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Abstract

Recent studies have demonstrated that statins reduce cell viability and induce apoptosis in various types of cancer cells. The
molecular mechanisms underlying these effects are poorly understood. The JAK/STAT pathway plays an important role in
the regulation of proliferation and apoptosis in many tissues, and its deregulation is believed to be involved in
tumorigenesis and cancer. The physiological activation of STAT proteins by GH is rapid but transient in nature and its
inactivation is regulated mainly by the expression of SOCS proteins. UMR-106 osteosarcoma cells express a GH-responsive
JAK2/STAT5 signaling pathway, providing an experimental model to study the influence of statins on this system. In this
study we investigated the actions of simvastatin on cell proliferation, migration, and invasion on UMR-106 cells and
examined whether alterations in GH-stimulated JAK/STAT/SOCS signaling may be observed. Results showed that treatment
of osteosarcoma cells with simvastatin at 3 to 10 mM doses decreases cell proliferation, migration, and invasion in a time-
and dose-dependent manner. At the molecular level, although the mechanisms used by simvastatin are not entirely clear,
the effect of the statin on the reduction of JAK2 and STAT5 phosphorylation levels may partially explain the decrease in the
GH-stimulated STAT5 transcriptional activity. This effect correlated with a time- and dose-dependent increase of SOCS-3
expression levels in cells treated with simvastatin, a regulatory role that has not been previously described. Furthermore, the
finding that simvastatin is capable of inducing SOCS-3 and CIS genes expression shows the potential of the JAK/STAT
pathway as a therapeutic target, reinforcing the efficacy of simvastatin as chemotherapeutic drug for the treatment of
osteosarcoma.
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Introduction

Statins inhibit 3-hydroxy-3-methylglutaryl CoA (HMG-CoA)

reductase, the rate-limiting enzyme in the mevalonate biosynthetic

pathway, and source of intermediates involved in protein

farnesylation and geranylation [1]. These posttranslational mod-

ifications are vital for proper functioning of proteins Ras, Rho,

Rac, and other small GTPases, which are involved in the

regulation of several biological processes including cell prolifera-

tion, migration, viability, cell cycle, and invasiveness [2], making

them important targets for understanding statin effects. Statins

have been traditionally used to treat hypercholesterolemia and

other cardiovascular diseases; however, recent studies have found

that statins are able to induce apoptosis, thereby decreasing cell

viability and proliferation of several cancer cell lines, including

colorectal [3], prostate [4], pancreatic [5], breast cancer [6], and

melanoma cells [7]. Treatment with atorvastatin sensitizes

osteosarcoma cells to chemotherapy hence reducing cell survival

[8]. In spite of the growing evidence of the effects of statins in

different cell types, their molecular mechanisms are still unclear.

Although RhoA and Ras family proteins have been the most

investigated targets in statin research, several studies have linked

statins to the Janus Kinases/Signal Transducers and Activators of

Transcription (JAK/STAT) signaling pathway. This signaling

pathway is an important regulator of cell proliferation, differen-

tiation, survival, motility, and apoptosis [9]. Deregulation of this

pathway has been found to directly contribute to oncogenesis and

malignant transformation of several types of cancer [10–12]. JAK/

STAT signaling is activated by a variety of hormones, cytokines

and growth factors and it induces its own inactivation, mainly by
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Suppressors Of Cytokine Signaling (SOCS) protein family, acting

in a negative feedback loop [13]. Their N-terminal and SH2

domains are responsible for competitive inhibition of signaling

proteins by interaction with the JAKs or the receptors themselves

[14]. Statins, including simvastatin, inhibited the JAK/STAT

signaling pathway in cardiomyocytes [15] and vascular endothelial

cells [16] besides upregulating mRNA and protein expression of

SOCS-3 and SOCS-7 in the macrophage cell line RAW264.7

[17,18].

Growth Hormone (GH) is a pleiotropic hormone that stimulates

growth, mitogenesis, and proliferation in various tissues and cell

types. It mainly activates JAK2 and both isoforms of STAT5, A

and B. Several studies have elucidated the proliferative effects of

GH on osteoblasts [19] as well as the anabolic effects on bone [20]

and has been reported that long exposure to GH could act as

predisposing factor in the development of metastatic osteosarcoma

[21]. Recent studies report that humans with GH-receptor

deficiency are protected from developing cancer, decreasing the

susceptibility of cell to DNA damage and abnormal proliferation

[22].

UMR-106 is a rat osteosarcoma cell line with osteoblast-like

properties. It expresses a JAK2/STAT5 signaling system activated

by GH [23], making it a suitable model to study GH signaling in

osteoblasts. In a previous study, we examined the effects of

simvastatin, a lipophilic statin, on UMR-106 and HTR-8/SVneo

trophoblast cell lines. We found that simvastatin was able to

decrease cell viability and induce apoptosis on both cell types [24].

We also found that simvastatin had an inhibitory action on RhoA

and RhoB isoprenylation. RhoA, was observed to regulate STAT1

transcriptional activity, and simvastatin treatment was associated

with decreased STAT1 activation and transcriptional activity [25].

The aim of the present study was to further investigate the

molecular mechanism modulated by statins on cancer cells, by

examining the effects of simvastatin on the JAK/STAT/SOCS

signaling pathway activated by GH in UMR-106 cells, specifically

whether simvastatin was able to decrease GH signaling, modulat-

ing the JAK/STAT pathway in its activation, transcriptional

activity and regulation by SOCS proteins.

Materials and Methods

Cell culture and treatments
UMR-106 rat osteosarcoma (ATCC CRL-1661), BRL-4

(buffalo rat liver cells) [26] and MCF-7 (human breast cancer)

(ATCC HTB-22) [27] were grown in DMEM. All media were

supplemented with 10% Fetal Bovine Serum (FBS), 2 mM

glutamine, 100 units/ml penicillin, and 100 mg/mL streptomycin.

Cells were maintained at 37uC in a humidified atmosphere with

5% carbon dioxide. For simvastatin (Sigma, USA) treatment, cell

media was refreshed and simvastatin or ethanol (final concentra-

tion 0.01%) was added in the indicated concentration. Bovine

Growth Hormone (GH, AFP-10325C, National Hormone and

Peptide Program, NHPP, USA) was employed in all assays

Cell proliferation assays
In order to measure proliferation rate, Bromodeoxyuridine

(BrdU) incorporation assay was carried out using a cell prolifer-

ation ELISA BrdU kit (Roche Diagnostics, USA) according to

manufacturer’s instructions. Briefly, UMR-106 cells were seeded

at 2500 cells/well in 96-well plates in FBS-supplemented media.

After 24 h of incubation, cells were labeled with 10 mM BrdU and

incubated for an additional 4 h at 37uC. Labeling medium was

removed from the microplates, cells were dried and fixed, and

cellular DNA was denatured with FixDenat solution (Roche

Diagnostics, USA) for 30 min at room temperature. A mouse

peroxidase-conjugated anti-BrdU monoclonal antibody was added

to each well and plates were incubated again at room temperature

for 2 h. After plates were washed, they were incubated with

substrate solution containing hydrogen peroxide, luminol and

4-iodophenol. The immunocomplex was quantified by lumines-

cence emission in a luminometer Fluoroskan Ascent FL (Labsys-

tems). The assay was performed in triplicates and results were

expressed as cell proliferation percentage, taking control cells as

100% proliferation 6 SEM.

Real Time–Cell electronic sensing (RT-CES)
Electrical impedance was detected in a real-time electronic

sensing system RT-CES (xCELLigence, Roche, USA) to assay the

dynamic cell response to different doses of simvastatin. The cell

growth measured by this system is comparable to the actual cell

number and is expressed as cell index [28]. UMR-106 cells

(5000 cells/well) were seeded in FBS-supplemented medium. After

18 h, different doses of simvastatin (0.1–10 mM) were added and

measurements were done in three replicates every five minutes for

a total period of 72 h.

Cell viability assay
Cell viability was assayed by measuring the mitochondrial

reduction of the tetrazolium salt 3-(4,5-methylthiazol-2-yl)-2,

5-diphenyl-tetrazolium bromide] (MTT) [29]. MCF-7 and BRL4

cells were seeded in 96-well plates in FBS supplemented medium

at a cell density of 26104 cells/well. Twenty-four hours later,

simvastatin was added to the medium at the indicated concentra-

tions and cells were cultured for the indicated times. MTT

(0.5 mg/ml) was added to each well for the last four hours and

incubated at 37uC in the dark. The medium was then discarded

and the formazan precipitate was solubilized by addition of 20%

SDS in 0.02N HCl for 12–16 h. The optical density was measured

at 595 nm with the iMark Microplate Reader (BioRad, USA).

Data was expressed as percent growth above the level in controls

and the results in figures were plotted as mean 6 SEM of each test

point from 3 replicates. IC50 was determined from a plot when

fitted to a sigmoidal dose-response curve by using Graph Pad

Prism version 5.0 for Windows, (Graph Pad Software, La Jolla

California USA, www.graphpad.com).

Wound healing assay
UMR-106 cells were seeded on 12-well plates and grown to a

confluent monolayer. Cell monolayer was scrapped with a

micropipette tip, washed with PBS and incubated for 48 h at

37uC in 10% FBS-supplemented DMEM, with or without

simvastatin. Cells were photographed 48 h after the wound was

made. Before imaging, cells were washed with PBS and media

were refreshed. Images were acquired using a Nikon camera fitted

to an inverted microscope.

Cell migration and invasion assays
Cell migration and invasion was evaluated in uncoated or

matrigel-coated Boyden chambers, respectively, following manu-

facturer’s instructions (DB Biosciences, Bedford, MA, USA).

Lower chambers were filled with FBS supplemented medium

and final concentration of simvastatin. Cell invasiveness was

measured in a similar manner with slight modifications in the

protocol. Matrigel transwell chambers were hydrated with 500 mL

DMEM for 4 h prior to use in the upper and lower compartment.

Before seeding cells, medium was removed and the lower

compartment was filled with 600 mL of medium as indicated.

Simvastatin Effects on Osteosarcoma Cells
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Immediately afterwards, in both cases, 2500 cells were added to

the upper chamber, where they remained for 36 hours. Non-

migrating cells were swabbed from the upper chamber and its

lower face was fixed with paraformaldehyde 4%, and dyed with a

0.5% crystal violet methanol solution. The 8 mm-pore polycar-

bonate membranes were cut off from transwells and crystals were

dissolved in 10% acetic acid. Absorbance was measured at 540 nm

in duplicate.

Preparation of whole cell extract and Western blot
analysis

UMR-106 cells were grown to 80% confluence in complete

medium and then, they were serum-starved over night before the

experiments. Treatments, at times and concentrations indicated,

with simvastatin and GH were performed in serum-free medium.

After treatments, cells were rinsed in ice-cold PBS and scraped

with RIPA lysis buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl,

1% NP-40, 1% sodium deoxycholate, 0.1% SDS; Thermo

Scientific, Rockford, IL, USA) supplemented with 1X Halt

protease and 1X phosphatase inhibitor cocktails (Thermo

Scientific, Rockford, IL, USA), and incubated on ice for 30 min.

The supernatant obtained after centrifugation was used as whole-

cell extract. An aliquot of each extract was preserved for protein

quantification by bicinchoninic acid assay (Thermo Scientific,

Rockford, IL, USA). Proteins were solubilized in sample buffer

containing 62.5 mM Tris-HCl, pH 6.8, 2.3% (wt/vol) SDS, 10%

(vol/vol) glycerol, 5% (vol/vol) b-mercaptoethanol, and 0.001%

(wt/vol) bromophenol blue and boiled at 95uC for 5 min. Equal

amounts (50 mg) of each sample were electrophoresed on 8–10%

sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-

PAGE) and transferred to nitrocellulose membranes (Invitrogen,

Barcelona, Spain). Ponceau S staining solution (0.5% Ponceau S

and 1% glacial acetic acid in water) was used after transfer to

verify equal protein loading in the control and treated samples

(data not shown). Membranes were blocked with 5% blotting

grade blocker nonfat dry milk in Tris Buffered Saline with 0.05%

Tween 20 (TBST; blotto-blocking buffer) for at least 1 h at room

temperature. Then, they were washed twice in TBS with 0.1%

Tween 20 (TBST-0.1). Membranes were then incubated over

night at 4uC with the appropriate anti-phospho-antibodies

(monoclonal rabbit anti-phospho-Tyr1007/1008-Jak2 antibody,

polyclonal rabbit-anti-phospho-Tyr694-Stat5 antibody, polyclonal

rabbit-anti-phospho-Ser726/731-Stat5 antibody, polyclonal rabbit

anti-phospho-Tyr705-Stat3 antibody and polyclonal rabbit-anti-

phospho-Tyr701-Stat1 antibody (all from Cell Signaling Technol-

ogy, Danvers, MA) all diluted (1:1000) in 1% bovine serum

albumin (BSA)-1% blotto in TBST. Antibody-specific labeling was

revealed by incubation with an HRP-conjugated goat anti-mouse

secondary antibody (1:5000) (sc-2031, Santa Cruz Biotechnology,

Santa Cruz, CA, USA) or an HRP-conjugated goat anti-rabbit

secondary antibody (1:5000) (sc-2030, Santa Cruz Biotechnology,

Santa Cruz, CA, USA) and visualized with the Immu-StarTM

WesternCTM kit (Bio-Rad Laboratories, Hercules, CA, USA).

Membranes were stripped of bound antibodies by incubation in

stripping buffer (Thermo Scientific, Rockford, IL, USA) at room

temperature for 30 min with agitation. Membranes were washed

for 3610 min in TBST-0.1, blocked with blotto-blocking buffer

for at least 1 h and re-probed with the corresponding anti-total

kinase antibodies (monoclonal rabbit anti-Jak2 antibody, mono-

clonal mouse anti-Stat3 antibody, polyclonal rabbit anti-Stat1

antibody (all from Cell Signaling Technology, Danvers, MA) and

polyclonal rabbit anti-Stat5 antibody (Santa Cruz Biotechnology,

Santa Cruz, CA, USA)) all diluted (1:1000) in blotto-blocking

buffer. To check for differences in loading and transfer efficiency

across membranes, an antibody directed against b-actin (mono-

clonal mouse anti-b-actin antibody, sc-81178, Santa Cruz

Biotechnology, Santa Cruz, CA, USA) was used to hybridize with

all membranes previously incubated with the respective phospho

and total kinase antibody. Specific bands were visualized using the

ChemiDoc XRS System (Bio-Rad Laboratories, Hercules, CA,

USA) and analyzed with the image analysis program Quantity

One (Bio-Rad Laboratories, Hercules, CA, USA).

Cell transfection assays
STAT5, STAT3 and STAT-1/-3 regulated reporter plasmids

pSPI-GLE1-Luc [26], pSTAT3, pISRE, respectively, (donated by

Dr. Juan Carlos Lacal, Instituto de Investigaciones Biomédicas

‘‘Albero Sols’’, CSIC, Madrid, Spain), SOCS-1, SOCS-2 and

SOCS-3 (pSOCS-1, pSOCS-2 y pSOCS-3, donated by Dr.

Amilcar Flores Morales (CMM, KI, Sweden) were used to

examine transcriptional activity in UMR-106 cells. Cells were

grown to 80% confluence in 6-well plates and were serum-

deprived before transfection. Then, 1 mg of plasmid DNA was

transfected overnight using MetafecteneH (Biontex), according to

manufacturer’s instructions. After transfection, cells were incubat-

ed for 8 h before treatment with serum-free medium with 10 mM

simvastatin or vehicle for 16 h. Then, medium was changed to

50 nM GH or FBS-supplemented medium for additional 16 h.

Cells were extracted with Passive Lysis Buffer solution (Promega)

and luciferase activity was determined by using the Luciferase

Assay System (Promega). Luciferase activities were measured in

duplicate in microplate reader Fluoroskan Ascent FL (Labsystems).

Cells transfected with an empty plasmid were used as control in

the assay. Results were obtained as relative luciferase units (RLU)

per mg of protein and expressed as fold induction to control cells.

Cells were co-transfected, where indicated, with 0.05 mg of

STAT5 S730A plasmid [30] -which expresses phosphorylated

STAT5 protein, once is first activated, and 1 mg of SPI plasmid.

After overnight transfection, procedure followed as in the other

transfections.

Gene expression analysis by Real Time quantitative-PCR
(qPCR)

Total RNA was isolated from UMR-106 cells using Trizol

(Invitrogen, USA) according to manufacturer’s protocol. RNA

yields were measured by UV absorbance, and the quality of total

RNA was analyzed by agarose electrophoresis. mRNA expression

levels of genes were measured using qPCR. Briefly, 2 mg of total

RNA were treated with RNase-free DNase I (Promega) to remove

genomic DNA and were reverse-transcribed using iScriptTM

reverse transcriptase kit (Bio-Rad Laboratories). Two microliters

of cDNA served as a template in a 20-mL qPCR reaction mix

containing the primers and SYBR Green PCR Master Mix

(Diagenode, Belgium). Quantification of gene expression was

performed with an ABI PRISMH 7000 SD RT-PCR (Applied

Biosystems) according to the manufacturer’s protocol. Data were

extracted and amplification plots generated with ABI SDS

software. The level of individual mRNA measured by qPCR

was normalized to the level of the reference gene cyclophiline by

using Pfaffl method [31]. For graphing purposes, the relative

expression levels were scaled such that the expression of the

vehicle-matched control groups equaled one. PCR primers for

SOCS-2 (forward 59-GACGGGAAATTCAGATTGGA-39; re-

verse 59-AATGCTGAGTCGGCAGAAGT-39) SOCS-3 (forward

59-CCTTTGAGGTTCAGGAGCAG-39; reverse 59-CGTTGA-

CAGTCTTCCGACAA-39), CIS (forward 59-CCACCCCAGC-

TACCTGTTTA-39, reverse 59-CGTACAGGAGGCCACG-

TAAT-39), and cyclophiline (forward 59-GGTGACTTCAC-
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ACGCCATAA-39; reverse 59-AGCCACTCAGTCTTGG-

CAGT-39) were obtained from Thermo Scientific. Gene expres-

sion analyses were performed in cells grown in serum free media

containing variable doses of simvastatin (2, 10, 20 mM) for 8 h

prior stimulation with 50 nM GH, for 1 h. Cells treated with

vehicle (0.01% ethanol) were used as control.

Statistical analysis
The significance of differences between the groups was tested by

either a two-tailed Student’s t test or a one-way ANOVA, which

was followed by post hoc comparisons of the group means

according to the Graph Pad Prism 5 program (Graph Pad

Software, San Diego, CA). Statistical significance was reported if

p,0.05 was achieved.

Results

Simvastatin decreases the proliferation of osteosarcoma
cells

We studied the effects of simvastatin on proliferation of

osteosarcoma cells, by measuring the amount of BrdU incorpo-

rated into DNA (Fig. 1). Figure 1A shows that simvastatin caused a

time- and dose-dependent inhibition on UMR cells proliferation.

We found a significant reduction in cell proliferation after 24 h

treatment with 10 mM simvastatin (p,0.01). IC50 of simvastatin

was 4.73 mM at 24 h (Fig. 1B) and 2.73 mM at 48 h (Fig. 1C).

Moreover, we applied an electrical impedance detection method

(RT-CES) to study the dynamic response to increasing simvastatin.

Simvastatin reduces cell index, which is a marker of changes in cell

adhesion and integrity [28], confirming the anti-proliferative

effects of simvastatin on UMR-106. In absence of simvastatin, cell

index increased over the experimental period of 72 h (Fig. 1D).

Effects of simvastatin were noticeable after 7 h of treatment, as cell

index started to drop at doses higher than 1 mM. It is likely that

cells treated with simvastatin at concentrations of 1 mM or lower,

might recover from the inhibitory effects of the drug. On the

contrary, at higher doses of statin, cells are detached from the

surface which might suggest changes in cell adhesion mechanisms,

however further studies are required to confirm that. These assays

were performed in presence of FBS; therefore we exclude a

possible protective effect of FBS that might neutralize the actions

of simvastatin over cells. After 48 hours, the IC50 value was

calculated to be 2.39 mM (Fig. 1E).

We previously reported [24] the effects of simvastatin on cell

viability of UMR-106 osteosarcoma cells (IC50 2.7 mM at 48 h),

which aimed us to investigate whether the same behavior was seen

in other cell types. We used a non-cancerous BRL-4 cell line stably

transfected with the rat GH receptor complementary DNA

(cDNA), previously shown to respond to GH [26] and MCF-7

breast cancer cells which display a high proliferative but less

invasive phenotype compared to UMR-106 cell line, and

simvastatin has been shown to induce cell cycle arrest and

apoptosis [6]. Dose-response cell viability analysis for BRL-4 and

MCF-7 cell lines showed a decrease in cell viability with increasing

doses (0.1 to 30 mM) of simvastatin (Fig. 2A, B). However, both cell

lines were less affected by the drug in comparison to osteosarcoma

cells, as higher doses of simvastatin were needed to reduce the

growth of BRL-4 and MCF-7 cells after 72 h of exposure to the

statin (Fig. 2C, D).

Figure 1. Effects of simvastatin treatment on proliferation and cytotoxicity of UMR-106 osteosarcoma cells. Cells were treated with
increasing doses of simvastatin (SIM) as indicated and cell proliferation was measured using a bromodeoxyuridine (BrdU) incorporation assay.
Proliferation levels were measured at 24, 48 and 72 hours and results were expressed as percentage to control cells (100%) (A). Statistical differences
were observed after 24 h at 10 mM (p,0.01). IC50 values obtained at 24 (B) and 48 hours (C) after simvastatin treatment. Values are the mean 6 SEM.
Cell index was measured by a dynamic monitoring response (RT-CES assay) to increasing simvastatin doses for the indicated time period. The arrow
indicates the time when simvastatin was added (D). IC50 value was calculated at 48 hours (E).
doi:10.1371/journal.pone.0087769.g001
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Simvastatin decreases migration and invasion of
osteosarcoma cells

Functional implications of simvastatin on osteosarcoma cell

migration were examined by two different methods. Firstly, for the

wound healing assay, cells were scrapped across a confluent

monolayer of cells (Fig. 3A). Results showed that UMR-106 cells

treated with vehicle were capable of migrating towards the gap,

while cells treated with increasing doses of simvastatin, were

unable to migrate at the same rate (Fig. 3A). Cells exposed to doses

of simvastatin above 1 mM, detached from the surface and

therefore, the wound did not heal. Similar results were observed

when cell motility was evaluated by the Boyden chamber assay

(Fig. 3B). Furthermore, invasive capacity of osteosarcoma cells was

also affected by the statin, as is shown in the assays performed in

Matrigel-coated Boyden chambers (Fig. 3C). Simvastatin signifi-

cantly reduced cell invasiveness at doses of 3 mM, compared to

vehicle-treated control cells.

Simvastatin impairs GH-induced JAK2/STAT5
phosphorylation

To elucidate the molecular mechanism of simvastatin on cancer

cells, we focused our study on the GH-activated JAK/STAT

signaling pathway. Firstly, we found that after 10 min of 50 nM

GH, JAK2 phosphorylation (pY1007/1008-JAK2) was attenuated in

cells pretreated for 2 h with increasing doses of simvastatin up to

5 mM (Fig. 4A). Unexpectedly, STAT5 tyrosine phosphorylation

response to increasing doses of simvastatin showed an unclear

trend, and STAT1 and STAT3 phosphorylation levels were not

affected by simvastatin treatment at this time (Fig. 4A). Therefore,

we explored the effects of simvastatin at longer time of exposure

and at higher doses. Our findings show that GH-induced JAK2

phosphorylation was reversed only by a long incubation period

with 10 mM simvastatin, and that at lower concentrations the

regulation was different, suggesting that after long periods, other

Figure 2. Effects of simvastatin on cell viability in BRL-4 and MCF-7 cells. BRL-4 cells (A) and MCF-7 cells (B) were treated with increasing
doses of simvastatin for 24, 48 and 72 hours as indicated. Cell viability was measured using the MTT method and expressed as percentage to control
cells (100%). IC50 values were calculated after 72 hours of simvastatin treatment for BRL-4 (C) and MCF-7 (D) cells. Values are the mean of three
replicates 6SEM.
doi:10.1371/journal.pone.0087769.g002
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processes can occur, inducing other mechanisms that affect JAK2

phosphorylation pattern (Fig. 4B).

Moreover, when cells were grown in presence of increasing

doses of the statin (1 to 10 mM) for 10 h prior to GH stimulation,

we observed a moderate dose-dependent attenuation in STAT5

tyrosine phosphorylation (Fig. 4B). In addition, STAT5 activation

has been shown to be modulated by serine phosphorylation [32].

To address this aspect, we examined the effect of simvastatin on

pS726/731-STAT5 and interestingly a reduction in the phosphor-

ylation level was already detected with 1 mM simvastatin, which

further decreased with higher doses of the statin. After 10 mM

treatment, pS-STAT5 reaches its basal value, suggesting that

simvastatin annuls the effect of GH (Fig. 4B).

STAT transcriptional activity is modulated by simvastatin
Next we investigated whether simvastatin had an effect on GH-

induced STAT5-dependent transcriptional activity. We transiently

transfected UMR-106 cells with a SPI-GLE-Luc reporter plasmid

activated by STAT5. Figure 5A shows a 4-fold induction of

STAT5 transcriptional activity by GH compared to non-

stimulated control cells. However, cells treated with 10 mM

simvastatin showed a 40% inhibition of GH-dependent STAT5

transcriptional activity. Consistent with these findings, we found

that cells co-transfected with both the SPI-GLE-Luc reporter

plasmid and the pSTAT5 S730A plasmid, showed a 50%

reduction in transcriptional activity after simvastatin treatment

(Fig. 5B).

Figure 3. Migration and invasion levels of Simvastatin UMR-106 treated cells. UMR-106 monolayer were scraped with a pipette tip and
incubated in the absence or presence of simvastatin. Wounds were photographed at 48 h after treatment and a representative result of three
experiments is shown to schematize the inhibitory effect of simvastatin on migration rate (A). Cells were seeded in the upper level of 8 mm-Boyden
chamber uncoated (B) or coated with matrigel (C), attracted by simvastatin and 10% FBS supplemented medium in the lower chamber. After 48 h
migrating cells were stained with crystal violet methanol solution, the 8 mm-pore membranes were cut off and crystals were dissolved in 10% acetic
acid. Absorbance solution was measured at 540 nm. Quantitative response was expressed as percentage of the control 6 SEM of two replicates. a
means p,0.001, b means p,0.05 vs control, after a one-way ANOVA analysis.
doi:10.1371/journal.pone.0087769.g003
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Moreover, we evaluated STAT1 and STAT3 transcriptional

activity by using a pISRE-Luc reporter plasmid. We found that

10 mM simvastatin significantly decreased transcriptional activity

induced by FBS (Fig. 5C) and that a lower dose of 1 mM did not

cause a significant change in transcriptional activity (data not

shown). We further analyzed the effects of simvastatin on FBS-

induced STAT3 transcriptional activity using a STAT3-Luc

reporter plasmid. Results indicate that simvastatin does not induce

a significant change in FBS-induced activity (Fig. 5D). Taking into

account that SOCS proteins negatively regulate the JAK/STAT

pathway, we analyzed the effects of simvastatin on the SOCS gene

promoters. We found that simvastatin modulates SOCS-3

promoter, increasing the activity of the reporter plasmid

(Fig. 5E). In contrast, SOCS-1 or SOCS-2 promoters did not

show a significant activation by the statin in comparison with the

empty plasmids.

Simvastatin induces SOCS-3 and CIS expression
As our results showed an activation of SOCS-3 promoter, we

investigated whether simvastatin had any regulatory role at the

transcriptional level of SOCS genes, evaluating UMR-106 cells

response to GH stimulation and simvastatin treatment. First, we

found that GH induced mRNA expression of CIS, SOCS-2 and

SOCS-3 with maximum levels at 1 h of hormone treatment

(Fig. 6A). Consistent with the results mentioned previously, we

found that treatment with simvastatin induced mRNA levels of

SOCS-3 and CIS genes in a time-dependent manner (Fig. 6B and

C). Moreover, we also found a dose-dependent effect of

simvastatin. When 2 mM simvastatin treatment for 8 h was

combined with 50 nM GH, SOCS-3 mRNA expression was

enhanced (Fig. 6D). Western blot analysis also showed a higher

SOCS-3 protein basal level in cells after 10 h exposure to

simvastatin (Result not shown). CIS transcription was not further

increased, more likely due to the already high levels of expression

of this gene, compared to other SOCS genes (Fig. 6E). For both

Figure 4. Effect of simvastatin on JAK/STAT phosphorylation in UMR-106 cells. Cells were pretreated with simvastatin as indicated, and
then stimulated with 50 nM GH for 10 minutes. Dose dependent phosphorylation of JAK2, STAT5, STAT3 and STAT1 proteins levels were determined
by immunoblotting analysis in whole cell lysate, after 2 h (A) or 10 h (B) of simvastatin incubation. b-actin levels were used as a load control protein.
doi:10.1371/journal.pone.0087769.g004
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genes, we observed higher concentrations of simvastatin (10 to

20 mM) may affect cell viability and therefore mRNA levels were

not as elevated as with lower statin doses (Fig. 6D and E)

Discussion

Statins are widely used in the treatment of hypercholesterolemia

and other cardiovascular diseases. These drugs inhibit the

mevalonate pathway, by targeting the HMG-CoA reductase, the

rate-limiting step enzyme in cholesterol synthesis [33]. Recent

studies have demonstrated that statins, besides their cholesterol-

lowering effects, reduce cell proliferation and viability and induce

apoptosis in various types of cancer cells [3–6]. In this study we

found that simvastatin, a lipophilic statin, decreases cell prolifer-

ation, migration and invasion levels in UMR-106 rat osteosarcoma

cells. This is consistent with previous results in our group, where

we found that cell viability is decreased in a dose-dependent

manner [24].

Interestingly, when comparing to a non-cancerous rat hepato-

cyte BRL-4 cell line, results showed the higher sensitivity of

osteosarcoma cells, suggesting the potential anti-tumor actions of

the statin. In addition, we examined the antiproliferative effects of

simvastatin on MCF-7 human breast cancer cells, finding for this

type of cells a lower sensitivity towards the statin. Our results are

consistent with previous studies [6,34], where MCF-7 cells were

found to be more resistant to statin actions than other breast

cancer and head and neck cancer cell lines. MCF-7 cells are poorly

invasive, as compared to UMR-106 cells, which suggests that

statins might target more invasive cell types and therefore, have a

great potential as anticancer agents. In contrast to hydrophilic

statins, hydrophobic simvastatin enters cells by free diffusion and is

expected to affect a wide variety of organs and tumor cells.

Although the simvastatin concentration required to reduce

osteosarcoma cell growth and invasion in vitro may not be

therapeutically achieved in vivo, daily intake of the statin for long

periods of time could improve the antitumor efficacy of the drug.

Here we found three cell lines with different responses to

simvastatin treatment, suggesting that differences in their signaling

might account for their different behavior in response to

simvastatin. It is necessary to further investigate whether mutations

or other protein modifications might be important for statin

response, which could target specific types of cancer cells. This also

applies for the marked reduction in cell adhesion, migration and

invasion observed in the presence of the statin in osteosarcoma. In

the case of wound healing, cells treated with high simvastatin

doses, not only were unable to migrate at all, but were clumping

above the surface; this is in line with our findings in RT-CES,

which very likely means that cell adhesion mechanisms are

impaired, probably by alterations on membrane receptors and

transmembrane proteins such as integrins [35]. Consequently, we

cannot disregard the pro-apoptotic effects that simvastatin in doses

higher than 3 mM might exert on cells.

In previous studies, these biological effects have been linked to

the Rho and Ras family proteins, due to their direct association

with statins and their inhibition effects on farnesylation and

geranylation [36]. However, several pleiotropic effects have not

Figure 5. Effect of simvastatin-pretreated UMR-106 cells on GH- or FBS-induced transcriptional activity. After transfection, cells were
incubated for 8 h before treatment with serum-free medium with 10 mM simvastatin or vehicle for 16 h. Then, cells were stimulated with 50 nM GH
or 10%FBS –as indicated- for 16 hours. Cells were transiently transfected with pSPI-GLE-Luc reporter plasmid activated by STAT5 (A) and
co-transfected with pSTAT5 S730A (B); pISRE-Luc reporter plasmid activated by STAT1/3 (C), pSTAT3-Luc reporter plasmid activated by STAT3 (D) or
pSOCS-1, -2, -3 gene promoter plasmids (E). Treatments are as follows: C = Non-stimulated transfected control cells; SIM = Simvastatin. Luciferase
expression results are expressed relative to non-treated cells. a means p,0.001, vs control cells; b p,0.05, vs control cells; c p,0.05 vs GH-treated
cells. Values are mean 6 SEM, after a one-way ANOVA analysis.
doi:10.1371/journal.pone.0087769.g005
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been entirely elucidated and cannot be explained by direct

alterations in the Rho and Ras family members.

The effects of simvastatin on other signaling pathways are

currently under extensive investigation, including the JAK/STAT

pathway. Here, we demonstrate that simvastatin modulates JAK2

phosphorylation in response to the statin. Previously, Zhang et al

reported that a decreased JAK2 phosphorylation might be

associated with changes in lipid raft composition, which destabilize

the receptor- tyrosine kinase complex [18]. It is plausible to

consider that the inhibitory effects of simvastatin in cholesterol

synthesis, besides lowering raft cholesterol content and isoprenoid

derivatives production, could also interfere with the expression of

membrane proteins that require post-translational modifications

derived from the mevalonate pathway. Therefore, it seems

probable that the reduced JAK2 phosphorylation observed on

GH-stimulated cells, pretreated with the statin, may be due to

changes in membrane lipid composition as a result of the

inhibitory effect of the drug.

We found a reduction in GH-induced STAT5 serine phos-

phorylation, along with a decrease in GH-stimulated STAT5

transcriptional activity in the presence of simvastatin. It has been

found that tyrosine and serine phosphorylation are required to

reach the highest STAT5 transcriptional activity [32]. In contrast

to the extensive research on tyrosine phosphorylation and its

function in dimerization, nuclear translocation and transcriptional

activity, the role of serine phosphorylation has not been entirely

elucidated [37,38]. Park et al found two serine phosphorylation

sites in STAT5a that can be constitutively phosphorylated, Ser725

and Ser779; while STAT5b can only be phosphorylated at Ser730

by GH, Prolactin and other cytokines [37]. Moreover, in several

lymphoid tumors cell lines, constitutive phosphorylation of a newly

identified cytokine-inducible Ser193 site within human STAT5b

was found, supporting the possible involvement of serine

phosphorylation in cancer cells [32].

Our results demonstrate an approximately 40% decrease in

GH-stimulated STAT5-luciferase reporter gene activity, in oste-

osarcoma cells treated with the statin, which could be explained by

the decrease in pS726/731-STAT5 observed in presence of

simvastatin. The mechanism by which statins might interfere with

STAT5 activation and nuclear localization and whether they

interact with some cytoplasmic proteins to drive their biological

actions remains undetermined and opens a new field of

investigation.

The JAK2/STAT5 pathway is regulated by different mecha-

nisms, including a negative feedback loop through the induction of

SOCS proteins [39]. GH has been shown to induce the expression

of different combinations of SOCS-1 to -3 and CIS. While the

primary SOCS-1 and SOCS-3 interaction has been described with

critical phosphotyrosines located within the catalytic loop of the

JAK2 molecule, SOCS-3 has been shown to interact with high

affinity regions within the receptor subunits [40]. CIS and SOCS-

2 also bind to receptor phosphotyrosines and inhibit signaling by

competing with STAT molecules for recruitment to the receptor

complex [41]. Among the prevailing mechanisms by which SOCS

proteins inhibit cytokine signaling, their targeting of signaling

molecules for proteosomal degradation has received great

attention [42]. This raises the possibility that SOCS proteins

may inhibit signaling by functioning as adaptors for an E3

ubiquitin ligase complex.

Figure 6. Effect of simvastatin and GH treatment of UMR-106 cells on SOCS gene expression. (A) mRNA expression after GH treatment in
the time points indicated for SOCS-2, SOCS-3 and CIS. Gene expression of SOCS-3 (B) and CIS (C) after 10 mM simvastatin treatment in the time points
indicated. Gene expression of SOCS-3 (D) and CIS (E) in cells treated with simvastatin for 8 hours in increasing doses prior to stimulation with GH
50 nM for 60 minutes. Treatments are as follows: C = Non-stimulated control cells; SIM = Simvastatin. Values are the mean 6 SD (n = 3) and
normalized to the level of the reference gene cyclophiline. a p,0.05, b p,0.005, c p,0.001, after a two-way ANOVA analysis.
doi:10.1371/journal.pone.0087769.g006
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We show here the GH-induced expression of SOCS-2, SOCS-3

and CIS in UMR-106 cells with peak values after 1 hour of

exposure to the hormone, in agreement with the study by Morales

et al. [43]. Furthermore, our results show that simvastatin induces

the SOCS-3 and CIS expression in UMR-106 cells, in a time and

dose dependent manner. To our knowledge this is the first report

where simvastatin has been found to induce SOCS-3 and CIS

gene expression in cancer cells. These findings might explain the

effects of simvastatin in the GH-induced JAK/STAT pathway.

Furthermore, we found that pretreatment with simvastatin, at

doses compatible with cell viability (e.g. 2 mM) increase

GH-induced SOCS-3 expression. Both SOCS-3 and CIS have

been shown to inhibit or decrease GH activation of STAT5 and

STAT5-dependent transcriptional activity [44]. Thus, it is possible

that simvastatin-induced expression of SOCS-3 and CIS may

contribute to the reduced STAT5 transcriptional activity we

observed in UMR-106 cells. However, further studies knocking

down SOCS genes could clarify the modulation of GH responses

to simvastatin.

In conclusion, our results demonstrate that simvastatin has

several biological activities on UMR-106 osteosarcoma cells,

displaying osteosarcoma high sensitivity to the statin actions, in

comparison with other cancer types. At the molecular level,

although the mechanisms used by simvastatin are not entirely

clear, the effect of the statin on the reduction of JAK2 and STAT5

phosphorylation levels, may partially explain the decrease in the

GH-stimulated STAT5 transcriptional activity. This effect corre-

lated with a time- and dose-dependent increase of SOCS-3

expression levels in cells treated with simvastatin, a regulatory role

that has not been previously described. Furthermore, the finding

that simvastatin is capable of inducing SOCS-3 and CIS gene

expression, shows the potential of the JAK/STAT pathway as a

therapeutic target, reinforcing the efficacy of simvastatin as

chemotherapeutic drug for the treatment of osteosarcoma.
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