy-4-nitrophenyl)-3-4-nitrophenyl)-5-(2,4- dis-

BOR/PSI Strengthen IM in CML
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ulfophenyl)-2H-tetrazolium, monosodium salt] which allows

sensitive colorimetric assays for the determination of the number

of viable cells [31]. Cell viability, and morphology were assessed as

previously described [31]. The dose-effect curves of single or

combined drug treatment were analyzed by the median-effect

method of Chou and Talalay using the Calcusyn Software (Biosoft,

Cambridge, United Kingdom)[32–34]. Cell apoptosis was evalu-

ated by Annexin V (AV) detection using an AV-FITC Kit

(Clontech BD); cell cycle analysis and mitochondrial transmem-

brane potential (MTP, Dym) were performed as described [31].

Clonogenic assays
Clonogenic assays were carried out using methylcellulose

medium with recombinant cytokines MethoCult H4434 (contain-

ing human IL-3, GM-CSF, SCF and Erythropoietin; for human

origin CD34+ cells), M3434 (containing mouse IL-3, SCF, human

IL-6 and human Erythropoietin; for 32Dcl3 cells), or H4230

[without cytokines; for BCR-ABL-expressing 32Dc13 (hereafter,

32D/BCR-ABL) cells] at present or absent of IM/BOR/PSI

according to manufacturer’s technical manual (Stem Cell

Technologies, Vancouver, BC, Canada). The total colony-forming

unit (CFU-total), granulocyte erythrocyte monocyte macrophage–

CFU (CFU-GEMM), granulocyte macrophage–CFU (CFU-GM),

erythrocyte-CFU (CFU-E) and erythroid burst-forming units

(BFU-E) were counted as described [32].

Analysis of caspase-3 activity, BCR-ABL tyrosine kinase
activity and PP2A phosphatase activity

Caspase-3 activity, BCR-ABL tyrosine kinase activity and PP2A

phosphatase activity were measured by using a caspase-3 activity

assay kit (Chemicon International, Temecula, CA), a tyrosine

kinase assay kit [32] (Takara Bio Inc, Shiga, Japan), and a serine/

threonine phosphatase assay system (Promega, Madison, WI,

USA)[35], respectively.

Analysis of activities and subunits of proteasome, DNA-
binding activity of NFkB, and b-catenin-regulated
transcription (CRT) reporter gene assay

Proteasome activities were tested using Z-GGL-AMC (for

chymotrypsin-like activity), Z-LLE-AMC (for caspase-like activity),

and Z-ARR-AMC (for trypsin-like activity; Calbiochem, San

Diego, CA) as described [36,37]. Proteasome subunits were

analyzed as previously described [38]. The DNA-binding activity

of NFkB was assayed using a LightShift Chemiluminescent

Electrophoretic Mobility Shift Assay Kit (Pierce) according to

manufacturer’s instruction. Beta-catenin-CRT reporter gene assay

was performed using TOP-FLASH and FOP-FLASH plasmids

(Upstate Biotechnology) as described [39].

Knockdown of PP2A by RNA interference (RNAi)
RNAi candidate target sequences to human PP2A were

designed (Table S1). K562 cells were transiently transfected with

150 nM of PP2A siRNA or of scrambled siRNA by using

HiPerFect Transfection Reagent (Qiagen, Crawley, UK).

Western blot
Cell pellets were lysed in RIPA buffer containing 50 mM Tris

pH 8.0, 150 mM NaCl, 0.1% SDS, 0.5% deoxycholate, 1% NP-

40, 1 mM DTT,1 mM NaF, 1 mM sodium vanadate, and

protease inhibitors cocktail (Sigma, St.Louis, MO). Protein

extracts were quantitated with the Bradford method, and loaded

on an 8%-12% SDS-PAGE gel, electrophoresed, then transferred

to a nitrocellulose membrane (Millipore, Bedford, MA). The

membrane was incubated with primary antibody, washed, and

incubated with anti-rabbit or anti-mouse HRP-conjugated sec-

ondary antibody (Pierce). The following antibodies including their

clones were used: anti-Phophotyrosine (PY-20) (purchased from

BIOMOL); anti-b-catenin, anti-b-actin, anti-Bim, anti-BTK

(Sigma); anti-Bcl-2, anti-pBcl-2 (ser70), anti-Bcl-XL, anti-BAX,

anti-PP2Ac, anti-Casp-9 (C9), anti-Casp-8 (1C12), ant-Casp-3

(3G2), anti-pMAPK (20G11), anti-cyclinD1 (DCS6), anti-PTP-

PEST (AG10), anti-PTEN (138G6), and anti-E2F1 (Cell Signaling

Technology, Beverly, MA, USA); anti-PARP (F-2), anti-c-Abl (k-

12), anti-CIP2A (2G10-3B5), anti-MCL-1 (S-19), anti-STAT5 (C-

17), anti-MCL-1 (S-19), anti-c-Myc (N-262), anti-IkB, anti-P65

(A), anti-P50 (E-10), anti-SET (H-120), and anti-PTP1B (H-135)

(Santa Cruz Biotechnology). Detection was performed by using a

chemiluminescent Western detection kit (Cell Signaling). The

change in cytoplasmic cyt C was detected as described [31].

Statistics
Differences between data groups were evaluated for significance

using Student t-test of unpaired data or one-way analysis of

variance and Bonferroni post-test. The lifespan of mice was

analyzed by Kaplan-Meier methods, while the tumor volume was

analyzed with one-way ANOVA and independent sample t test

using the software SPSS 12.0 for Windows (Chicago, IL). P

values,.05 were considered statistically significant. All experi-

ments were repeated at least three times and the data are

presented as the mean 6SD unless noted otherwise.

Results

Efficacy of IM/BOR and IM/PSI on CML murine models
On mice harboring BCR-ABL/GFP-expressing cells.

BCR-ABL/GFP-expressing murine hematopoietic cells (26105)

were intravenously inoculated into tail vein of lethally irradiated

BALB/c mice, and when GFP+ cells reached 5% in peripheral

blood, the mice were randomized and treated with protocols

indicated. The results showed that IM (injected intraperitoneally at

20 mg/kg per day until death) and BOR (injected intraperitoneally

at 0.2 mg/kg, twice a week for 4 weeks) prolonged lifespan of mice

compared to vehicle control (Figure 1A). A few combinatory

regimens were evaluated and the results showed that IM (20 mg/kg)

in combination with BOR (0.2 mg/kg) significantly prolonged life

span of mice as compared to vehicle (P,.0001), BOR alone

(P = .0026), or IM at 20 mg/kg (P = .01). Intriguingly, IM/BOR

yielded an efficacy equal to that of IM at 50 mg/kg (P = .49). In

lethally irradiated mice, IM at 100 mg/kg caused loss of body

weight compared to control (P = .0001) or IM/BOR (P = .0001),

while IM at 50 mg/kg caused a moderate weight loss (P = .006 and

.006, respectively; Figure 1B). We tested GFP+ cells in peripheral

blood using flow cytometry, and found that IM/BOR caused a

reduction in GFP+ cells more significant than each mono-therapy

group (IM/BOR vs IM and BOR, P = .04 and .003 respectively),

but equal to that in IM at 50 (P = .3) or 100 mg/kg (P = .4)

treatment group (Figure 1C). Splenomegaly was seen in control

mice, while both IM and BOR attenuated splenomegaly and

reduced spleen weight (Figure S1A). IM/BOR caused a reduction

of spleen weight approximately equal to IM at high doses, but

higher than IM (20 mg/kg) or BOR single treatment groups (Figure

S1A). Unlike vehicle control, combinatory regimens significantly

reduced disseminated disease and prevented destruction of tissue

architectures (Figure S2).

PSI alone (0.5 mg/kg) lengthened life span of mice (P = .03),

while IM/PSI further extended survival (Figure 1D) but not

reduced animal body weight (Figure 1E). However, IM/PSI could

BOR/PSI Strengthen IM in CML
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not eliminate GFP+ cells in peripheral blood (Figure 1F), and

could not decrease spleen weight (Figure S1B), suggesting that the

in vivo anti-CML efficacy of PSI was not equal to BOR. These

might due to the pharmacodynamic or pharmacokinetic charac-

teristics of PSI in vivo. Additionally, whether PSI is degraded in

vivo, or whether it could be transported into cancer cells warrant

investigation. Chemical structure modification could be helpful for

development of PSI as an anticancer agent.

On nude mice bearing K562 cells. Nude mice were

injected subcutaneously into the right flank with K562 cells [29],

and 89% of animals developed a measurable tumor after a mean

of 7.7 (5 to 14) days. The average tumor volume was 120 mm3 at

the beginning of treatment. We found that BOR and PSI

significantly decreased tumor growth in a dose-dependent

manner (Figure 2A). BOR and PSI potentiated IM (20 mg/kg)-

induced inhibition of tumor growth (IM/BOR vs IM and BOR,

P = .003 and .002; IM/PSI vs IM and PSI, P = .05 and .03

respectively; Figure 2B). By using TUNEL assay, we found a

synergy in apoptosis induction in tumor sections of mice treated

with IM/BOR or IM/PSI as compare to each mono-treatment

(Figure 2C and Figure S3). We tested the in vivo effects of IM/BOR

on BCR-ABL in samples isolated from mice 1 h after the last drug

Figure 1. Therapeutic efficacies of IM/BOR and IM/PSI on lethally irradiated BALB/c mice inoculated with BCR-ABL/GFP-expressing
murine hematopoietic cells. IM is given daily until death at doses indicated, while BOR (0.2 mg/kg) and PSI (0.5 mg/kg) are intraperitoneally
administered twice a week for 4 weeks. (A): Kaplan–Meier estimates of cumulative survival of mice treated with protocols indicated. The results show
that IM/BOR significantly prolongs life span of CML mice. In the experiment n = 12 for each group. (B): All mice were weighed throughout the course
of the experiment. The graph shows the changes in body weight for mice treated protocols indicated. (C): The percentage of GFP+ cells in peripheral
blood is analyzed by flow cytometry. (D): Kaplan–Meier estimates of cumulative survival of mice treated with IM and/or PSI at indicated doses. (E): IM/
PSI does not cause weight loss of BALB/c mice. (F), IM/PSI does not significantly reduce GFP+ cells in peripheral blood.
doi:10.1371/journal.pone.0006257.g001

BOR/PSI Strengthen IM in CML
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Figure 2. Antileukemia efficacy and side effects of IM/BOR and IM/PSI in nude mice inoculated with K562 cells. (A): K562 cells were
injected under the skin of nude mice to establish xenotransplant tumors. Treatment with BOR (upper panel) or (lower panel) was begun when these
tumors reached a volume of 120 mm3. The graph shows a quantification of tumor volumes at the indicated time points compared to the starting size.
(B): IM/BOR (upper panel) and IM/PSI exert enhanced effects on inhibition of tumor growth in nude mice. (C): Mice were treated with indicated
protocols, samples were obtained 1 h after the last drug injection, and TUNEL assay was performed. TUNEL-positive cells expressed as a percentage
of the number of total cells, are shown in Figure S3. (D): Effects of IM/BOR and IM/PSI on pBCR-ABL, CIP2A, and PP2A in vivo. Left and middle panel,
results of Western blot; Right panel, changes in BCR-ABL protein tyrosine kinase activity in tumor samples. P value inserted represents IM/BOR vs IM
treatment group. i.p., injected intraperitoneally. (E): The graph shows the changes in body weight for mice treated protocols indicated. (F): Mice were
treated with indicated protocols, sacrificed 1 h after the last drug injection, hearts sections were obtained, and TUNEL assay was performed. (G):
Electron micrographs of hearts from mice treated with protocols indicated. Sarcoplasmic reticulum and vacuoles containing membrane whorls,
vacuoles with membrane whorls within or immediately adjacent to mitochondria, and pleomorphic mitochondria, can be found in hearts of mice
treated with IM at high dose but not IM/BOR-regimen.
doi:10.1371/journal.pone.0006257.g002

BOR/PSI Strengthen IM in CML
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injection, and found that IM (20 mg/kg) and BOR (0.2 mg/kg)

slightly inhibited phosphorylated BCR-ABL (pBCR-ABL)

(Figure 2D). Intriguingly, IM/BOR yielded a more significant

inhibition of pBCR-ABL (Figure 2D, left and middle panels).

Tyrosine kinase activity was tested and the intensified effect of IM/

BOR on BCR-ABL inactivation was seen (Figure 2D, right panel;

IM/BOR vs vehicle control, IM and BOR, P = .002, .02, and .002,

respectively). Downregulation of cancerous inhibitor of

phosphatase PP2A (CIP2A) and upregulation of protein

phosphatase 2A (PP2A) were detected (Figure 2D).

IM at 50 and 100 mg/kg significantly inhibited tumor growth

(Figure 2B) but also caused weight loss of animals (Figure 2E).

TUNEL assay was performed, and TUNEL positive cardiomyo-

cytes were detected in heart sections of mice treated with 100 mg/

kg IM but not IM/BOR (Figure 2F), suggesting that IM at high

dose might induce apoptosis of cardiomyocytes. Prominent

membrane whorls in myocytes were characteristic of toxin-

induced myopathies. By analyzing cardiomyocyte ultrastructure

using transmission electron microscope [14], we found numerous

membrane whorls in the sarcoplasmic reticulum and in or

immediately adjacent to mitochondria, and pleomorphic mito-

chondria with effaced cristae in samples from mice receiving IM at

50 and 100 mg/kg per day (Figure 2G, arrows), consistent with a

previous report [14]. Importantly, none of these findings was seen

in mice treated with IM/BOR combination, indicating that IM/

BOR combination might be a relatively safe treatment regimen.

Effects of IM/BOR and IM/PSI combinations on CML
leukemia stem/progenitor cells

We then investigated effects of combinatory regimens on CML

cells and the underlying mechanisms of action. By using colony

forming assay, we tested the effects of IM (0.1 mM) in combination

with BOR (10 nM) or PSI (15 nM) on long-term (14 d) survival of

CML leukemia stem/progenitor cells harvested from 6 patients at

CP (Figure 3A, upper panel) and 4 at AP/BC (Figure 3A, lower

panel). The results showed that in CD34+ cells isolated from CML

patients at CP, BOR and PSI enhanced IM-caused inhibition of

the CFU-total, BFU-E, and CFU-GEMM. Interestingly, the

enhanced effect was not seen in CD34+ primary cells separated

either from bone marrow of healthy donors (Figure 3B) or from

umbilical cord blood (UCB) (Figure 3C), suggesting that the

combinatory regimens might not severely repress normal hema-

topoiesis in vivo. By using the trypan blue exclusion assay, we tested

the combined effects of IM/BOR and IM/PSI on short-term cell

growth of CD34+ primary cells. We demonstrated that BOR/PSI

enhanced growth inhibition caused by IM (at 0.1 or 0.2 mM) on

CD34+ cells from both CP and AP/BP patients (Figure 3D). By

using the trypan blue exclusion assay, we showed that treatment

with IM/BOR and IM/PSI for 72 h significantly reduced viable

cells isolated from CML patients at BC (Figure 3E).

BOR and PSI intensify the proliferation/growth inhibition
induced by IM on CML cells

By using a CCK-8 containing WST-8, we found that treatment

with IM and BOR at low concentration for 24 h inhibited

proliferation/growth of K562 and 32D/BCR-ABL cells with low

inhibition rates. Interestingly, IM in combination with BOR

caused higher inhibition rates than those of each mono-treatment

(Figure 4, A through C). Similarly, PSI potentiated proliferation/

growth inhibition of IM on the cells (Figure 4, D through F).

The potential synergistic, additive or antagonistic effect between

IM and proteasome inhibitors was carefully assessed using the

Calcusyn Software (Biosoft, Cambridge, UK) as described [33].

The dose-effect curves of single or combined drug treatment were

analyzed by the median-effect method [33,34], where the

combination indexes (CI) less than, equal to, and greater than 1

indicate synergistic, additive, and antagonistic effects, respectively.

We analyzed the dose-effect curves using the WST-8 (CCK-8

method). The cells were treated with IM and/or proteasome

inhibitors, inhibition rates were calculated, the fraction affected

(Fa) and CI [33] are generated, and dose-effect curves were

obtained as previously described [33]. The results showed that in

32D/BCR-ABL cells treated simultaneously with IM (0.05 to

0.75 mM) and BOR (2 to 20 nM; Figure 5A left panel), the CI

values were less than 1, indicating a synergism between IM and

proteasome inhibitors. However, CI values greater than 1 were

seen when IM was used at a relatively high concentration

(.0.5 mM) (Figure 5A). Similarly, IM at low concentration (0.05 to

0.5 mM) synergized, while at high dose (.0.5 mM) antagonized

effects of PSI (5 to 25 nM) on 32D/BCR-ABL cells (Figure 5A,

right panel).

BOR and PSI significantly amplify IM-induced apoptosis
of CML cells

We found that IM/BOR and IM/PSI combinations induced,

while each agent alone at low concentration did not cause

morphological features of apoptosis in CML cells (Figure S4). By

analyzing Annexin V expression on cell surface, we found that

IM/BOR and IM/PSI induced apoptosis at ratios significantly

higher than those in each mono-treatment in K562 (Figure 6A),

primary CD34+ cells from CML patients (Figure 6B) and BCR-

ABL/32D cells (data not shown). In 0.2 (Figure S5A) and 0.5

(Figure S5, B and C) mM IM-induced IM-resistant K562 cells, cell

apoptosis induced by IM/BOR and IM/PSI was assayed by

Annexin V flow cytometry, and the results showed that IM/BOR

and IM/PSI induced a much higher ratio of apoptotic cells than

each mono-treatment.

We then tested the potential synergistic, additive or antagonistic

effect between IM and BOR or PSI in induction of apoptosis of

K562 cells. The cells were treated with IM and BOR/PSI

simultaneously, the expression of Annexin V on cell surface was

assessed, and the dose-effect curves were generated. As shown in

Figure 5B, CI values less than 1 were detected when IM was used

at concentration lower than 0.5 mM, while CI values greater than

1 were seen when IM was used at a relatively high concentration

(.0.5 mM). To further explore the combined effect, K562 cells

were treated with BOR/PSI for 12 h, washed with PBS and the

culture system was supplemented with IM for 48 h. Then the

expression of Annexin V was evaluated. The results showed that at

lower concentration IM synergized with BOR/PSI, while at

higher doses (.0.5 mM) IM antagonized effects of BOR and PSI

(Figure 5C).

Cancer cells often bear higher mitochondrial transmembrane

potential (MTP, Dym) which represents a therapeutic target [40].

We double stained the K562 cells with propidium iodide (PI) and

rhodamine 123 (Rh123), and found that IM, BOR or PSI alone

did not perturbed Dym, while IM/BOR and IM/PSI significantly

reduced Rh123-positive/PI-negative cells, indicating collapse of

Dym (Figure S6). In K562 cells treated with the agents for 24 h,

the expression of phosphorylated [using an anti-phospho-Bcl-2

(Ser70) antibody] [41] but not unphosphorylated (using an anti-

Bcl-2 antibody) Bcl-2 was downregulated by IM/BOR and slightly

by IM/PSI, while Bcl-XL, Mcl-1 and Bim were not significantly

modulated (Figure 6C). Though Bax was upregulated by single

agent, IM/BOR or IM/PSI did not enhance this effect. Upon

IM/BOR or IM/PSI, cytoplasmic cytochrome (cyto C) was

increased (Figure 6C). At low concentration, IM, BOR or PSI

BOR/PSI Strengthen IM in CML
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alone did not, while IM/BOR and IM/PSI did activate Casp-9, -8

and -3 (Figure 6C). Consistently, significant elevation of Casp-3

activity (Figure 6D) and cleavage of PARP (Figure 6C) were seen

in cells treated with IM/BOR or IM/PSI, while pre-incubation

with pan-caspase inhibitor z-VAD-fmk for 1 h significantly

rescued cell death (Figure 6E). These results suggest that apoptosis

induced by IM/BOR and IM/PSI depends on caspases, and

insults of mitochondria might be the onset signal for caspases

activation.

IM/BOR and IM/PSI inactivate BCR-ABL
In K562 cells, treatment with IM, BOR, and PSI for 24 h led to

downregulation of pBCR-ABL (Figure 7A). Interestingly, IM/

BOR and IM/PSI potentiated pBCR-ABL downregulation

Figure 3. Effects of IM/BOR and IM/PSI on CD34+ cells isolated from CML patients or normal controls. The cells are purified using
magnetic cell sorting method, and clonogenic assays are carried out using 16103 cells and methylcellulose medium containing IL-3, GM-CSF and SCF.
(A through C): Effects of IM/BOR and IM/PSI on colony forming activity of CD34+ cells from 6 CML patients at chronic phase (A, upper panel) and 4
cases at blastic crisis (A, lower panel), 4 from healthy donors (B), or 3 from UCB (C). (D): Effects of IM/BOR and IM/PSI on cell growth of CD34+ cells
from CML patients at CP (n = 3), detected by trypan blue exclusion assay. (E): CD34+ cells from 4 CML patients at blastic crisis were cultured for
72 hours at presence or absence of agents indicated, and viable cells were counted by trypan blue exclusion. Treatment protocols: 1, control; 2, IM
0.1 mM; 3, BOR 10 nM; 4, IM in combination with BOR; 5, PSI 15 nM; 6, IM in combination with PSI.
doi:10.1371/journal.pone.0006257.g003
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(Figure 7A), consistently with that seen in nude mice (Figure 2D).

We further showed that BCR-ABL kinase activity was significantly

decreased by IM/BOR and IM/PSI compared to each mono-

treatment (Figure 7B). In 32D/BCR-ABL cells, treatment with

IM/BOR and IM/PSI for 24 h also resulted in downregulation of

pBCR-ABL (Figure 7C). We showed that treatment with IM/

BOR and IM/PSI generated a 64 kDa catabolic fragment (CF) of

BCR-ABL which could be abolished by z-VAD (Figure 7D),

consistence with a report that caspases could degrade BCR-ABL

with generation of a CF [42]. Some downstream targets of BCR-

ABL signal pathway were analyzed and the results indicated that

IM/BOR and IM/PSI downregulated phosphorylated STAT5

(pSTAT5) and upregulated pMAPK (Figure 7A), while the

expression of STAT3, pAKT, AKT and SRC was not significantly

modulated (data not shown). Previous studies demonstrated that

BCR-ABL could activate E2F1 [43]. Here we found that IM/

BOR and IM/PSI downregulated E2F1 as well as its target c-Myc

at protein and mRNA levels (Figure 7A and E).

IM/BOR and IM/PSI inhibit b-catenin, NFkB and Brotun’s
tyrosine kinase (BTK)

Beta-catenin could be degraded by UPS [44], and could be

stabilized by BCR-ABL-mediated tyrosine phosphorylation [39].

We found that treatment with BOR for 24 h led to accumulation

of b-catenin in K562 cells, while IM caused its downregulation

slightly (Figure 8A). Combined use of IM and proteasome

inhibitors did not drastically perturb the amount of b-catenin at

protein level (Figure 8A), nor interfere with its cytoplasm-nuclear

localization (data not shown). We then performed b-catenin-

regulated transcription (CRT) reporter gene assays by transfection

of TOP-FLASH (wild-type TCF binding site) or FOP-FLASH

(mutant TCF binding site) Wnt reporter plasmids into K562 cells.

The results showed that BOR and PSI activated, while IM

inhibited CRT activity (Figure 8B). When treated with IM/BOR

or IM/PSI, reporter activity was significantly reduced (Figure 8B).

C-Myc [45] and Cyclin D1 [46], two target genes of b-catenin,

were downregulated by IM/BOR and IM/PSI (Figure 7A, E and

Figure 8A and C).

BTK is involved in IM-resistance and serves as a major target of

Dasatinib in CML [47,48]. We found that at protein level, IM did

not while IM/BOR and IM/PSI slightly downregulated BTK

expression (Figure 8A); at mRNA level, proteasome inhibitors

significantly suppressed BTK in K562 cells, which might explain

the action of IM/BOR and IM/PSI on BTK (Figure 8C). A report

showed that NFkB was required for efficient transcription of BTK

[49]. In this work, BOR and PSI inhibited proteasomal

degradation and led to accumulation of IkB, while the expression

of p65 and p50 was not significantly modulated (Figure 8A). By

using EMSA, we found that IM/BOR and IM/PSI repressed

DNA-binding activity of NFkB (Figure 8D). These results

demonstrated that IM/BOR and IM/PSI caused suppression of

transcription activation activity of NFkB, possibly contributing to

BTK inhibition.

Protein phosphatase 2A (PP2A) is re-activated by BOR
and PSI

BCR/ABL inhibits PP2A through SET protein [35], while

phosphatase PTP1B [50] can suppress BCR-ABL. We tested

effects of IM/BOR and IM/PSI on phosphatases (treatment time:

24 h), and found that BOR and PSI upregulated PP2A (catalytic

subunit) at protein (Figure 9A) but not mRNA level (not shown).

Moreover, in t(8;21)-harboring Kasumi-1 cells, multiple myeloma

cell line U266 and lung cancer cell line A549, treatment with BOR

also resulted in accumulation of PP2A (Figure S7). IM caused

slightly upregulation of the phosphatase, possibly owing to

inhibition of BCR-ABL. A molybdate dye-based serine/threonie

phosphatase assay was performed, and the results showed that

PP2A activity was significantly increased in BOR, PSI and

combination treatment groups (Figure 9B). IM/BOR and IM/PSI

also downregulated the BCR-ABL regulated SET protein

Figure 4. Combined effects of IM and proteasome inhibitors on CML cells. (A and B): K562 (A) and 32D/BCR-ABL (B) cells were treated with
IM and/or BOR at indicated concentration for 44 h, and WST-8 was added. Four h later, optical density (OD) was detected, and the inhibition rate was
quantified as [1-(ODtreated-ODblank)/(ODcontrol-ODblank]6100%. (C): Effects of IM/BOR on K562 cell growth detected by trypan blue exclusion assay. (D
and E): Effects of IM/PSI on K562 (D) and 32D/BCR-ABL (E) cell proliferation were detected by WST-8 (a CCK-8 kit). (F): Effects of IM/PSI on K562 cell
growth detected by trypan blue exclusion assay.
doi:10.1371/journal.pone.0006257.g004
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(Figure 9A), which might contribute to PP2A re-activation.

Interestingly, the expression of cancerous inhibitor of PP2A

(CIP2A) [51] was downregulated at protein (Figure 9A) but not

mRNA (not shown) level. Normally, PP2A can be degraded by

UPS [52]. We found that upon BOR treatment, ubiquitinated

PP2A (Ub-PP2A, Figure 9C) was markedly increased at an early

Figure 5. Combined effects of IM/BOR and IM/PSI on CML cells. (A): 32D/BCR-ABL cells were cultured in the presence of escalating doses of
IM and/or BOR (left), or IM and/or PSI (right). After 44 h, WST-8 was added. Four h later, optical density (OD) was detected, and the inhibition rate was
quantified. CI plots were then generated using the Chou-Talay method and Calcusyn software. (B): K562 cells were simultaneously treated IM and/or
BOR (left), or IM and/or PSI (right). After 48 h, apoptosis was measured by Annexin V flow cytometry. CI plots were then generated using the Chou-
Talay method and Calcusyn software. (C): K562 cells were treated with BOR (left) or PSI (right) at different concentration for 12 h, washed with PBS,
supplemented with IM for 48 h, and apoptosis was measured by Annexin V flow cytometry. CI plots were then generated using the Chou-Talay
method and Calcusyn software.
doi:10.1371/journal.pone.0006257.g005
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stage (6 h) in K562 cells. BOR and PSI suppressed chymotrypsin-

like activity of the 26S proteasome (Figure 9D). At low

concentration, BOR slightly inhibited the b5/b5i subunits of the

proteasome (Figure 9E) analyzed with a proteasome specific

affinity probe Biotin-Ahx3L3VS [38] (Calbiochem). Hence,

inhibition of proteasome might lead to PP2A accumulation.

However, the expression of PTEN, PTP1B and PTP-PEST was

not significantly perturbed (Figure 9A).

To validate the role for PP2A to play in mediating the effects of

IM/BOR and IM/PSI on CML cells, PP2A activation and

inactivation were induced. We found that treatment with PP2A

activator FTY720 at 5 mM for 24 h induced apoptosis in K562

Figure 6. IM/BOR and IM/PSI induce apoptosis of CML cells. (A): K562 cells were treated with IM/BOR and IM/PSI for 48 h, and apoptosis was
detected by Annexin V flow cytometry. (B): CD34+ primary CML stem/progenitor cells were treated with IM/BOR and IM/PSI for 48 h, and apoptosis
was detected by Annexin V flow cytometry. (C): Effects of IM/BOR and IM/PSI on expression of some apoptosis regulators in K562 cells at protein level.
Western blot was performed using antibodies inserted, or described in materials and methods. (D): Caspase-3 activity in cells treated with IM/BOR and
IM/PSI. The recombinant human caspas-3 at 10 units/ml was used as a positive control. P values inserted represent combination treatment groups
compared with BOR or PSI treatment alone. (E): Caspases inhibitor z-VAD-fmk inhibits apoptosis induced by IM/BOR and IM/PSI combinations.
doi:10.1371/journal.pone.0006257.g006
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cells, consistent with a recent report [53]. Interestingly, FTY720

significantly increased apoptotic cells caused by IM, an effect

reminiscent of BOR and PSI (Figure 9F). On the contrary,

treatment with PP2A inhibitor okadaic acid (OA) at 10 nM for

24 h reduced cell death in cells incubated with IM, BOR and

combinatory regimen (Figure 9G). Moreover, PP2A silencing by

PP2A specific siRNA resulted in upregulation of pBCR-ABL

(Figure 9H), and decrease in apoptosis of K562 cells induced by

IM/BOR or IM/PSI (Figure 9I). Since PP2A suppression did not

completely inhibit the combined effects of the agents, other

complimentary underlying mechanisms could also be involved.

Discussion

IM at low concentration attenuates heart and kidney damages

in hypertensive rats [54], prevents the development of atheroscle-

rotic lesions and diabetes-induced inflammatory cytokine overex-

pression in the aorta [55], and reverse experimental pulmonary

hypertension in mice [56]. However, at high dose IM causes

severe congestive heart failure in mice and in a small portion of

patients [13,14,57]. Furthermore, dynamics of CML disease

progression suggests that additional agents will be beneficial to

eradicate CML leukemia stem cells [58]. Since cells expressing

BCR-ABL showed significantly higher proteasome levels than did

BCR-ABL-negative cells and were more sensitive to induction of

apoptosis by proteasome inhibitor[59], we test the combined

effects of IM and proteasome inhibitors and report here that in

vivo IM/BOR combination causes an intensified therapeutic

efficacy without obvious toxicity, providing an alternative option

for CML treatment.

We show that IM in combination with proteasome inhibitor

significantly prolongs life span of BALB/c mice bearing BCR-

ABL/GFP-expressing murine hematopoietic cells (Figure 1, Figure

S1 and S2), and suppresses tumor growth in nude mice harboring

K562 cells (Figure 2). In vitro, IM/BOR and IM/PSI exhibit an

enhanced inhibition of long-term colony forming activity and

short-term cell growth of CD34+ cells from CML patients at CP or

BC (Figure 3), cause potentiated proliferation inhibition in K562

and 32D cells expressing BCR-ABL (Figure 4 and 5), and exert

significantly potentiated apoptotic effects on CML cells (Figure 6

and Figure S5). Heaney et al [60] recently demonstrated that

proteasome may be a relevant target for quiescent CML stem cells

following tyrosine kinase inhibitor therapy, while proteasome

inhibitor are capable of inducing CML stem cell specific apoptosis.

Figure 7. Effects of IM/BOR and IM/PSI on BCR-ABL signaling pathway. (A): K562 cells treated with the agents for 24 h, and effects of IM/BOR
and IM/PSI on phosphorylated BCR-ABL (pBCR-ABL, using an anti-pY20 antibody) and BCR-ABL oncoprotein (using an anti-ABL antibody), and on
pSTAT5 (IP: anti-Stat5; WB: anti-pY20 antibody), pMAPK, E2F1 and c-Myc, were analyzed by western blot. (B): K562 cells treated with the agents for
24 h, and effects of IM/BOR and IM/PSI on BCR-ABL tyrosine kinase activity was assayed by a a tyrosine kinase assay kit. *, **: combination treatment
groups compared with IM treatment alone, P = .004 and .006, respectively. (C): IM/BOR and IM/PSI inhibit pBCR-ABL in BCR-ABL/32D cells. (D):
Treatment with IM/BOR and IM/PSI trigger catabolism of BCR-ABL characterized by generation of a catabolic fragment (CF) which is inhibited by
caspase inhibitor z-VAD.fmk. NS, non-specific band. An anti-ABL antibody is used in this experiment. (E): K562 cells treated with the agents for 24 h,
RNA was extracted, RT-PCR was conducted, and effects of IM/BOR and IM/PSI on E2F1 and c-Myc at mRNA level was detected.
doi:10.1371/journal.pone.0006257.g007
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Hence, combining tyrosine kinase inhibitor and proteasome

inhibitor in treating CML might probably provide beneficial

effects to patients including relapsed ones.

Gatto et al[25] showed that sequential administration of PS-341

and IM (,0.5 mM) caused synergistic apoptotic effects on KBM-5

cells, while antagonistic effects were detected if IM was used at a

higher concentration ($0.5 mM). In addition, antagonistic effects

were observed when PS-341 and IM were added simultaneously.

Since KBM-5 cell line was derived from a patient with myeloid

blastic phase, and K562 cells were derived from a patient with

CML in erythroid blast phase, they might respond differently to a

treatment protocol. An interesting finding in this work is that in

CD34+ cells from patients at blastic phase, treatment with IM/

BOR and IM/PSI significantly inhibits BFU-E but not CFU-GM

(Figure 3A, lower panel), suggesting that cells from CML at blastic

phase represent a heterozygous population which might respond

diversely to drug treatment, and erythroleukemia cells seem to be

more sensitive to IM/BOR combination. However, the exact

mechanisms underlying the difference in response of KBM-5 and

K562 cells to IM/BOR combination warrant further investiga-

tion.

Neither IM/BOR nor IM/PSI appears to increase systemic

toxicity in our animal tests since the body weights and overall

appearance of mice being given the combination of drugs are not

different from controls or the mice receiving only one drug.

Recently, IM [at 6206166 (400–800) mg/d] was shown to cause

cardiotoxicity in some individuals [13,14,57], and unexpected

cardiotoxicity was reported in patients received BOR (chemother-

apy was used prior to or concomitantly with BOR) [61–63]. We

show that though IM at high dose induces apoptosis in a small

proportion of cardiomyocytes in samples from nude mice, BOR

alone as well as BOR in combination with low dose IM does not

impair the heart (Figure 2). If these results could be translated into

clinical practice, IM at a dose of 100–120 mg orally per day in

combination with BOR could be tried.

Compared to normal cells, cancer cells often bear higher Dym

and evade mitochondrial apoptosis [40]. Normally, in response to

cellular stress, the cell’s mitochondria are triggered to release cyto

C into the cytosol which then binds to Apaf-1 and initiates the

formation of apoptosome, leading to the activation of casp-9 and

subsequent casp-3. The release of cyto C is tightly regulated by

pro- (e.g., Bax and Bak) and anti-apoptotic (e.g., Bcl-2 and Bcl-XL)

members of Bcl-2 family. In CML, BCR-ABL upregulates Bcl-2

[64] and Bcl-XL [65] through activation of STAT5, and inhibits

release of cytochrome C [66] and prevents caspase activation even

after cyto C release [67], hence confering resistance to apoptosis to

CML cells. Interestingly, IM/BOR and IM/PSI cause collapse of

Dym, downregulation of pBCL-2, increase of cytoplasmic cyto C

and activation of casp-9, -8 and -3 (Figure 6). It is well-known that

IM acts as a specific inhibitor of BCR-ABL. BOR and PSI

significantly enhance IM-triggered suppression of pBCR-ABL and

inhibition of its tyrosine kinase activity in vitro and in vivo

Figure 8. IM/BOR and IM/PSI inhibit b-catenin, NFkB and BTK. (A): Effects of IM/BOR and IM/PSI on b-catenin, IkB, NFkB (p50 and p65), cyclin
D1 and BTK at protein level in K562 cells treated with the agents for 24 h. (B): IM, IM/BOR and IM/PSI inhibit transcription activation activity of b-
catenin, revealed by b-catenin-regulated transcription (CRT) reporter gene assays. (C): Treatment with BOR, PSI and combination regimens
downregulate BTK and cyclin D1 at mRNA level. (D): IM/BOR and IM/PSI attenuate DNA binding activity of NFkB assessed by EMSA. Lanes indicate
treatment groups: 1, control; 2, IM; 3, BOR; 4, IM/BOR; 5, PSI; 6, IM/PSI.
doi:10.1371/journal.pone.0006257.g008
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(Figure 2D and Figure 7, A through C). In consistence with a

previous report [42], we show that activation of caspases by IM/

BOR and IM/PSI leads to catabolism of BCR-ABL, where

caspase inhibitor not only reduces apoptosis but also inhibits

degradation of BCR-ABL (Figure 7D). IM/BOR and IM/PSI also

downregulate pSTAT5 (Figure 7A). These data suggest that the

combinatory regimens on one hand target the mitochondria,

downregulate Bcl-2 and activate caspases, on the other hand

inhibit BCR-ABL/STAT5 which might in turn potentiate

downregulation of Bcl-2 and activation of caspases. Furthermore,

activated caspases can enhance BCR-ABL catabolism and

inactivation. Therefore, IM/BOR and IM/PSI may trigger a

positive feedback apoptotic signaling network, leading to a

significant amplification of apoptotic effects of each agent.

Dysregulation of Wnt-b-catenin signaling underlies multiple

human malignancies [68]. In CML, BCR-ABL triggers tyrosine

phosphorylation and hence stabilization and activation of b-

catenin [39], which enhances the self-renewal and leukemic

potential of CML stem/progenitors cells [69,70]. We show that

proteasome inhibitors and IM exert opposite effects on b-catenin:

BOR and PSI inhibit its degradation and activate its CRT activity,

while IM causes its inactivation (Figure 8A and B). Interestingly,

the ultimate result of IM/BOR and IM/PSI on b-catenin is its

inactivation (Figure 8A and B), and the expression of two b-

catenin targets, c-Myc and cyclin D1, was downregulated

(Figure 7A and Figure 8A and C), suggesting that IM dominates

the effect of IM/BOR and IM/PSI on Wnt-b-catenin pathway.

Casp-3 was shown to play an important role in IM-induced b-

Figure 9. The roles for PP2A to play in apoptosis of K562 cells induced by IM/BOR and IM/PSI. (A): Western blot analysis of effects of IM/
BOR and IM/PSI on PP2A, SET, CIP2A, PTEN, PTP1B and PTP-PEST in K562 cells treated with protocols indicated for 24 h. (B): K562 cells were treated
with the agents for 24 h, and PP2A phosphatase activity was detected by a molybdate dye-based serine/threonie phosphatase assay. (C): Proteasome
inhibitor causes accumulation of ubiquitinated PP2A (Ub-PP2A) in K562 cells. In BCR-ABL negative Kasumi-1, U266 and A549 cells, BOR also
accumulates PP2A (see Figure S7). (D): BOR, PSI, IM/BOR and IM/PSI inhibit the chymotrypsin (chymo)-like but not caspase (casp)- or trypsin (tryp)-like
catalytic activity of the 26S proteasome. *, P,.01. (E): Effects of IM/BOR and IM/PSI on component of the proteasome. The mouse thymoma cell line
EL-4 is used as a control. (F): Treatment with 5 mM FTY720 for 24 h synergizes with IM in inducing apoptosis of K562 cells, mimicks effects of BOR and
PSI. (G): Treatment with PP2A inhibitor okadaic acid (OA) at 10 nM for 24 h reduces apoptosis induced by IM/BOR. (H): PP2A silencing by PP2A-
specific siRNA results in upregulation of pBCR-ABL. (I): PP2A silencing reduces apoptosis triggered by IM/BOR and IM/PSI.
doi:10.1371/journal.pone.0006257.g009
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catenin catabolism [39], while PP2A reduced expression of b-

catenin and inhibited transcription of its target genes [71]. Hence,

BCR-ABL inactivation, caspases activation and PP2A restoration

may contribute to b-catenin inactivation, which may facilitate

eradication of CML stem/progenitor cells. Intriguingly, our results

do show that IM/BOR and IM/PSI inhibit short term cell growth

and long term colony forming activity of CD34+ stem/progenitor

cells from CML patients (Figure 3). BTK which is involved in IM-

resistance, was shown to use a positive autoregulatory feedback

mechanism to stimulate transcription from its own promoter via

NFbB [49]. Accumulation of IkB (Figure 8A) and inhibition of

DNA binding activity of NFkB (Figure 8D) by IM/BOR and IM/

PSI might lead to inhibition of BTK. These results suggest that

combined use of IM and proteasome inhibitor may be helpful in

reducing relapse and overcoming IM-resistance.

The state of phosphorylation of proteins is governed by the

coordinated and competing actions of protein kinases and

phosphatases. BCR-ABL bears dual functions to interfering with

normal signal transduction. The fusion protein has constitutively

active tyrosine kinase activity, and it inhibits phosphatases

including PP2A through BCR-ABL-induced expression of SET

protein [35]. PP2A is also inactivated by CIP2A through

stabilization of c-Myc [51], which is regulated by E2F1 [43] and

b-catenin [45]. We found that proteasome inhibitor represses the

b5 subunit and inhibits chymotryptic activity of the 26S

proteasome (Figure 9D and E), leading to accumulation of Ub-

PP2A (Figure 9, A through C). In vivo, IM/BOR also causes

upregulation of PP2A (Figure 2D). Accumulation of PP2A is

further confirmed in Kasumi-1, U266 and A549 cells treated with

BOR (Figure S7). Of course, inhibition of BCR-ABL/SET and

CIP2A might also contribute to PP2A re-activation. As a result,

PP2A activity is increased (Figure 9B). PP2A activator FTY720

[53] synergizes with IM in inducing apoptosis (Figure 9F),

mimicking effects of proteasome inhibitors. Suppression of PP2A

by OA and PP2A-specific siRNA inhibits combination regimen-

induced apoptosis, and results in upregulation of BCR-ABL

(Figure 9, G through I). Intriguingly, downregulation of SET,

CIP2A, c-Myc, E2F1, and b-catenin forms a complex positive

feedback signal network for BCR-ABL inactivation and PP2A

activation. These signals may amplify effects of IM and

proteasome inhibitor, facilitating apoptosis induction by the

combination regimens.

In summary, we report here combined use of IM and BOR/PSI

modulates several signal pathways and forms positive feed back

loops for CML cell apoptosis (Figure 10), providing potential

benefits for optimizing clinical CML remedy.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0006257.s001 (0.03 MB

DOC)

Figure S1 Effects of IM/BOR and IM/PSI on spleen weight of

BALB/c mice bearing BCR-ABL/GFP-expressing hematopoietic

cells. (A): IM/BOR decreases spleen weight of BALB/c mice. (B):

Effects of IM/PSI on spleen weight of BALB/c mice. Data are

presented as the mean Â6SD.

Found at: doi:10.1371/journal.pone.0006257.s002 (9.03 MB TIF)

Figure S2 Effects of IM/BOR and IM/PSI on tissue architec-

tures of livers and spleens of BALB/c mice bearing BCR-ABL/

GFP-expressing hematopoietic cells. Results show that IM/BOR

and IM/PSI reduce disseminated disease and prevent destruction

of tissue architectures of BALB/c mice bearing BCR-ABL/GFP-

expressing murine hematopoietic cells.

Found at: doi:10.1371/journal.pone.0006257.s003 (10.21 MB

TIF)

Figure S3 Quantification of TUNEL positive cells. In tumor

sections of nude mice inoculated with K562 cells, TUNEL positive

cells are counted in 16 different areas of the tumor sections.

*P,0.001, combinatory regimens versus BOR and IM, or PSI and

IM alone, respectively.

Found at: doi:10.1371/journal.pone.0006257.s004 (0.12 MB TIF)

Figure S4 Morphological changes of CML cells treated with

IM/BOR and IM/PSI. Results show that IM/BOR and IM/PSI

induce apoptosis of BCR-ABL+ cells.

Found at: doi:10.1371/journal.pone.0006257.s005 (24.54 MB

TIF)

Figure 10. Schematic represents mechanism of action of IM in combination with proteasome inhibitors in treating CML.
doi:10.1371/journal.pone.0006257.g010
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Figure S5 Effects of combinatory regimens on IM-resistant

K562 cells. (A): In K562 cells resistance to 0.2 mM IM, the

combinatory regimens induces a significantly potentiated apoptosis

compared to each mono-treatment. Apoptosis was detected by

Annexin V flow cytometry. (B): K562 cells were cultured at

presence of IM at 0.5 mM for one month, resulted in resistance to

IM at 0.1 to 0.5 microM. (C): The cells resistance to 0.5 microM

IM were treated with indicated protocols, and apoptosis was

analyzed by Annexin V flow cytometry.

Found at: doi:10.1371/journal.pone.0006257.s006 (0.34 MB TIF)

Figure S6 IM/BOR and IM/PSI reduce Rh123 (+)/PI (-) K562

cells. Results indicate collapse of mitochondria transmembrane

potential of K562 cells treated with IM/BOR or IM/PSI.

Found at: doi:10.1371/journal.pone.0006257.s007 (1.02 MB TIF)

Figure S7 Effects of proteasome inhibitor on expression of

PP2Ac in cells without BCR-ABL. (A): Kasumi-1 leukemic cells

bearing t(8;21), U266 myeloma cells and A549 non-small cell lung

cancer cells were treated with BOR at indicated concentration for

24 h, proteins were extracted, and western blot was performed

using and PP2Ac antibody. (B): Individual bands were quantified

by densitometry analysis and displayed as the ratio of PP2Ac/beta-

Actin.

Found at: doi:10.1371/journal.pone.0006257.s008 (0.13 MB TIF)
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