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Abstract

Wheat yield is largely determined during the period prior to flowering, when the final num-
bers of fertile florets and grains per spike are established. The aim of this study was to
assess the dynamics of floret primordia development in winter wheat in response to pre-
anthesis application of a synthetic cytokinin, 6-benzylaminopurine (6-BA). We conducted
an experiment in which two foliar spray treatments were applied (water or 6-BA) to Chinese
winter wheat at 25 days after jointing during two growing seasons (2012—2013 and 2013—
2014). Both the final grain number per spike and grain yield at maturity exhibited remarkable
increases in response to the 6-BA treatment. Application of 6-BA increased the number of
fertile florets in basal spikelets and, to a greater extent, in central spikelets. The mechanism
by which 6-BA application affected the final number of fertile florets primarily involved sup-
pression of the floret abortion rates. Application of 6-BA considerably reduced the abortion
rates of basal, central and apical spikelet florets (by as much as 77% compared with the
control), as well as the degeneration rates of basal and central spikelet florets, albeit to a
lesser degree. The effect of 6-BA application on the likelihood of proximal florets being set
was limited to the distal florets in the whole spike, whereas obvious increases in the likeli-
hood of grain set under 6-BA treatment were observed in distal florets, primarily in central
spikelet positions. The results of this study provide important evidence that 6-BA application
to florets (final fertile floret production) results in an increased grain yield.

Introduction

To further increase wheat yield, it may be useful to elucidate the mechanisms controlling yield
determination [1,2]. In analyses of the physiological determinants of cereal productivity, yield

is commonly divided into its two major components: the number of grains set per ground area
and the average grain weight. Because grain growth is often restricted by sink rather than
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source tissues [3-5], the yields of wheat and most other crops are primarily influenced by the
grain number per unit area [6-10].

The potential grain number is determined during the pre-anthesis stage [11] as a result of
the intricate processes of floret generation and degeneration. First, floret structures, which later
become fertile and capable of bearing grains, are generated. A large proportion of these struc-
tures then degenerate, and a small proportion of them subsequently abort (a period of fertile
floret degeneration) [12,13]. Most of these processes occur when the spikes are attached along
the culm during the pre-anthesis period. Grain number is related to the number of fertile flo-
rets [14] during the stem elongation phase. The number of fertile florets is most frequently
determined by the survival of florets rather than by the number of florets produced [15].

Many reports in the literature have assumed that floret development depends on resource
availability in wheat. Gonzélez et al. [16] and Ferrante et al. [17] have shown that the numbers
of both grains and fertile florets are related to the spike dry weight at anthesis. Gonzalez et al.
[16] have found that floret death and survival are linked to pre-anthesis spike growth. Floret
death occurs during rapid stem and spike elongation, at a time when nutrient requirements are
high. Therefore, it is frequently argued that competition for assimilates eventually leads to a
shortage of nutrients, resulting in floret primordia abortion. Ferrante et al. [12] have demon-
strated that nitrogen and water availabilities affect the rate of floret development and therefore
the rate of floret primordia mortality in one cultivar of durum wheat. Many studies have also
reported on the effects of N application timing and management on yield [18,19] and on the
developmental dynamics of florets in response to N availability [12,15]. For example, Zhang
et al. [20] have reported that both plant growth regulators and N application timing markedly
affect floret initiation and development. Several studies have also described different factors
affecting yield and crop parameters after the spraying of plant growth regulators of wheat [21-
24]. Moreover, Serrago et al. [25] have identified a relationship between the fate of individual
florets, which determines floret survival, and spike growth dynamics, as affected by photope-
riod manipulation during stem elongation. However, to our knowledge, the relationship
between floret primordia development (specifically, the final number of fertile florets pro-
duced) and grain yield in response to the pre-anthesis foliar application of a synthetic cytoki-
nin, 6-benzylaminopurine (6-BA), in wheat remains unclear.

Therefore, the aim of this study was to measure the effects of the pre-anthesis foliar applica-
tion of 6-BA on yield and grain number in well-adapted winter wheat and to determine
whether the responses are related to the developmental dynamics of florets, specifically to the
final production of fertile florets.

Materials and Methods
Plant materials

The common wheat cultivar Yumai 49-198 was used in this study, as its performance has been
previously demonstrated under field conditions, e.g., in a study conducted by Zheng et al. [13],
in which it was grown at a farm at the Science and Technology Demonstration Park of Henan
Agricultural University (113° 59" E, 34° 86" N, Zhengzhou, Henan Province, China) during the
2012-2013 and 2013-2014 growing seasons. The soil was light loam, and the basic chemical
properties of the cultivated layer at 0 to 20 cm depth before sowing were as follows: 16.8 gkg™
organic matter, 0.9 g kg ' total N, 25.6 mg kg™' available phosphorus, 124.5 mg kg™ available
potassium, 0.41 mg kg™ available B, and a pH of 8.62. Before sowing, all experimental plots
were fertilized with 75 kg phosphate (P,0s), 60 kg potash (K,0), and 73 kg nitrogen (using
urea, 46%) as a basal application, and the same quantities of fertilizers were topdressed at the
jointing stage. The seeds were sown on 8 October during the two growth periods. Each
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experimental unit consisted of a 20 m” plot with row spacing of 20 cm and 225 plants/m>. The
experiment was arranged in a randomized block design. Plots were sprayed with either water
or 6-BA (10 mg/L) at 25 days after the jointing stage (prior to the abortion of florets). The
amount of 6-BA sprayed was controlled following the protocol described by Shi et al. [26],
which entails the drip-free spraying of water on the surfaces of leaves. Each treatment was rep-
licated three times.

Sampling and measurements

Five plants from each experimental unit (15 plants per treatment) were randomly harvested
weekly. Samples were obtained every three days from the onset of spraying with 6-BA or water
until five days after flowering. The main shoot was dissected under a stereomicroscope (XTZ-E
BM [180x], BM Optical Instruments Manufactory, Shanghai, China), and the following measure-
ments were recorded: the differentiation stage of young spikes, the number of differentiated
spikelets, the total number of floret primordia, and the morphological characteristics of florets at
the different developmental stages. In addition, the developmental stages of the florets were
determined. The spikelets considered included those in the apical (first/fourth from the tip), cen-
tral (middle), and basal (first/fourth from the base) positions of the spikes. We numbered the flo-
rets according to their positions relative to the rachis [27], ranging from Floret 1 (F1, closest to
the rachis) to Fn (the most distal primordium), and the development of each floret was scored
(Fig 1) using the Waddington scale [28], which assigns scores primarily according to pistil devel-
opment from floret primordium present (stage W3.5) to stage W 10. Fertile florets were defined
as those at W8.5 or immediately before that stage (when the stigmatic branches formed a tangled
mass) [28,29]. Florets at W10 were identified as ‘final fertile florets” (Fig 1).

At maturity, 20 spikes were randomly harvested from the main shoots of the plants in each
experimental unit. In each spike, the spikelets were separated, and the grains in each spikelet
were numbered according to their positions relative to the rachis (from F1 at the most proximal
site to F4 at the most distal site).

The growing degree days after sowing (GDD) was calculated as the summation of daily
average temperature [(T.x+Tmin)/2] (a base temperature of 0°C was assumed). To deter-
mine the dynamics of floret development during pre-anthesis, the numbers of living florets
in successive samples across floret development stages were plotted against the GDD, and
the data were fitted to a tri-linear model (a rising linear, sharply linear, and slowly dropping
linear). The different developmental rates (differentiation, degeneration, and abortion rates)
of the floret primordia were calculated using the three linear equations of the dynamic
model of floret development, i.e., the slope of the equation was the floret developmental
rate.

Climate variations during growth periods

The climatic conditions varied between the 2012-2013 and 2013-2014 growing periods. The
2013-2014 growing period experienced higher temperatures and less rainfall (Fig 2). In 2013-
2014, a serious drought occurred in this region during pre-flowering, resulting in 27.5 mm less
rainfall from the jointing to the flowering stages compared with that in 2012-2013. From
December 2013 to the end of January 2014, the rainfall amounted to merely 0.1 mm, which
was 15 mm less than the average rainfall in 2012-2013. From November 2013 to March 2014,
the monthly average temperature was 1.12°C higher than that during the same period in 2012-
2013. The total accumulated temperature during the entire 2013-2014 growing period was
380.7°C higher than that during the 2012-2013 growing period.
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Quantitative scale based on the morphogenesis of
the spike, ovary and pistil of florets
Floret development stages

Description Development score

Transition apex

Early double ridge stage
Double ridge stage 25
Glume primordium present .‘

Lemma primordium present

Floret pimordium present 35

Stamen primordium present 4

Pistil pimordium present - Differentiation stage

Carpel pimordium present 45 Degeneration stage

Carpel extending round three sides of ovule 5 Abortion stage

Stylar canal dosing; ovarian cavity enclosed

Stylar canal remaining as a naow opening; 6

two short round style primordia present

Styles begin elongafing 6. ‘ & "
Stigmatic branches just differentiating as 7 \ ‘

swollen cells on styles
Unicellular hairs just differertiating on ovary Spikelets within Florets within the spikelet Floret at anthesis Grain set
wall; stigmatic branches elongating Spike the spike
Stigmatic branches and hairs on ovary wall
elongating
Stigmatic branches and hairs on ovary wall
confinue to elongate; sigmatic branches
from atangled mass
Styles and stigmafic branches erect;
stigmatic hairs differentiating
Styles and sfigmatic branches spreading
outwards. Stigmatic hairs well developed
Styles curved outwards and stigmatic

Spikelet position

i | i o o
branches spread wide; pollen grains on Splkelet detail
well-developed stigmatic hairs

Waddington et al. 1983

Fig 1. Development of the floret primordia. Floret developmental stages were determined using the Waddington
scale [28] (left panel), with pictures captured using a stereomicroscope (XTZ-E BM (180x)). The panel on the upper
right side illustrates floret developmental dynamics in three stages: differentiation (from the first appearance of
floret primordium [W3.5] to the end of floret initiation [W7]), degeneration (i.e., the tetrad stage of floret
development, from W7 to W9), and abortion (from pollen maturity [W9] to grain setting). The central panel first
depicts the development of spikelets within the spike. Second, the development of floret primordia within spikelets
is presented. Third, a floret successfully reaching the final fertile stage at flowering (W10) and grain setting is
presented. The bottom panel illustrates the spikelet positions within the spike (left), the florets within spikelets from
those closest to the rachis (F1) to those located at increasingly distal positions (middle), and the set grains
numbered according to their positions relative to rachis, from G1 (the most proximal) to G4 (the most distal) (right).
The drawings and pictures are not to scale: as a reference, the floret widths are approximately 0.15 mm in W3.5,
0.20 mmin W5, 0.50 mm in W7, 0.90 mm in W8.5, and 2.20 mm in W10.

doi:10.1371/journal.pone.0156627.g001

Statistical analysis

All data were assessed by analysis of variance (ANOVA), performed using SPSS (version 17.0),
to examine differences between the two spraying treatments. Least significant differences
(LSDs) were calculated at a probability level of P = 0.05. Figures were created using Microsoft
Excel 2003.

Results
Effect of 6-BA application on wheat grain yield

As expected, the foliar application of 6-BA resulted in increased grain yields at maturity during
both the 2012-2013 and 2013-2014 growing periods (Table 1). Compared with the plants
treated with the water control, the grain yields of the 6-BA-treated plants increased by 5.63%
from 2012-2013 and by 8.9% from 2013-2014. The grain numbers per spike were significantly
increased in response to the 6-BA treatment compared with the water treatment during both
growing periods; however, no differences in thousand-grain weight were noted (Table 1). The
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Fig 2. Accumulated rainfall (bars) and the mean temperatures (points and line) over the 2012-2013 and
2013-2014 wheat-growing periods at the experimental field (Zhengzhou, China). The arrows denote the
dates: sowing stage (S), seeding emergence stage (E), jointing stage (J), anthesis stage (F), and maturity stage
(M) for wheat.

doi:10.1371/journal.pone.0156627.9002

grain number per spike and thousand-grain weight increased by 3.252 grains and 0.83 g,
respectively, in response to the 6-BA treatment in 2012-2013, and these values increased by
3.81 grains and 0.99 g, respectively, in 2013-2014.

Effect of 6-BA application on living floret dynamics

The dynamics of living florets subjected to the spraying treatment showed similar patterns dur-
ing both growing periods (Fig 3). The model of floret development was characterized by three

Table 1. Grain yields and main yield components of winter wheat between the two treatments for the two growing periods.

Growing period Treatment Spikes (10% ha™) Grains per spike 1000-grain weight (g) Grain yield (kg ha™)
Water 625.11+£13.99a 31.92+1.53b 40.22+1.95a 7991.27+53.06b
2012-2013 6-BA 625.4+14.29a 35.17+0.52a 41.05+1.004a 8440.87+93.71a
MS 0.126NS 21.206* 1.025NS 349836.907**
Water 690.88+15.39a 26.45+1.48b 52.34+1.09a 8077.79+31.41b
2013-2014 6-BA 690.2+13.01a 30.26+1.46a 53.33+0.14a 8797.25+67.53a
MS 0.960NS 30.061* 1.17NS 639208.704***

Note: The values are the mean + standard error, n = 3. Different letters in the same column indicate significant differences between treatments at a
P < 0.05. The mean square (MS) for the effect of foliar spraying of 6-BA is also presented.
¥ *x ***_ and NS represent the levels of significance of the MS values (0.05, 0.01, 0.001, and non-significant, respectively).

doi:10.1371/journal.pone.0156627.1001
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Fig 3. Dynamics of floret primordia from jointing to five days after anthesis in winter wheat in response to
two foliar spray treatments (S0: water [circles]; S1: 6-BA [triangles]) in three spikelet categories (basal,
central and apical). The lowercase letters indicate the three stages of floret developmental dynamics:
differentiation (a), degeneration (b) and abortion (c). In each panel, the left dotted lines indicate jointing, the middle
dotted lines indicate 21 days after jointing, and the right dotted lines indicate flowering. The arrows indicate the
point at which spraying was conducted.

doi:10.1371/journal.pone.0156627.9003

stages: first, the floret primordia number increased until a maximum was reached at the peak
(approximately 35 floret primordia on basal and apical spikelets, and approximately 80 floret
primordia on central spikelets); second, a period of floret degeneration occurred with the high-
est rate of primordia loss; and, third, a final stage of floret abortion occurred, during which

the rate of degeneration diminished but the differences between treatments were the greatest
(Fig 3).

During the final periods of floret development in both growing periods, the foliar applica-
tion of 6-BA increased the numbers of fertile florets in the basal and central spikelets, whereas
a minimal effect on the apical spikelet was noted (Fig 3). Moreover, the number of fertile florets
exhibited a stronger increase in response to 6-BA spraying in the central compared with the
basal spikelet, whereas the number of fertile florets only increased slightly (Fig 3).

Significant differences in floret development rates were noted between the two treatments
(Table 2). During both growing periods, the floret abortion rates decreased in the basal, central
and apical spikelets after 6-BA spraying compared with the water control treatment (Table 2)
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Table 2. Developmental rates of floret primordia for the two treatments at different spikelet positions over the two growth periods.

Growing period Spikelet position

Basal

2012-2013 Central

Apical

Basal

2013-2014 Central

Apical

Treatment Differentiation rate Degeneration rate Abortion rate
Water 0.1158+0.002a 0.092+0.007a 0.045+0.011a
6-BA 0.1158+0.002a 0.082+0.003b 0.0125+0.007b
Water 0.2177+0.003a 0.14+0.004a 0.06910.002a
6-BA 0.2177+0.003a 0.108+0.005b 0.016+0.005b
Water 0.1325+0.0029a 0.073+0.006a 0.018+0.003a
6-BA 0.1325+0.0029a 0.082+0.001a 0.006£0.01b
Water 0.1780+0.0022a 0.1405+0.007a 0.0269+0.005a
6-BA 0.1780+0.0022a 0.127+0.005b 0.011+0.003b
Water 0.2879+0.0029a 0.1592+0.004a 0.0459+0.002a
6-BA 0.2879+0.0029a 0.1254+0.003b 0.0121+0.001b
Water 0.1580+0.0016a 0.1406+0.006a 0.024+0.003a
6-BA 0.1580+0.0016a 0.1417+0.007a 0.013+0.008b

Note: The values are the mean + standard error (+SE), n = 3. Different letters in the same column indicate significant differences between treatments at a

P < 0.05.

doi:10.1371/journal.pone.0156627.t002

by 72.22%, 76.81% and 66.67% in 2012-2013 and by 59.11%, 73.64% and 45.83% in 2013-
2014, respectively. Further, the floret degeneration rates in basal and central spikelets were
reduced after 6-BA spraying (Table 2) by 10.87% and 22.86% in 2012-2013 and by 9.6% and
21.23% in 2013-2014, respectively. However, foliar application of 6-BA did not affect the
degeneration rate of florets from apical spikelets (Table 2).

Effect of 6-BA treatment on grain setting

The application of 6-BA had remarkable effects on the final grain number at maturity in all
spikelet positions. During both growing periods, the final grain number and grain setting rate
of fertile florets increased in response to the 6-BA treatment compared with the water control
treatment in the basal, central and apical spikelet positions (Fig 4). In other words, the respon-
siveness of grain number to 6-BA application was mainly observed as an increase in the grain
setting rate of fertile florets. In the central and basal spikelet positions, the number of fertile flo-
rets increased in response to the 6-BA treatment compared with the water control treatment

during both growing periods, whereas this number increased in response to the water control
treatment compared with the 6-BA treatment in the apical spikelet position (Fig 4).

The most proximal florets usually set grains in a large proportion of spikelets, and the prob-
ability of a grain being set was generally higher in florets that were close to the rachis, i.e., rang-
ing from the highest probability in F1 to the lowest in F4. The effects of 6-BA application on
the likelihood of F1 and F2 being set were restrained to that of the most distal floret being set
(i.e., F3 and F4) in the whole spike during both growing periods (Fig 5). In contrast, 6-BA
application increased the likelihood of F3 and F4 (florets at the most distal positions) being set
across all spikelet positions (Fig 5).

The 6-BA treatment markedly affected the final grain number of spikelets during the two
growth periods (2012-2013 and 2013-2014) (Fig 6). Following the foliar application of 6-BA,
grain setting was initiated from the first or second spikelet position. and a total of 22 to 24 spike-
lets exhibited grain setting. In contrast, following the water control treatment, grain setting was
initiated from the third spikelet position, and it was observed in only 21 to 22 spikelets (Fig 6).
During both growing periods, the relative numbers of grain setting spikelets along the spikes were
increased in response to the 6-BA treatment compared with the water control treatment (Fig 6).

PLOS ONE | DOI:10.1371/journal.pone.0156627 June 3,2016

7/14



el e
@ : PLOS | ONE Wheat Grain Yield Increases in Response to Pre-Anthesis Foliar Application of 6-Benzylaminopurine

Basal Spkelets Central Spikelets Apical Spikelets

0 2 4 6 8 10 0 10 20 30 40 50 0 2 4 6 8 10
Number of fertile florets or grains (spikelets-)

0 20 40 60 380 10 0 20 40 60 80 100 0 20 40 60 80 100
Grain set (%)
2012-2013

FF

GN

0 2 4 6 8 10 0 10 20 30 40 50 0 2 4 6 8 10
Number of fertile florets or grains (spikelets-)
0 S0 E ey
GS GS! —1
S — ) > S1 |
0 20 40 60 80 10 0 20 40 60 80 100 0 20 40 60 80 100
Grain set (%)
2013-2014

Fig 4. The number of fertile florets at anthesis (FF), grain number at maturity (GN), and percentage of grain
set (GS) in winter wheat in response to two foliar spray treatments (S0: water [pale grey bars]; S1: 6-BA
[dark grey bars]) in three spikelet categories (basal, central and apical). The data are presented as the
treatment mean + standard error, n = 3. The different letters indicate significant differences ata P < 0.05.

doi:10.1371/journal.pone.0156627.9004

Discussion
Dynamics of living florets

Several studies have reported that floret development in wheat involves a three-stage process,
including generation, degeneration, and abortion (e.g., Li et al. [29]). Li et al. [30] have investi-
gated the dynamics of floret differentiation and degeneration in winter and spring wheat. They
have found that the relationship between the number of florets on the main stem and the GDD
after sowing can be fitted using a quadratic equation, which consists of an accelerating curve, a
promptly decelerating line, and a more gradually decelerating line thereafter. In our study, to
elucidate the developmental dynamics of florets during pre-anthesis, the relationship between
the number of living florets and the GDD was fitted using a tri-linear model, consisting of an
increasing linear model (differentiation stage), a sharply decreasing linear model (degeneration
stage), and a slowly decreasing linear model (abortion stage) (Fig 3). This model is more conve-
nient for the calculation of the floret development rate. Due to the severe drought that occurred
during the floret development stage of wheat growth in 2013-2014, the accumulated tempera-
ture at the onset of floret differentiation, degeneration and abortion in apical and central

PLOS ONE | DOI:10.1371/journal.pone.0156627 June 3,2016 8/14
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doi:10.1371/journal.pone.0156627.9005

spikelets was almost 200°C higher than that in 2012-2013; however, this difference did not
affect dynamics at the basal spikelet (Figs 2 and 3). Referring to Waddington’s scale [28], Fer-
rante et al. [15] have suggested that florets at W10 are fertile. However, in our study, we defined
florets as fertile when they were at W8.5, consistent with Li et al. [29], after which a small pro-
portion abort. In addition, we defined florets at W10 as 'final fertile florets'.

Floret developmental stage and fertile floret survival

Floret primordia develop during a constrained time window, primarily coinciding with stem
elongation [16]. Many scholars [16,31] have noted that rapid growth of the spike and stem dur-
ing pre-anthesis leads to intense competition for limited nutrient resources. This competition
results in a limited supply of nutrients for spike growth, resulting in floret degeneration. Some
scholars have also indicated that at 15 d before anthesis, the spike:stem ratio reflects a stage
with the highest level of competition and that the floret markedly degenerates during this stage
[32,14]. Therefore, the final stage of the stem elongation phase is considered a critical period
for fertile floret, grain number and yield determination [9].
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doi:10.1371/journal.pone.0156627.g006

However, Wang et al. [33,34] have found that plant hormones play important roles in floret
development and that the effects of exogenous hormones on regulation of floret development
are dependent on the developmental stage at which they are applied. Peltonen-Sainio [35] have
found that exogenous zeatin (ZT) treatment significantly increases the grain number at the
anther separation stage.

Here, we demonstrated that the foliar application of 6-BA during the late phase of floret
development led to an increase in the grain number per spike (Figs 4 and 6). In response to the
6-BA treatment, the floret abortion rates in the basal, central and apical spikelets were reduced
by 59.11-72.22%, 73.64-76.81% and 45.83-66.67% during the periods from 2012-2013 and
from 2013-2014, respectively, compared with the water control treatment (Table 2). Thus, this
study has confirmed that fertile floret survival is mediated by exogenous 6-BA during pre-
anthesis (prior to the degeneration peak of florets).

Fertile floret survival and grain yield

As yield is linearly related to grain number, the mechanisms underlying grain number determi-
nation may be relevant to the development of measures for increasing yield [1,6]. It has been
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subsequently established that the survival of fertile florets at anthesis under a wide range of
conditions is closely related to the grain number at maturity, possibly due to genotypic varia-
tion [36] or to environmental influences [25,32]. Therefore, quantitative analysis of the dynam-
ics of floret development may be important in investigations of the mechanisms for
determining grain number and yield [37,38].

In the current study, foliar application of 6-BA at 25 days after the jointing stage (prior to
the degeneration peak of common wheat florets) resulted in marked increases in the final grain
number and grain yield at maturity but did not affect the thousand-grain weight. These results
suggest that the striking effect of 6-BA application on wheat yield is more likely due to its effect
on the grain number per spike than to that on the average grain weight. The response to 6-BA
application was mainly attributed to an increase in the proportion of fertile florets exhibiting
successful grain setting (Fig 4). The grain setting rates of fertile florets treated with 6-BA in the
basal, central and apical spikelets increased by 8.11-10.55%, 12.64-15.06% and 5.43-8.35%
during the 2012-2013 and 2013-2014 periods, respectively, compared with those treated with
the water control (Fig 4). These results are consistent with a previous exploratory study report-
ing that the increased number of fertile florets during the late phase of floret development is
driven by survival of the initiated florets [12].

Possible causes of yield increases

Floret development is the result of a regulated balance between organ initiation and coordina-
tion on the one hand and meristem size on the other. Floral meristem size is controlled by
auxin, gibberellin, and cytokinin, all of which play primary roles in organogenesis and organ
initiation [39]. Cytokinins are hormones that regulate many physiological and developmental
processes in plants [26,40], including generative development and grain yield [41-44]. In this
study, we found that foliar application of the synthetic cytokinin 6-BA resulted in clear
increases in the likelihood of grains set in distal florets (i.e., F3 and F4) in central spikelets. A
previous study has demonstrated that cytokinins may affect yield by up-regulating genes asso-
ciated with the cell cycle, resulting in increased seed size due to changes in sugar signalling and
specifically to enhanced phloem unloading and sugar import into the endosperm through
enzymatic activities of cell wall invertases [44]. Therefore, we hypothesize that that application
of the exogenous hormone 6-BA during the late stage of floret development may change the
levels of endogenous hormones in leaves and spikelets during the floret development process.
Another possibility is that 6-BA application changes the distribution and supply of photosyn-
thate to different positions of the wheat grain or spikelet, which could be favourable for devel-
opment and grain setting in distal florets and spikelets. The internal physiological mechanism
of the development of florets into grains, as mediated by exogenous 6-BA, requires further
study.

Conclusions

In this study, the foliar spraying of exogenous 6-BA (10 mg/L) prior to the peak in degenera-
tion of wheat florets resulted in clear increases in grain number and yield in Chinese winter
wheat. We therefore conclude that 6-BA application is an efficient strategy for improving cereal
yields. We also demonstrated that the foliar spraying of 6-BA improved the final grain number
and the fertile florets’ grain setting rate per spike by suppressing the abortion rate of fertile flo-
rets at any spikelet position of the spike. These findings confirm that the survival of fertile flo-
rets is a crucial determinant of grain number in wheat and that this process seemingly depends
on resource availability (exogenous 6-BA) during pre-anthesis.
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