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Abstract
Functional diversity (FD) is an important component of biodiversity that quantifies the differ-

ence in functional traits between organisms. However, FD studies are often limited by the

availability of trait data and FD indices are sensitive to data gaps. The distribution of species

abundance and trait data, and its transformation, may further affect the accuracy of indices

when data is incomplete. Using an existing approach, we simulated the effects of missing

trait data by gradually removing data from a plant, an ant and a bird community dataset

(12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by

FD values calculated from full datasets and then from our increasingly incomplete datasets

and compared the ranking between the original and virtually reduced datasets to assess the

accuracy of FD indices when used on datasets with increasingly missing data. Finally, we

tested the accuracy of FD indices with and without data transformation, and the effect of

missing trait data per plot or per the whole pool of species. FD indices became less accurate

as the amount of missing data increased, with the loss of accuracy depending on the index.

But, where transformation improved the normality of the trait data, FD values from incom-

plete datasets were more accurate than before transformation. The distribution of data and
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its transformation are therefore as important as data completeness and can even mitigate

the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise

depends on the data distribution, the method should be decided case by case. Data distri-

bution and data transformation should be given more careful consideration when designing,

analysing and interpreting FD studies, especially where trait data are missing. To this end,

we provide the R package “traitor” to facilitate assessments of missing trait data.

Introduction
Functional trait-based approaches are increasingly used in ecology for understanding the envi-
ronmental and evolutionary processes underlying biological diversity [1,2]. While traditional
measures of biodiversity encompass the richness and abundance of organisms in an ecosystem,
trait-based studies can provide additional information on their functions. Where taxonomic
diversity categorises organisms by relatedness, functional diversity (FD) captures the extent of
the differences between organisms in terms of functional traits, i.e. the measurable characteris-
tics associated with their fitness and ecological function [3]. A functional approach can there-
fore allow generalizations beyond taxa and biogeographical regions, and can reveal both how
species coexist together and how they might affect multiple ecosystem processes [4,5].

Functional diversity can be measured with different FD indices, which capture different
aspects of diversity: functional richness, functional evenness and functional divergence (for full
review see [6] and references therein). All indices are calculated using both trait and species
composition data. Intuitively, the more species for which trait data are available, the more FD
indices will reflect the real community values [7]. However, complete trait data is often not
available for all species because it might be difficult to measure certain traits for particular spe-
cies, time and resources are usually limited, and species might be very rare. It is particularly
common to be missing trait data for rare species, and they are generally the first to be omitted
in incomplete datasets [7]. The omission of the rare species first is mainly because the most
abundant species are expected to have the most functional influence on ecosystem functioning
(see 'mass ratio hypothesis'[8] and [9]) and are therefore sampled with higher priority.

It also remains unclear what proportion of species one needs to measure to make a reliable
assessment of functional diversity, and whether it is possible to generalize this across study sys-
tems, different taxa or different sampling methods. This is an increasingly important issue to
address with the advent of trait databases, of which even the largest are still plagued by missing
data [10] reducing their power for larger-scale comparative studies. Many trait-based studies
use an 80% relative abundance threshold as a rule of thumb, i.e. sampling trait information for
the most common species that comprise at least 80% of the total abundance in a community
[11]. This measure was proposed for and is adequate for community weighted mean of traits
(CWM), which is not sensitive to outliers and focuses on the most dominant species in a com-
munity [9]. In contrast to CWM, FD indices such as functional richness, evenness and diver-
gence encompass the variability of both rare and dominant species and are therefore more
sensitive to missing trait information [7]. In general FD values decline in reliability with miss-
ing trait data [6], however, how this decline affects the biological conclusions drawn from such
indices still remains to be tested.

Since FD indices are sensitive to missing trait data, it is important to make an a priori deci-
sion on how to deal with potential data gaps. One approach is to fill in the missing trait data by
imputation [12,13]. Another option is to set ‘safe’ trait data completeness thresholds, i.e. the
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minimum proportion of species for which trait data must be obtained, usually prioritizing the
most dominant [11]. Data completeness thresholds can be applied either on the whole assessed
pool of species or in each plot separately [7]. The choice of applying either a pool-wise or plot-
wise threshold also influences the way researchers conduct trait sampling, and depends on
whether the focus is on species abundant in the whole dataset (pool-wise) or locally (plot-wise)
[14], as well as on the rate of species turnover between plots and/or habitat heterogeneity (ie.
beta diversity). For example, along ecological gradients with high replacement of dominants
across locations, setting the trait sampling thresholds for each plot can reveal more relevant
information than setting it for the whole pool [15].

FD indices are calculated using both species composition and trait data, therefore the struc-
ture and the choice of transformation of both types of data can strongly influence their compu-
tation. Abundance structure reflects the dominance patterns of a community [16,17], with the
most abundant species expected to have the most functional influence (see 'mass ratio hypothe-
sis'[8]). Abundance data can spread over several orders of magnitude [18–20]. Therefore,
abundance data are often transformed to avoid relatively small differences between species,
which are often biologically relevant, being overshadowed by larger ones. Trait data present the
same problem, with traits varying on different orders of magnitude, but with small biological
differences at low values of a trait being often as biologically relevant as bigger differences at
greater values. As such, traits can also be transformed, which can influence the measures of
functional differences between species [20]. For example, traits related to size or weight are
mostly skewed in distribution and thus routinely transformed to meet normality criteria. In
such cases, log-scaled values rather than absolute values may better reflect the study system in
question [21,22]. Both abundance and trait transformation changes the relative influence of
rare species as well as affecting features of the distribution (namely variance, skewness and kur-
tosis), and effectively decreases the differences between rare and abundant species. In synthesis,
both species abundance and trait structure and data transformation could affect the resulting
FD indices and their interpretation. Although some studies have been conducted on the effect
of missing data [7,11,12,23], the additional effects of abundance and trait structure and data
transformation on missing trait data are not yet resolved. This is a crucial issue to address,
since FD indices of communities with different trait and abundance distributions may differ in
their sensitivity to the same amount of missing data and may not be directly comparable.

Here we test the specific questions: (1) How do missing trait data influence the robustness
and reliability of FD indices; (2) How does defining a safety threshold for missing trait data
either pool-wise or plot-wise influence the robustness of FD indices to missing trait data; (3)
How do abundance structure, abundance measures and abundance transformation affect the
robustness of FD indices to missing trait data; (4) How do trait distribution and transformation
affect the robustness of FD indices to missing trait data?

Material and Methods

Datasets
We selected three datasets that represent (1) different groups of organisms (i.e. plants, inverte-
brates, and vertebrates), and for which we have complete information on species abundance
and trait data; (2) different types of abundance sampling methods; (3) different dominance-
diversity structure. For each of the datasets we selected traits that were available for all sampled
species, are commonly used, and represent important dimensions of species ecological strate-
gies([2,22,24] and references therein). These traits represented both continuous and categorical
traits. More details on all study systems and traits are given in S1 Appendix. Taking the lead
from previous studies on the effects of missing data [6, 7, 8, 19] we focus on real communities
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that reflect the nuances that are important for the structuring of species assemblages. At the
same time, to expand upon previous work, we decided to test different types of communities
and sampling patterns to assess consistency in the patterns detected.

Plant data were collected from an oligotrophic species-rich wet meadow in the south-western
Czech Republic with 12 plots differing in their management [25,26]. Three methods of measur-
ing plant abundance were adopted: (1) species frequency in quadrats in each plot (henceforth
"frequency"), (2) percentage cover estimates performed visually from the centre of each plot
(henceforth "cover"), and (3) biomass, where plants were clipped, sorted into species, oven-
dried and weighed. We assessed two categorical (growth form and position of leaves along the
stem) and three continuous traits (canopy height, specific leaf area and seed mass) of 62 species.

Ant data were collected at the Stability of Altered Forest Ecosystems (SAFE) project in
Sabah, Malaysia [27,28]. In total the survey included 59 plots in different habitat types; oil
palm, logged forest, and old growth forest. Ants were hand collected from soil pits and dead
wood in quadrats in each survey point. The abundance of each species was expressed as num-
ber of individuals. We assessed two categorical (pilosity and sculpturing) and two continuous
traits (head length and the ratio of leg length to body size) of 297 species.

A repeated survey of rainforest birds was carried out along an elevation gradient on the
slopes of Mt. Wilhelm in the Central Range of Papua New Guinea [29,30]. The study was com-
pleted along a 30 km long transect with eight sites, spanning from lowland floodplains at 200
m to the timberline at 3700 m. The sampling method was individual counts, which comprised
surveying the bird communities at each site by point counts, mist-netting and random walks
through the area. We assessed one categorical (trophic guild) and two continuous traits (body
length and weight) of 238 species.

Missing trait data simulations and data collection scenarios
We simulated different degrees of trait data availability by progressively removing trait data,
starting by omitting trait data for the least abundant species. Removing trait data generally
results in some species not being included in the calculation of CWM and FD, i.e. part of the
total community abundance is not considered. Removing the least abundant species first, mim-
ics a frequently encountered sampling condition, where rarer species are often those with miss-
ing trait information [6]. We then followed the approach of Pakeman [6] to uniformly
decrease the total abundance in a community by small steps (0.5%; Fig 1), in order to obtain a
comparable continuous measure for hypothesis testing and comparison between communities.
If a species accounts for less than 0.5% of total abundance, the whole species is removed in one
step. If a species accounts for more than 0.5% of total abundance, the entire species is removed
in several steps. The alternative to this approach is removing one species at a time, but this
would result in unpredictable changes in relative abundance, since abundance distributions dif-
fer from community to community and from dataset to dataset. As an example, assume a plot
with the following abundances (e.g. number of individuals), sorted by increasing abundance:
{1, 2, 3, 4, 4, 7, 9, 14, 33, 89}. Expressed in relative abundances, rounded for simplicity to two
decimals, this becomes {0.01, 0.01, 0.02, 0.02, 0.02, 0.04, 0.05, 0.08, 0.19, 0.54}. If we now
remove 5% (i.e. 0.05) from that plot, we remove the first 3 species and 0.01 of the fourth spe-
cies. In the second step, we would remove the remaining 0.01 of the fourth species, the fifth
species, and 0.02 of the sixth species, and so forth for each step. Hence, for each of these steps
we omit species, simulating that we do not consider them and their accompanied trait values
when calculating measures of functional composition and diversity.

As in Pakeman [6] we used two missing trait scenarios, pool-wise and plot-wise. For the
pool-wise scenario (Fig 2), we first ranked species in the whole pool (i.e. species from all
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Fig 1. Flow diagram of the consecutive methodological steps. Upper left corner—in each plot species
are ordered by their relative abundance and FD index is calculated for each plot of a community. Upper right
corner—0.5% of the species relative abundance is removed in consecutive steps, starting with the least
abundant species and FD index is then calculated again for each plot at each reduction step. Upper middle
columns—plots are ranked based on the values of the FD index and the ranks of original data and data at
each reduction step are correlated. Figure in the middle—regression slopes from fitting the linear model
represent the robustness of FD index to missing trait data; in this example FD index is (A) less robust and (B)
more robust to missing trait data (example RaoQ on head length of ants).

doi:10.1371/journal.pone.0149270.g001
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communities in a dataset) by abundance. We calculated the relative abundance of each species
in the entire species pool and then we progressively removed the rarest species from the species
pool, as demonstrated above. This resulted in differing availability of trait information between
plots since some individual plots contain the removed species, and are affected, while others
are not. Moreover, communities have different abundance structure (i.e. dominance-diversity
curves) so that removing the same number of species in different communities can have differ-
ent results. For the plot-wise scenario, we first ranked species in each plot by their abundance.
We then calculated the relative abundance of each species for each plot and progressively
removed the rarest species from each plot, as demonstrated above. In both scenarios, we
removed 0.5% of the relative abundance at a time (Fig 1) until only 50% of the total abundance
remained. We provide functions to apply this removal procedure to any community dataset in
the R package "traitor" (see Data Accessibility for details).

Transformation of abundance and trait data
We used different combinations of transformations of abundance and trait data for both sce-
narios (plot-wise and pool-wise, see previous section) in order to reveal how the two scenarios
combined with different forms of data transformation influence the FD indices. For continuous
traits we applied square root and log10 transformations (henceforth “log”). For abundance data
we applied log (x + 1) and log (x / min(x) + 1) transformations where x is the abundance of a
species and min(x) stands for the minimum positive abundance value of the species in the data-
set. The log (x / min(x) + 1) transformation is a special case of a general form log (a × x + b),
which is usually applied for data containing zeroes. Similar to the often used log (x + 1) it keeps
the absence (i.e. original zero) to be zero after transformation, but unlike the log (x + 1) it also
keeps the logarithmic character of the transformation when the values are rather low. For
example, if the values are between zero and two, the character of log (x + 1) transformation is
close to linear, whereas log (x / 0.1 + 1) keeps the typical log shape, therefore equalizing the spe-
cies abundances. In the case of individual counts and frequency log (x + 1) equals log (x / min
(x) + 1), therefore we calculated the latter only for the plant datasets with biomass and cover.

Functional diversity indices
We assessed three FD indices using the FD package [31]. We first computed the trait dissimi-
larity matrices with the Gower distance for both single and multiple traits [32]. Then we calcu-
lated the FD indices: (1) functional richness (FRic), which reflects the range of functional trait
variability in a given species assemblage; (2) functional evenness (FEve), which represents the

Fig 2. Plot-wise and pool-wise trait data thresholds. Schematic figure depicting plot-wise and pool-wise scenarios for setting the thresholds for trait data
sampling. (A) species from all plots make up the pool of species; (B) species can be ordered by their abundance in each plot or in the whole pool; (C) the least
abundant species in the whole pool of species are removed until reaching the desired threshold for trait sampling; (D) the least abundant species in each plot
are removed until reaching the desired threshold for trait sampling.

doi:10.1371/journal.pone.0149270.g002
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evenness of abundance distribution across species traits; and (3) Rao’s quadratic entropy index
(RaoQ), which captures the degree of divergence in the abundance distribution of species func-
tional traits. In addition, we computed community weighted mean (CWM) which expresses
the structure of trait values in the community. We computed all four indices for 100% of spe-
cies and individuals in each plot and then repeated this approach (including recalculation of
the Gower distance) for each reduction step.

Robustness of FD indices to missing trait data
The values of FD indices calculated for each plot within a dataset can change when missing dif-
ferent amounts of trait data. As a result, plots can change in how functionally diverse they are
relative to each other, ie. they may end up ranked in a different order by their values of FD indi-
ces (Fig 1). Here we assessed whether the ranking of FD values across plots was conserved
when trait data were removed in order to evaluate how missing trait information would affect
biological conclusions. To do this we calculated Spearman’s rank correlations between the FD
index values of the original data (100% of species) and those of every step of the simulated
reduction sequence (Fig 1). When the rank correlations are high, the order of samples accord-
ing to their FD values is maintained between the original and the reduced data, even if FD val-
ues themselves change. In contrast to a focus on FD per se [7], using rank correlations allows us
to assess how data availability could affect possible biological interpretations, as this represents
the amount of biological information retained in the reduced datasets. We produced these sim-
ulations for each organism, FD index, sampling scenario (pool-wise and plot-wise), trait (sepa-
rately and combined together), and abundance and trait transformation type.

We used linear regression models for combinations of all cases described in the previous
section, where the log-transformed rank correlations were considered as a response variable
and the amount of relative abundance remaining in the plot as an explanatory variable (as
shown in the example in Fig 1). We then extracted slopes from each regression model in order
to estimate the decline of rank correlations, and therefore robustness of FD indices to missing
trait data, for all possible combinations of cases considered. The less negative a slope estimate
was, the lower the decrease in rank correlations with data reduction, and therefore the more
robust the FD index was to missing trait data. The intercept for these regressions was forced
through 1 to account for the theoretical starting point of the slopes and to make the slopes
comparable. In further analyses, we refer to the regression slopes fitted with linear models as
"robustness", as it represents the rate of decline of rank correlations with missing trait values.

Data analyses
Testing the effects of sampling scenarios, abundance distribution, abundance measures

and their transformation. We tested which of the different predictors had a significant effect
on the slope values extracted in the previous step, therefore indicating which variables affect
the robustness of FD indices to missing trait data. We used linear mixed effects models with
maximum likelihood estimation (nlme package, [33]) with regression slope values (from linear
regression models described in previous section) as the response variable, and scenario (pool-
wise or plot-wise), abundance transformation (transformation or no transformation), index
(CWM, FRic, FEve, RaoQ), and their two-way and three-way interactions as fixed effects.
Because the traits selected for each organism represent just a subset of all possible traits that
can be measured, we used trait as a random factor in the linear mixed effect models. The mod-
els were performed for each organism type separately. In the case of plants, where three differ-
ent abundance measures were applied (biomass, cover, and frequency) we also used the
abundance measures (i.e biomass, cover, and frequency) as another fixed explanatory variable.

Effects of Missing Data and Transformation on FD Indices
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Because we could not calculate slopes for all combinations of our explanatory variables (e.g.
CWM of categorical traits) we used a mixed effects model, which allows an unbalanced design
of the data [34].

Testing the effects of trait data structure and its transformation. In a separate model,
we also tested the effect of trait transformation on the robustness of FD indices to missing trait
values. For that we first calculated the skewness of all continuous trait distributions before and
after each transformation type (square-root transformed, log10 transformed). Categorical traits
were not included in this analysis. Trait values were always positively skewed. The difference in
skewness between untransformed and transformed data indicated how much data transforma-
tion improved the normality of the traits. Small differences in skewness indicated that the trait
was already close to normality and transformation was not necessary. We then tested with lin-
ear mixed effects models whether trait transformations improved the effect of missing trait
data on the FD indices. In the models, regression slope values (from linear regression models
described in the “Robustness of FD indices to missing trait data”) were used as the response
variable and improvement in skewness, scenario (plot-wise or pool-wise), index (CWM, FRic,
FEve, RaoQ) and their interactions were used as variables with fixed effects. Again, because
traits considered in our analyses represent only a subset of all potential traits that can be mea-
sured for each organism, we used trait as a random factor in the models. The models were
done for each organism type separately.

Results

The effect of missing trait data and the effect of sampling scenarios on
FD indices
All assessed indices were, as expected, sensitive to missing trait data (Table 1). Community
weighted mean (CWM) was less sensitive to missing trait data than the FD indices for all three
datasets. Within the FD indices Rao’s quadratic entropy index (RaoQ) was the least sensitive,
followed by functional richness (FRic), and functional evenness (FEve) (Fig 3). The effects dif-
fered for the different community types. For plant data, FEve was more sensitive to missing
trait information for the pool-wise scenario than for the plot-wise scenario. The other three
indices were equally sensitive to missing trait information in both scenarios (Fig 3A). For the
ant data, in the plot-wise scenario RaoQ was less sensitive to missing trait information, and
CWM, FEve, and FRic were more similar in both sampling scenarios (Fig 3B). For the bird
data, none of the interaction terms were statistically significant (Table 1), indicating that all
indices were similarly sensitive to missing trait information for both scenarios (Fig 3C).

The effect of abundance distribution, abundance measures and their
transformation
For plant data, abundance transformation greatly decreased the sensitivity of FEve and FRic to
missing trait data, but only slightly decreased RaoQ and CWM sensitivity (Fig 4A), which were
however the least sensitive to missing trait data. When considering the three different abun-
dance measures available for the plant dataset (biomass, frequency, and cover), the frequency
measure was the least sensitive to missing trait data (Fig 5). The interaction between abundance
transformation and abundance measure was significant (F(2, 461) = 6.3; P = 0.002; see also S2
Appendix in Supplementary material); the differences between these measures were equalized
after transformation (Fig 5). For ants, the interaction between abundance transformation and
index indicated that FD indices computed from transformed species abundances were less sen-
sitive to missing trait data than FD indices computed from original species abundances (Fig

Effects of Missing Data and Transformation on FD Indices
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4B). For birds, abundance transformation did not significantly change the sensitivity of FD
indices (Fig 4C).

The effect of trait distribution and transformation
The more normal the distribution of traits before transformation, the less sensitive the indices
became to missing trait information (Fig 6). There was a significant interaction between the
change in skewness (from untransformed to log-transformed trait data) and index (F(3, 274) =
6.78; P> 0.001; see also S2 Appendix in Supplementary material). Trait data transformation
most improved the accuracy of RaoQ, followed by FEve, FRic, and there was no improvement
for CWM, as expected since trait transformation did not alter the ranking in species trait values
(Fig 6).

Discussion

The effect of missing trait data and the effect of sampling scenarios on
FD indices
The number of species for which trait information is available can influence not only the accu-
racy of functional diversity indices [7], but also the possible biological interpretation. We dem-
onstrated this by showing that the ranking of FD values changes across communities with an

Table 1. Effect of sampling scenario and abundance transformation on FD index sensitivity.

Community Predictors Df F P

Plants Scenario 1, 493 13.28 <0.001

Index 3, 493 236.22 <0.001

Abun.Transf. 1, 493 12.24 <0.001

Scenario × Index 3, 493 21.10 <0.001

Scenario × Abun.Transf. 1, 493 0.03 n.s.

Index × Abun.Transf. 3, 493 27.20 <0.001

Scenario × Index × Abun.Transf. 3, 493 1.66 n.s.

Ants Scenario 1, 110 101.68 <0.001

Index 3, 110 170.13 <0.001

Abun.Transf. 1, 110 189.39 <0.001

Scenario × Index 3, 110 24.84 <0.001

Scenario × Abun.Transf. 1, 110 7.65 0.007

Index × Abun.Transf. 3, 110 14.89 <0.001

Scenario × Index × Abun.Transf. 3, 110 0.93 n.s.

Birds Scenario 1, 84 0.29 n.s.

Index 3, 84 20.25 <0.001

Abun.Transf. 1, 84 0.48 n.s.

Scenario × Index 3, 84 0.09 n.s.

Scenario × Abun.Transf. 1, 84 0.005 n.s.

Index × Abun.Transf. 3, 84 5.10 0.003

Scenario × Index × Abun.Transf. 3, 84 0.09 n.s.

Results of general linear mixed effects models showing the effect of the two scenarios (pool-wise or plot-wise; "Scenario"), FD indices (functional richness,

functional evenness, Rao’s Quadratic entropy index, and community weighted mean; "Index"), and abundance transformation ("Abun.Transf.") on

robustness of FD indices to missing trait data (the regression slopes).

doi:10.1371/journal.pone.0149270.t001
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Fig 3. Effect of sampling scenario on FD index sensitivity. Barplots showing the results of linear mixed
effects model, specifically the effect of the two sampling scenarios on the sensitivity of indices for three
different types of organisms. The more negative the regression slope, the more sensitive the particular index
is to missing trait information. The error bars denote the 95% confidence intervals. (A) plant community
(n = 12 plots), (B) ant community (n = 58 plots), and (C) bird community (n = 8 plots).

doi:10.1371/journal.pone.0149270.g003
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increasing amount of missing trait data compared to a complete dataset. Our results also con-
firmed the previous finding that some FD indices are more sensitive than others to missing
trait information [7,11]. FD indices were not as robust as CWM, which is heavily influenced by
the most abundant species. Functional evenness was the most sensitive index to missing data,
perhaps because the missing trait information for rare species removed extreme or outlier trait
values.

Fig 4. Effect of abundance transformation on FD index sensitivity. Barplots showing the results of linear
mixed effects models, specifically the effect of the abundance transformation on the slopes for the three
different types of organisms. The more negative the regression slope, the more sensitive the particular index
is to missing trait information. The error bars denote the 95% confidence intervals. (A) plant community
(n = 12 plots), (B) ant community (n = 58 plots), and (C) bird community (n = 8 plots). The right panels depict
dominance-diversity curves for the respective organism dataset before and after log-transformation.

doi:10.1371/journal.pone.0149270.g004
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Our results suggest that neither pool-wise nor plot-wise scenario should ultimately be con-
sidered as "best" when setting data completeness thresholds, and that the decision is contingent
upon the particular study system, FD index, and research question. Previous studies have sug-
gested that plot-wise sampling is more appropriate because it produces values closest to the FD
values obtained with a complete dataset [7] and can be performed with less sampling effort
[14]. However, our approach of testing the ranking of FD rather than the actual values showed
no consistent trend in this direction. When considering the effect of missing data under the
two sampling scenarios indices behaved differently between the different communities.

Fig 5. Effect of samplingmethod and abundance transformation on FD index sensitivity. Barplot
depicting the results of linear mixed effects models, specifically the interaction between abundance
transformation and the different abundance measures used in plant ecology (all three abundance measures
were used for the same plant dataset in order to make their effects comparable). The effect of down-
weighting the dominant species by log-transformation of their abundance was most pronounced in the
biomass abundance measure. When log transformed, all three sampling methods have a very similar effect
on the sensitivity of indices to missing trait data. Error bars denote the 95% confidence intervals.

doi:10.1371/journal.pone.0149270.g005

Fig 6. Effect of trait transformation on FD index sensitivity. The effect of trait transformation on the
improvement in slope (transformed—untransformed trait data)—the bigger the improvement in slope, the
more robust the index becomes to missing trait data (y axis). The right panels illustrate the different
improvements in trait skewness, depicting examples of trait distribution before and after transformation,
which correspond to the x axis of the main figure (matching colours).

doi:10.1371/journal.pone.0149270.g006
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The effect of abundance distribution, abundance measures and their
transformation
Abundance distribution, abundance measures (biomass, cover estimate, frequency) and abun-
dance transformation influenced the robustness of FD indices to the amount of missing trait
information. Transforming the abundance leads to a shift of the abundance distribution in a
community, thereby changing the relative abundance. In our simulation approach this implies
that fewer species are removed at a given level of relative abundance compared to untrans-
formed data. The different indices are designed to capture different aspects of diversity, and
they thus responded differently to transformation. We found that functional evenness always
improved with transformation because species were given more equal weighting, but functional
divergence (RaoQ) improved less or not at all since transformation essentially shrinks the
range of values. CWM remained unaffected as it focuses on the dominants even before trans-
formation. Care should be taken in studies comparing functional diversity between communi-
ties with different abundance distribution and with the use of different FD indices, since
transformation may have different effects on the accuracy of FD indices.

Abundance transformation should not be considered as a purely technical matter, because it
reflects our understanding of the community structure. Transforming abundance changes the
community structure by flattening the dominance-diversity curves [17]. And therefore the
question whether to transform abundance mainly depends on the biological question behind
the particular analysis. If, for example, we followed the mass-ratio hypothesis [8] focusing on
the effect of the dominant species in a community, then dominant species should be given
more weight, in which case abundance transformation would not be the most appropriate
option. On the other hand, if the scope of our study included coexistence mechanisms, abun-
dance transformation could better reveal the structure of our community giving biological rele-
vance not only to the few dominant species.

Different abundance measures also influence the number of species for which traits are
needed in order to achieve a desired amount of information for a given community. This trend
is visible when we consider three different abundance measures available for the plant commu-
nity in our study (biomass, cover, frequency). For example, the biomass measure after transfor-
mation resembled the frequency measure without transformation. The difference between the
abundance measures can be explained by how evenly spread the abundance values are [35,36].
Using plant biomass as a measure typically produces the most uneven abundance values. In
our plant community for example, the least abundant species accounted for as little as 0.001 g
(generally, the precision of weighing), and the dominants exceeded 10g, so the potential differ-
ence is several orders of magnitude. Frequency, on the other hand, will have smaller differ-
ences, as in our data where it was measured in 25 subplots, and so the possible maximum was
only 25 fold higher than the possible minimum. Transforming the abundance data therefore
equalizes the effects of different abundance measures, which can be used as a way of standardi-
zation in comparative studies and meta-analyses.

The effect of trait distribution and transformation
Our results show that the more the transformation improves the trait data normality (i.e. from
very skewed to normal), the more it improves the robustness of the FD indices to missing trait
information. FD indices were sensitive to changes in the distribution of trait values (see also
[20]), as the changes in distribution altered the functional differences between species in the
communities. This was true mainly for indices that comprise the variance of trait distribution,
i.e. functional richness and functional divergence (RaoQ). CWM, on the other hand, focuses
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on the dominant species, and therefore its robustness to missing trait information was not
affected by trait transformation (e.g., big species are still big species after transformation).

Trait distribution is of a great importance, as trait data in natural communities vary in the
extent that they deviate from the normal distribution, which also influences FD calculations
[19,20]. Outlying values or values spreading across several orders of magnitude manifest as the
skewness of the data. Some traits are by their nature more normally distributed in a community
(e.g. specific leaf area in plants), whereas some are usually highly skewed (e.g. seed weight in
plants, body size in ants and body weight in birds; Fig 6 "Big improvement in skewness") and
are therefore routinely transformed to meet normality assumptions. As the data are on a ratio
scale, the outliers are usually positive, and so the high skewness means that there are either
more positive outliers, or there is one highly positive outlier. The most extreme case is when a
species with the most different trait value is the rarest one. An example can be found in each of
our communities: (1) the plant dataset is dominated by small-seeded grasses and forbs but has
a big-seeded and rare legume species (Lathyrus pratensis L.), (2) the ant dataset is dominated
by small species but the giant forest ant (Camponotus gigas Latreille) is very rare, and (3) the
bird dataset is dominated by small flying species but also contains the much larger and flight-
less cassowary (Casuarius bennetti Gould, 1857), which is very rare.

Our results empirically support previous suggestions that trait values should be log-
transformed, as the relationship between any two species is best characterized by the difference
in logs, i.e. by the ratio of traits, rather than by the absolute difference between them [21,22].
Like abundance transformation, the choice of transforming the traits is also dependent on the
particular research question. When upscaling for the questions regarding ecosystem function-
ing, the absolute values of a trait are more important. For example, sometimes it is more inter-
esting to know strictly how tall a species is (absolute value of a trait), rather than how tall a
species is compared to its neighbours (transformed value of a trait). On the other hand, it is
important to transform trait data when detecting the processes behind community assembly
and/or species co-existence, for example how tall a species is compared to its neighbours.

Practical implications
Since functional diversity indices are sensitive to missing trait data, and this sensitivity is fur-
ther affected by abundance structure, different abundance measures and the transformation of
abundance and trait data, all should be given careful consideration during experimental design,
analyses and interpretation of functional diversity. One can obtain trait values for all species in
the desired study system by: (1) measuring the traits, (2) using trait data from trait databases
available, and/or (3) inferring trait data from phylogeny [12]. Even with these tools it is often
not possible to have trait data for all species in a community, due to limited time and resources,
incomplete or unavailable trait databases and/or constraints of imputation approaches. In this
case, one needs to work with a number of traits that are feasible to measure and to make an a
priori decision for how many and for which species the trait data is essential and whether to set
this particular missing trait data safety threshold for the whole pool of species or per each plot
separately. As shown and discussed above, in some cases abundance and/or trait transforma-
tion can increase the robustness of FD indices, which in practical terms means that for a given
amount of effort one could increase the amount of replication of sampling for species abun-
dances at the expense of measuring traits.

To assist researchers in assessing effects of missing trait data and planning trait sampling
campaigns we provide the R package "traitor" (see Data Accessibility). The functions in this
package help ecologists to estimate trait data availability for their datasets and provide a list of
species for which traits need to be obtained to increase data availability and as a result improve
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the accuracy of FD calculations. Given an existing community data set and information for
which species trait data is available, the function within the package estimates how much of the
relative species abundance is covered by the available trait data. This is either done on a pool-
wise (across all plots) or plot-wise (for each single plot) basis to account for our findings that
neither the pool-wise nor plot-wise scenario produce systematically less reliable results. Addi-
tionally, the package contains functions to assess how omitting trait data in a given data set can
bias FD measures, i.e. it provides the tools to conduct the analyses in this study, and those in
[11] and [7]. It can also be used to assess the impact of species loss on functional diversity, i.e.
the vulnerability of communities to the extinction of rare species (e.g. [23]).

Conclusions
Our study demonstrates that not only the amount of trait data available, but also the species
abundance structure and distribution of trait values have a significant effect on the calculation
of FD indices. Consequently, their transformation greatly affects the evaluation of functional
diversity. Even though the details about data structure and its transformation often appear a
trivial part of FD analyses, we show that they are as important as the amount of available spe-
cies trait information. Thus the careful treatment of both abundance and trait data is essential
to interpret functional diversity and can, to a certain degree, even compensate for the lack of
trait data. Such methodological choices are crucial for a faithful evaluation of functional
diversity.
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