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A B S T R A C T   

By 21 October 2020, the coronavirus disease (COVID-19) epidemic in the United States (US) had infected 8.3 
million people, resulting in 61,364 laboratory-confirmed hospitalizations and 222,157 deaths. Currently, poli-
cymakers are trying to better understand this epidemic, especially the human-to-human transmissibility of the 
novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in relation to social, populational, air 
travel related and environmental exposure factors. Our study used 50 US states’ public health surveillance 
datasets (January 1-April 1, 2020) to measure associations of confirmed COVID-19 cases, hospitalizations and 
deaths with these variables. Using the resulting associations and multivariate regression (Negative Binomial and 
Poisson), predicted cases, hospitalizations and deaths were generated for each US state early in the epidemic. 
Factors associated with a significantly increased risk of COVID-19 disease, hospitalization and death included: 
population density, enplanement, Black race and increased sun exposure; in addition, COVID-19 disease and 
hospitalization were also associated with morning humidity. Although predictions of the number of cases, 
hospitalizations and deaths due to COVID-19 were not accurate for every state, those states with a combination of 
large number of enplanements, high population density, high proportion of Black residents, high humidity or low 
sun exposure may expect more rapid than expected growth in the number of COVID-19 events early in the 
epidemic.   

1. Introduction 

By 19 October 2020, coronavirus diseases (COVID-19) caused 40.11 
million reported human infections due to the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and 1.11 million deaths world-
wide (Coronavirus, 2020). In the United States (US) by 21 October 2020, 
8.3 million people had developed COVID-19, with 61,364 laboratory- 
confirmed COVID-19-associated hospitalizations and at least 222,157 
related deaths (Covid in the U.S., 2020). Fourteen months after first 
reported in November 2019 (China), the COVID-19 pandemic is still 
unabated in many parts of the world. 

Policymakers are pouring over data to better understand the human- 
to-human transmissibility of SARS-CoV-2. As with other infectious dis-
eases, the probability of infection with SARS-CoV-2 is not random. 
Factors influencing SARS-CoV-2 transmission and preventive actions are 

linked to host biology (human) (Coronavirus COVID-19 (SARS-CoV-2), 
2020) and agent (Hu et al., 2021), host behavior and the environment 
(Poirier et al., 2020). 

Human biological factors may include cell-mediated and antibody- 
mediated immunity (Shah et al., 2020). Both are affected by a host’s 
age, gender, prior infections, nutrition, genetics and other factors. 

Human behaviors affecting transmission of respiratory viruses like 
SARS-CoV-2 include personal hygiene (e.g., wearing mask), socializ-
ation (e.g., social distancing), employment status (e.g., essential vs. not 
essential) (CDC, 2019). Social distancing, an effective way to lower 
transmissibility, is difficult in a socio-ecological environment where 
participating in large gatherings or where keeping close human contact 
are common (CDC, 2019). Examples of such activities include watching 
a sporting event (e.g., baseball); sharing office space with coworkers; 
traveling by airplane, with close proximity of passengers in flight and at 
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the airport; and being shoulder-to-shoulder during public trans-
portation. These activities all involve high concentrations of people in a 
small area (high population density) (Hamidi et al., 2020). 

The socioecological environment appears to impact on human be-
haviors associated with transmission of SARS-CoV-2 virus. Researchers 
reported higher rates of COVID-19 hospitalizations and deaths among 
the poor (Lewis et al., 2020), people of Black race and those of Hispanic 
ethinicity (Webb Hooper et al., 2020). 

Physical environmental factors affecting transmissibility of respira-
tory viruses include direct sunlight exposure, humidity (Shaman et al., 
2011) and temperature (Barreca and Shimshack, 2012). Cold tempera-
tures and lack of sunlight prolong viability of SARS-CoV-2 virus in the 
environment and increase its transmissibility from an environmental 
source to a human host. Conversely, higher temperatures and low hu-
midity are associated with doubling time (time needed to duplicate 
number of COVID-19 infected subjects) (Oliveiros et al., 2020). 

However, evidence for temperature impact from different studies is 
contradictory (Xie and Zhu, 2020). 

Several observational studies evaluated the associations of COVID- 
19 occurrence with multiple factors (Zakeri et al., 2020). Other 
studies used rate of transmission and factors potentially affecting SARS- 
Cov-2 transmissibility to generate expectations of future COVID-19 
events (IHME, 2020; Ferguson et al., 2020). These studies used com-
plex mathematical models, transmission rate simulations and other pa-
rameters to generate expectations with wide range of results (Ioannidis 

Table 1 
Bivariate analysis† of COVID-19 outcomes with enplanements, sociodemo-
graphic factors and environmental factors.   

Cases Hospitalizations (Note: 
N = 32 states) 

Deaths 

Population density 0.3348 
(0.0006***) 

0.3128 (0.01194*) 0.3054 
(0.0018**) 

Enplanements 0.1984 
(0.0421*) 

0.2419 (0.0531̃) 0.1722 
(0.0776̃) 

Enplanements 
(excluding 
Delaware) 

0.2211 
(0.0250*) 

N/A 0.2058 
(0.0373*) 

Enplanements (DE +
PA) 

0.2211 
(0.0250*) 

N/A 0.2058 
(0.0373*) 

Elderly (%) − 0.0297 
(0.7630) 

− 0.0877 (0.4848) − 0.0545 
(0.5804) 

Poverty rate (%) − 0.096 
(0.3275) 

0.0631 (0.6147) 0.009 
(0.9267) 

Black (%) 0.1918 
(0.0493*) 

0.2661 (0.0328*) 0.2310 
(0.0179*) 

Hispanic (%) 0.1057 
(0.2804) 

0.0942 (0.3359) 0.2105 
(0.0915̃) 

Average winter 
temperature 

− 0.0450 
(0.6454) 

0.1091 (0.3811) 0.0156 
(0.8737) 

Sun (%) − 0.2473 
(0.0128*) 

− 0.0738 (0.5584) − 0.274 
(0.0058**) 

Afternoon humidity 0.1960 
(0.04873*) 

0.0798 (0.5262) 0.2461 
(0.0134**) 

Morning humidity 0.0673 
(0.5015) 

0.0309 (0.8071) 0.074 
(0.4597) 

†Kendall’s τ (p-value) used for bivariate analyses; ***p-value ≤ 0.001; **p-value 
≤ 0.01; *p-value ≤ 0.05; ̃p-value ≤ 0.1. 

Table 2 
Fully adjusted NB model for cases.   

Estimate 
(log-scale) 

p-value Estimate 
(RR‡) 

RR‡, 
LCL̂
(95%) 

RR‡, 
UCL̂̂
(95%) 

Population 
density  

0.0011  0.0106*  1.001  1.000  1.002 

Enplanements 
(in millions)  

0.0038  0.4125  1.004  0.994  1.015 

Elderly (%)  0.0089  0.8682  1.009  0.904  1.125 
Poverty rate (%)  − 0.0028  0.9481  0.997  0.906  1.101 
Black (%)  0.0396  0.0060**  1.040  1.005  1.077 
Hispanic (%)  0.0149  0.3465  1.015  0.980  1.053 
Sun (%)  − 0.0714  0.0000***  0.931  0.903  0.959 
Morning 

humidity  
− 0.0472  0.0109*  0.954  0.918  0.990 

Note: The NB model with a dispersion parameter fit better than the simplified 
Poisson model (p-value ≈ 0). 

‡ rate ratio; l̂ower confidence limit; ˆ̂upper confidence limit; ***p < 0.001; **p 
< 0.01; *p < 0.05; ̃p < 0.1. 

Table 3 
Final reduced NB model for cases.†

Estimate 
(log-scale) 

p-value Estimate 
(RR‡) 

RR‡, 
LCL̂
(95%) 

RR‡, 
UCL̂̂
(95%) 

Population 
density  

0.0012  0.0004***  1.001  1.001  1.002 

Enplanements  0.0068  0.0438*  1.007  0.999  1.015 
Black (%)  0.0383  0.0008***  1.039  1.016  1.064 
Sun (%)  − 0.0658  0.0000***  0.936  0.912  0.961 
Morning 

humidity  
− 0.0525  0.0022**  0.949  0.916  0.983 

Note: Proportion elderly and then percent living in poverty dropped from model; 
adding percent Hispanic to the final model made it worse. The NB model with a 
dispersion parameter fit better than the simplified Poisson model (p-value ≈ 0). 
Random forest regression on the residuals did not indicate that non-linear or 
interaction terms were necessary. 

‡ rate ratio; l̂ower confidence limit; ˆ̂upper confidence limit; ***p < 0.001; **p 
< 0.01; *p < 0.05; ̃p < 0.1. 

Table 4 
Fully adjusted NB model for hospitalizations (N = 32 states).   

Estimate 
(log-scale) 

p-value Estimate 
(RR‡) 

RR‡, 
LCL̂
(95%) 

RR‡, 
UCL̂̂
(95%) 

Population 
density  

0.0002  0.7883  1.000  0.999  1.002 

Enplanements 
(in millions)  

0.0000  0.9979  1.000  0.978  1.024 

Elderly (%)  0.0247  0.7239  1.025  0.887  1.182 
Poverty rate (%)  − 0.0054  0.9250  0.995  0.868  1.133 
Black (%)  0.0396  0.0484*  1.040  0.997  1.088 
Hispanic (%)  0.1001  0.0049**  1.105  1.025  1.193 
Sun (%)  − 0.0737  0.0003***  0.929  0.890  0.969 
Morning 

humidity  
− 0.0119  0.6465  0.988  0.936  1.044 

Note: The NB model with a dispersion parameter fit better than the simplified 
Poisson model (p-value ≈ 0). 

‡ rate ratio; l̂ower confidence limit; ˆ̂upper confidence limit; ***p < 0.001; **p 
< 0.01; *p < 0.05; ̃p < 0.1. 

Table 5 
Final reduced NB model for hospitalizations (N = 32 states).   

Estimate 
(log-scale) 

p-value Estimate 
(RR‡) 

RR‡, LCL̂
(95%) 

RR‡, UCL̂̂
(95%) 

Black (%)  0.0337  0.0035**  1.034  1.013  1.058 
Hispanic 

(%)  
0.1081  0.0000***  1.114  1.074  1.160 

Sun (%)  − 0.0733  0.0000***  0.929  0.900  0.957 

Note: Percent elderly, population density and then percent living in poverty 
were dropped; adding percent Hispanic to the final model additionally causes 
enplanements and morning humidity to be dropped. The NB model with a 
dispersion parameter fit better than the simplified Poisson model (p-value ≈ 0). 
Random forest regression on the residuals did not indicate that non-linear or 
interaction terms were necessary. 

‡ rate ratio; l̂ower confidence limit; ˆ̂upper confidence limit; ***p < 0.001; **p 
< 0.01; *p < 0.05; ̃p < 0.1. 
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et al., 2020). Our study aimed to use readily available public health 
surveillance and census data and model-based predictions using estab-
lished methods (i.e., Poisson and NB) to identify “communities” at 
higher risk for rapid growth of the COVID-19 early in the epidemic. 

Our study uses the information available in 50 US states’ public 
health surveillance datasets for two purposes. First, it permits mea-
surement of the association of COVID-19 incidence, hospitalization and 
mortality with available information about selected behavioral- 
environmental factors (population density and enplanements (i.e., the 

number of passengers boarding at an airport), demographic factors 
(race, advanced age) and physical environmental factors (e.g., average 
air temperature, amount of sunlight and humidity). Secondly, results 
were used to predict the expected number of COVID-19 events (cases, 
hospitalizations and deaths) occurring over a specified period for each of 
the 50 US states. 

2. Methods 

2.1. Data sources 

The state-level COVID-19 new cases, hospitalizations and deaths as 
of 1 April 2020 were obtained from the COVID Tracking Project (The 
COVID Tracking Project). According to Google’s COVID dashboard 
(Coronavirus (COVID-19), 2020), 1 April 2020 is near the peak of the 
initial case surge in the US, the low point of workplace and transit sta-
tion mobility changes and at the height of the residential mobility 
change. Data for the 50 states were retained, but only 32 states were 
reporting cumulative hospitalizations as of 1 April 2020 (The COVID 
Tracking Project, 2021). Our study was based on publicly available 

Table 6 
Fully adjusted NB model for deaths.   

Estimate 
(log-scale) 

p-value Estimate 
(RR‡) 

RR‡, 
LCL̂
(95%) 

RR‡, 
UCL̂̂
(95%) 

Population 
density  

0.0008  0.2036  1.001  1.000  1.002 

Enplanements 
(in millions)  

− 0.0012  0.8565  0.999  0.984  1.016 

Elderly (%)  0.0071  0.9290  1.007  0.846  1.201 
Poverty rate (%)  0.0166  0.7929  1.017  0.876  1.182 
Black (%)  0.0551  0.0099**  1.057  1.004  1.113 
Hispanic (%)  0.0381  0.1001  1.039  0.983  1.100 
Sun (%)  − 0.0931  0.0001***  0.911  0.871  0.951 
Morning 

humidity  
− 0.0488  0.0790̃ 0.952  0.898  1.007 

Note: The NB model with a dispersion parameter fit better than the simplified 
Poisson model (p-value ≈ 0). 

‡ rate ratio; l̂ower confidence limit; ˆ̂upper confidence limit; ***p < 0.001; **p 
< 0.01; *p < 0.05; ̃p < 0.1. 

Table 7 
Final reduced NB model for deaths.   

Estimate 
(log-scale) 

p-value Estimate 
(RR‡) 

RR‡, 
LCL̂
(95%) 

RR‡, 
UCL̂̂
(95%) 

Population density  0.0009  0.0562̃ 1.001  1.000  1.002 
Enplanements (in 

millions)  
0.0513  0.0010***  1.053  1.023  1.085 

Enplanements^2 
(in millions^2)  

− 0.0005  0.0019**  1.000  0.999  1.000 

Black (%)  0.0294  0.0239*  1.030  1.006  1.057 
Sun (%)  − 0.0494  0.0013**  0.952  0.927  0.977 

Note: From the full model with a quadratic term for enplanements, we dropped 
proportion elderly, then poverty rate and then morning humidity; adding 
percent Hispanic to the final model made it worse. The NB model with a 
dispersion parameter fit better than the simplified Poisson model (p-value ≈ 0). 
Random forest regression on the residuals did not indicate any additional non- 
linear or interaction terms were necessary. 

‡ rate ratio; l̂ower confidence limit; ˆ̂upper confidence limit; ***p < 0.001; **p 
< 0.01; *p < 0.05; ̃p < 0.1. 

Table 8 
Final reduced NB model for cases with Delaware and Pennsylvania combined.   

Estimate 
(log-scale) 

p-value Estimate 
(RR‡) 

RR‡, 
LCL̂
(95%) 

RR‡, 
UCL̂̂
(95%) 

Population 
density  

0.0012  0.0003***  1.001  1.001  1.002 

Enplanements 
(in millions)  

0.0062  0.0673̃ 1.006  0.999  1.015 

Black (%)  0.0401  0.0005***  1.041  1.017  1.066 
Sun (%)  − 0.0661  0.0000***  0.936  0.912  0.961 
Morning 

humidity  
− 0.0540  0.0017**  0.947  0.914  0.981  

‡ rate ratio; l̂ower confidence limit; ˆ̂upper confidence limit; ***p < 0.001; **p 
< 0.01; *p < 0.05; ̃p < 0.1. 

Table 9 
Final reduced NB model for cases with Delaware dropped.   

Estimate 
(log-scale) 

p-value Estimate 
(RR‡) 

RR‡, 
LCL̂
(95%) 

RR‡, 
UCL̂̂
(95%) 

Population 
density  

0.0012  0.0003***  1.001  1.001  1.002 

Enplanements 
(in millions)  

0.0062  0.0673̃ 1.006  0.999  1.015 

Black (%)  0.0401  0.0005***  1.041  1.017  1.066 
Sun (%)  − 0.0661  0.0000***  0.936  0.911  0.961 
Morning 

humidity  
− 0.0541  0.0017**  0.947  0.914  0.981  

‡ rate ratio; l̂ower confidence limit; ˆ̂upper confidence limit; ***p < 0.001; **p 
< 0.01; *p < 0.05; ̃p < 0.1. 

Table 10 
Final reduced NB model for deaths with Delaware and Pennsylvania combined.   

Estimate 
(log-scale) 

p-value Estimate 
(RR‡) 

RR‡, 
LCL̂
(95%) 

RR‡, 
UCL̂̂
(95%) 

Population density  0.0009  0.0726̃ 1.001  1.000  1.002 
Enplanements (in 

millions)  
0.0526  0.0010***  1.054  1.024  1.087 

Enplanements^2 
(in millions^2)  

− 0.0005  0.0019**  1.000  0.999  1.000 

Black (%)  0.0285  0.0314*  1.029  1.005  1.056 
Sun (%)  − 0.0500  0.0012**  0.951  0.926  0.977  

‡ rate ratio; l̂ower confidence limit; ˆ̂upper confidence limit; ***p < 0.001; **p 
< 0.01; *p < 0.05; ̃p < 0.1. 

Table 11 
Final reduced NB model for deaths with Delaware dropped.   

Estimate 
(log-scale) 

p-value Estimate 
(RR‡) 

RR‡, 
LCL̂
(95%) 

RR‡, 
UCL̂̂
(95%) 

Population density  0.0009  0.0721̃ 1.001  1.000  1.002 
Enplanements (in 

millions)  
0.0525  0.0010**  1.054  1.024  1.087 

Enplanements^2 
(in millions^2)  

− 0.0005  0.0020**  1.000  0.999  1.000 

Black (%)  0.0286  0.0309*  1.029  1.005  1.057 
Sun (%)  − 0.0499  0.0013**  0.951  0.926  0.977  

‡ rate ratio; l̂ower confidence limit; ˆ̂upper confidence limit; ***p < 0.001; **p 
< 0.01; *p < 0.05; ̃p < 0.1. 
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anonymized databases, and thus exempt from ethical compliance. 
These case, hospitalization and death data were merged with the 

following covariate data items by state:  

• Census population as of 1 July 2019 (Bureau, 2020)  
• 2019 population density calculated by dividing the 1 July 2019 

population by the 2008 Census estimates of land area (Land and 
Water Area of States and Other Entities, 2021) 

• Number of enplanements by city (Passenger Boarding (Enplane-
ment), 2020) which were then summarized to the state level  

• Percent of the US population age 65 and older (Bureau, 2020)  
• Percent of persons living in poverty as defined by the Census Bureau 

(Bureau UC. American Community Survey (ACS), 2020)  
• Percent of the population that is Black alone as of 2010 (Bureau, 

2020)  
• Percent of the population that is Hispanic (Bureau, 2020) 

and  

• Weather/environmental data: average winter temperature; percent 
of days with sun; total hours of sun, clear days; and morning hu-
midity and afternoon humidity. 

2.2. Analyses 

Analyzing the factors associated with COVID-19 cases, hospitaliza-
tions and deaths involved bivariate and multivariate analysis using GNU 
R (R: The R Project for Statistical Computing, 2020). 

2.3. Bivariate analysis 

The rates (per 1 July 2019 Census population) of the outcomes of 
interest (cases, hospitalizations and deaths) were bivariately compared 
against the covariates: enplanements, population density, proportion of 

Table 12 
State (N = 50) rankings of cases and observed-to-expected ratio.   

Observed Expected (from final reduced model) Observed-to-expected ratio 

State Rate (per 1 million) Rank Rate (per 1 million) Rank Ratio Ratio 95% LCL̂ Ratio 95% UCL̂̂ Rank 

AL  219.7 22  481.9 34  0.46  0.31  0.66 7 
AK  181.8 15  827.1 43  0.22  0.12  0.39 2 
AZ  194.1 18  197.2 9  0.98  0.52  1.86 31 
AR  193.5 17  237.6 13  0.81  0.61  1.09 23 
CA  206.4 20  435.3 32  0.47  0.26  0.88 8 
CO  515.0 40  355.5 25  1.45  0.90  2.33 44 
CT  997.7 45  841.1 44  1.19  0.79  1.77 39 
DE  377.9 34  714.1 41  0.53  0.38  0.74 10 
FL  323.8 31  402.2 29  0.81  0.47  1.39 22 
GA  436.8 38  483.6 35  0.90  0.57  1.44 27 
HI  146.9 6  212.8 11  0.69  0.50  0.95 18 
ID  293.8 27  258.9 16  1.13  0.83  1.55 36 
IL  550.8 41  893.2 45  0.62  0.33  1.15 14 
IN  381.0 35  362.8 26  1.05  0.84  1.31 35 
IA  174.0 12  237.0 12  0.73  0.57  0.94 20 
KS  165.4 9  159.0 4  1.04  0.77  1.41 33 
KY  132.3 3  371.6 27  0.36  0.29  0.44 6 
LA  1381.9 47  577.6 39  2.39  1.51  3.80 47 
ME  255.9 25  201.6 10  1.27  0.92  1.74 42 
MD  328.3 32  1743.6 50  0.19  0.11  0.32 1 
MA  1099.2 46  1104.0 47  1.00  0.61  1.62 32 
MI  2027.3 48  593.6 40  3.42  2.62  4.46 50 
MN  172.5 10  309.8 21  0.56  0.45  0.69 12 
MS  360.5 33  395.5 28  0.91  0.52  1.60 28 
MO  257.6 26  282.2 18  0.91  0.74  1.12 29 
MT  194.6 19  298.7 20  0.65  0.48  0.89 17 
NE  108.6 2  174.5 5  0.62  0.46  0.84 15 
NV  415.2 37  132.0 2  3.15  2.04  4.86 49 
NH  305.2 28  253.7 14  1.20  0.86  1.69 41 
NJ  2505.6 49  1590.7 49  1.58  0.81  3.08 45 
NM  150.2 7  192.8 8  0.78  0.49  1.24 21 
NY  4303.2 50  1578.9 48  2.73  1.70  4.37 48 
NC  151.0 8  513.6 36  0.29  0.23  0.38 4 
ND  182.4 16  188.9 7  0.97  0.72  1.30 30 
OH  217.9 21  767.7 42  0.28  0.21  0.38 3 
OK  181.7 14  153.8 3  1.18  0.86  1.63 38 
OR  174.5 13  344.1 23  0.51  0.35  0.73 9 
PA  453.4 39  549.0 38  0.83  0.68  1.01 24 
RI  630.6 43  978.9 46  0.64  0.35  1.17 16 
SC  251.1 24  351.3 24  0.71  0.48  1.07 19 
SD  145.8 5  124.2 1  1.17  0.78  1.77 37 
TN  392.6 36  435.3 31  0.90  0.72  1.13 26 
TX  137.8 4  434.9 30  0.32  0.20  0.50 5 
UT  315.7 30  263.4 17  1.20  0.87  1.64 40 
VT  575.3 42  452.2 33  1.27  0.88  1.85 43 
VA  173.9 11  316.7 22  0.55  0.41  0.74 11 
WA  971.6 44  523.1 37  1.86  1.29  2.67 46 
WV  106.6 1  178.7 6  0.60  0.43  0.83 13 
WI  312.8 29  298.2 19  1.05  0.80  1.37 34 
WY  224.6 23  254.6 15  0.88  0.59  1.32 25 

l̂ower confidence limit; ̂̂upper confidence limit. 
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elderly, percent living in poverty, percent Black, percent Hispanic, 
average winter temperature, percent sun and morning humidity. The 
correlation was measured in terms of Kendall’s τ and the corresponding 
p-value was performed using the “cor.test” function in GNU R (R: The R 
Project for Statistical Computing, 2020). 

During the analysis, the state of Delaware appeared to be an extreme 
low outlier for enplanements. Therefore, two additional post hoc ana-
lyses were performed for cases and deaths; one dropped Delaware and 
one combined Delaware with Pennsylvania (Tables 8–11). Delaware was 
excluded from hospitalization analyses since it did not report cumulative 
hospitalizations as of 1 April 2020. 

2.4. Multivariate analysis 

The three response variables were separately modelled for their as-
sociations with covariates, initially with a negative binomial (NB) 
regression using the “glm.nb” function within the “MASS” package 
(Venables and Ripley, 2002) of GNU R (R: The R Project for Statistical 
Computing, 2020); the log-link function was used with eight covariates: 
population density, enplanements (in millions), percent elderly, percent 
living in poverty, percent Black, percent Hispanic, percent sun, and 
morning humidity along with the (log) population size as an offset. Next, 
the simplified Poisson model that drops the NB dispersion parameter 
was compared to the NB model via a likelihood ratio test. The number of 
potential covariates is large relative to the number of observations, and 
some are correlated with each other. 

A stepwise procedure was used to reduce models to avoid overfitting 
and keep them parsimonious and interpretable. The better of the full NB 
and Poisson models was reduced by sequentially dropping the covariate 
with the largest p-value if larger than 5% to arrive at a reduced model. If 
the full NB model was reduced, then the reduced NB model was 
compared to the corresponding Poisson model to determine if the NB 

dispersion parameter is still necessary. 
To determine if any important non-linear or interaction terms were 

missing, a nonparametric random forest regression of the reduced 
model’s residuals was run on the full set of the original covariates using 
the “ranger” package (Wright and Ziegler, 2017). The necessity of 
additional modelling was assessed using the “importance_pvalues” 
function on the “Altmann” method’s permutation p-values. 

Final results are given in terms of the model estimates on the log- 
scale (and p-values), along with their effects and 95% confidence in-
tervals (CIs) transformed to the original scale (case, death and hospi-
talization rate ratios). Predictions of the three outcomes are based on the 
final reduced models. Observed and predicted rates, cumulative cases, 
hospitalizations and deaths and the ratio of observed to expected counts 
with 95% confidence interval are also presented for all 50 states with 
their predicted values in Appendix B, Tables 12–14. Two ad hoc sensi-
tivity analyses regarding Delaware were also performed in the multi-
variate analyses. 

We performed a post-hoc power study based on re-fitting the final 
reduced models (selected with statistically significant terms at the 5% 
level). The observed power was generally above 80% for most predictors 
in the three final models (cases, hospitalizations and deaths) except 
those with p-values relatively near the cut-off of 5%: enplanement in the 
case model and population density and percent of the population Black 
in the death model. Fitting the full models indicated inflated Type I error 
rates and lower observed powers. An appendix with results of power and 
Type I error rate simulations is available upon request. 

3. Results 

3.1. Bivariate analysis 

Bivariate analyses revealed statistically significant associations (p- 

Table 13 
State rankings of hospitalizations for the states reporting hospitalizations (N = 32 as of 1 April 2020) and observed-to-expected ratio.   

Observed Expected (from final reduced model) Observed-to-expected ratio 

State Rate (per 1 million) Rank Rate (per 1 million) Rank Ratio Ratio 95% LCL̂ Ratio 95% UCL̂̂ Rank 

AK  12.3 3  125.5 29  0.10  0.05  0.18 2 
AZ  80.0 26  67.3 25  1.19  0.50  2.82 20 
AR  29.8 11  46.5 17  0.64  0.48  0.85 8 
CO  88.4 28  71.2 27  1.24  0.74  2.07 21 
FL  44.2 19  186.7 31  0.24  0.13  0.42 3 
GA  89.7 29  70.7 26  1.27  0.72  2.23 22 
HI  9.2 2  18.5 2  0.50  0.32  0.77 6 
ID  25.7 8  38.5 12  0.67  0.48  0.93 11 
IA  31.4 14  29.8 9  1.05  0.78  1.43 18 
KS  39.1 17  39.5 13  0.99  0.75  1.31 17 
ME  46.9 20  21.9 5  2.14  1.45  3.17 31 
MD  86.3 27  122.7 28  0.70  0.41  1.19 13 
MA  98.1 30  64.0 22  1.53  1.19  1.98 27 
MN  21.6 7  33.1 11  0.65  0.49  0.87 9 
MS  111.6 31  65.1 24  1.71  0.85  3.46 28 
MT  15.9 5  22.2 6  0.72  0.49  1.04 14 
NH  41.2 18  32.3 10  1.28  0.89  1.83 23 
NY  1024.4 32  464.4 32  2.21  1.01  4.82 32 
ND  30.2 12  20.4 4  1.48  1.00  2.18 26 
OH  58.1 23  64.3 23  0.90  0.63  1.30 16 
OK  55.3 22  28.1 8  1.97  1.41  2.76 30 
OR  36.5 16  136.1 30  0.27  0.15  0.47 4 
PA  48.4 21  45.4 16  1.07  0.83  1.37 19 
SC  19.8 6  49.8 18  0.40  0.24  0.67 5 
SD  13.6 4  16.6 1  0.82  0.54  1.24 15 
TN  29.3 10  57.2 21  0.51  0.37  0.70 7 
UT  28.4 9  40.4 15  0.70  0.49  1.00 12 
VT  72.1 25  40.0 14  1.80  1.17  2.79 29 
VA  35.7 15  54.3 20  0.66  0.47  0.92 10 
WV  0.6 1  18.9 3  0.03  0.02  0.04 1 
WI  68.4 24  53.1 19  1.29  0.96  1.73 24 
WY  31.1 13  22.4 7  1.39  0.94  2.04 25 

l̂ower confidence limit; ̂̂upper confidence limit 
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value < 0.05) of all three outcomes with population density and percent 
of population that was Black (Table 1). Enplanements (including or 
excluding Delaware) was statistically associated with cases, marginally 
so with hospitalizations and with mixed results for deaths, depending on 
how the outlier—Delaware—is handled. Percent sun was significantly 
associated with cases and deaths. Afternoon—but not mor-
ning—humidity was statistically associated with cases and deaths. 
Percent of the population that was Hispanic was insignificant statisti-
cally but kept in multivariate models because of its potential con-
founding effect. 

3.2. Multivariate analysis 

The statistically significant factors associated with any of the three 
outcomes in bivariate analyses were included in all initial multivariate 
regression models of the three outcomes. In addition, we evaluated if 
excluded factors improved residual prediction and stability of full 

models. The percent of population Hispanic was retained for improving 
model fitness. Afternoon humidity was correlated with percent sun 
(Pearson’s correlation ρ = -0.7964411 [p-value ≈ 0], Kendall’s τ =
-0.5608519 [p-value < 0.001]) and was later replaced with morning 
humidity due to better model stability and interpretability. 

3.2.1. Cases 
Regressing case counts on the eight predictor variables revealed four 

statistically significant associations at the 5% level: population density, 
percent of population Black, percent sun and morning humidity 
(Table 2). After sequentially dropping statistically insignificant vari-
ables from the model, the final reduced model included population 
density, number of enplanements, percent Black, percent sun and 
morning humidity (Table 3). The reduced NB model with a dispersion 
parameter was retained. Analysis of the residuals did not indicate 
additional modelling was necessary. Incidence rate of COVID-19 
increased between 1% and 4% per every unit increase of population 

Table 14 
State (N = 50) rankings of deaths and observed-to-expected ratio.   

Observed Expected (from final reduced model) Observed-to-expected ratio 

State Rate (per 1 million) Rank Rate (per 1 million) Rank Ratio Ratio 95% LCL̂ Ratio 95% UCL̂̂ Rank 

AL  5.3 30  10.1 30  0.53  0.31  0.90 22 
AK  4.1 22  12.4 34  0.33  0.17  0.65 11 
AZ  4.0 20  3.1 3  1.30  0.56  2.99 38 
AR  3.3 14  5.9 19  0.56  0.38  0.81 24 
CA  4.3 25  3.5 7  1.22  0.44  3.40 36 
CO  12.0 39  7.1 21  1.68  0.93  3.04 43 
CT  23.8 43  12.7 36  1.87  1.04  3.37 45 
DE  13.4 41  9.9 29  1.35  0.79  2.29 39 
FL  4.1 21  15.2 39  0.27  0.14  0.50 6 
GA  13.1 40  29.3 47  0.45  0.21  0.95 15 
HI  0.7 3  5.5 17  0.13  0.08  0.21 3 
ID  5.0 27  3.3 5  1.55  1.02  2.34 41 
IL  11.1 38  7.2 22  1.54  0.53  4.48 40 
IN  9.7 37  8.7 26  1.11  0.82  1.50 31 
IA  2.9 10  4.5 13  0.63  0.44  0.92 25 
KS  3.4 15  3.5 6  0.99  0.67  1.47 29 
KY  3.8 17  7.7 23  0.49  0.37  0.67 18 
LA  58.7 48  15.6 40  3.76  1.99  7.11 49 
ME  5.2 29  4.5 14  1.15  0.77  1.74 33 
MD  8.6 35  30.7 48  0.28  0.15  0.51 7 
MA  26.9 45  22.9 45  1.18  0.59  2.33 34 
MI  67.7 49  21.4 44  3.16  2.02  4.93 48 
MN  3.0 13  10.1 31  0.30  0.20  0.45 9 
MS  7.4 33  10.7 32  0.69  0.31  1.54 26 
MO  2.9 11  9.2 27  0.32  0.24  0.42 10 
MT  4.7 26  4.1 10  1.15  0.77  1.73 32 
NE  2.1 6  4.3 12  0.48  0.34  0.69 17 
NV  14.6 42  4.7 16  3.09  1.56  6.09 47 
NH  2.9 12  5.8 18  0.51  0.33  0.78 20 
NJ  53.5 47  44.6 49  1.20  0.48  3.01 35 
NM  2.4 9  1.9 1  1.23  0.67  2.25 37 
NY  99.8 50  60.1 50  1.66  0.79  3.51 42 
NC  1.0 4  23.2 46  0.04  0.03  0.07 2 
ND  3.9 18  4.0 9  1.00  0.66  1.50 30 
OH  5.6 31  16.2 41  0.34  0.24  0.50 12 
OK  7.6 34  3.6 8  2.11  1.41  3.15 46 
OR  4.3 24  11.0 33  0.39  0.23  0.66 14 
PA  5.8 32  16.2 42  0.36  0.25  0.51 13 
RI  9.4 36  13.0 37  0.73  0.31  1.72 28 
SC  5.0 28  9.4 28  0.54  0.31  0.95 23 
SD  2.3 8  3.2 4  0.70  0.46  1.07 27 
TN  3.5 16  12.5 35  0.28  0.20  0.38 8 
TX  2.0 5  13.9 38  0.14  0.08  0.27 5 
UT  2.2 7  4.6 15  0.48  0.32  0.71 16 
VT  25.6 44  6.6 20  3.87  2.31  6.48 50 
VA  4.0 19  7.9 25  0.50  0.34  0.75 19 
WA  37.0 46  21.2 43  1.75  0.93  3.31 44 
WV  0.6 2  4.1 11  0.13  0.09  0.20 4 
WI  4.1 23  7.9 24  0.52  0.37  0.73 21 
WY  0.0 1  2.5 2  0.00  0.00  0.00 1 

l̂ower confidence limit; ̂̂upper confidence limit. 
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density, enplanement and percent Black. Rate decreased 5% and 6% for 
morning humidity and percent sun, respectively. Our predicted number 
of cases early in the epidemic was 56% accurate, with the 95% CIs of the 
observed to expected ratios including the value “1′′ in 28 out of 50 states 
(Appendix B, Table 12). 

3.2.2. Hospitalizations 
Regressing the 32 hospitalization counts on the selected predictor 

variables revealed statistically significant associations with percent 
population Black, percent of population Hispanic and percent sun 
(Table 4). After sequentially dropping statistically insignificant pre-
dictors from model, percent of population Black, percent of population 
Hispanic and percent sun remained in the final reduced model (Table 5). 
The NB model with a dispersion parameter was retained. Analysis of the 
residuals did not indicate additional modelling was necessary. Hospi-
talization rate of COVID-19 increased 3% and 11 % per every unit in-
crease of percent population Black and percent population Hispanic, 
respectively. Rate decreased 7% per unit increase of percent sun. Our 
predicted number of hospitalizations early in the epidemic was 44% 
accurate, with the 95% CIs of the observed to expected ratios including 
the value “1′′ in 14 out of 32 states (Appendix B, Table 12). 

3.2.3. Deaths 
Regressing death counts on the predictor variables resulted in per-

centage of population Black and percent sun being statistically signifi-
cant (Table 6). After sequentially dropping statistically insignificant 
factors, the NB model with a dispersion parameter was retained. Anal-
ysis of the residuals indicated that—despite enplanements being drop-
ped from the model—this was an important variable for explaining the 
residuals in this initial reduced model. Enplanements was re-added to 
the model along with a quadratic term. After adding the first- and 
second-order terms on enplanements, population density was retained 
in final model because it was marginally statistically significant (p-value 
0.0562) and improved model fit. The model reduction process was 
replicated using a quadratic term to start with, and it resulted in the 
same final reduced model. The reduced model had statistically signifi-
cant terms for enplanements (first- and second order), percent of pop-
ulation Black and percent sun, with population density marginally 
statistically significant (Table 7). Death rate of COVID-19 increased <
1% for every unit increase in population density. Death rate increased 
3% per every unit increase of percent of population Black, while 
decreasing 5% per every unit increase in percent sun. Our predicted 
number of deaths early in the epidemic was 36% accurate, with the 95% 
CIs of the observed to expected ratios including the value “1′′ in 18 out of 
50 states (Appendix B, Table 12). 

4. Discussion 

This study aimed to identify factors associated with COVID-19 
epidemic growth in the US early in the epidemic, and to use this infor-
mation to generate predictions of COVID-19 occurrence. Differently 
from other studies focusing on forecasting number of cases, hospitali-
zations or deaths (IHME, 2020; Ferguson et al., 2020), our study focused 
on factors that could indicate target subpopulations for preventive ac-
tions to mitigate early growth of the COVID-19 epidemic. Our study 
confirmed associations of COVID-19 cases included the variables pop-
ulation density, enplanement, percent of population Black, percent sun 
exposure and morning humidity. COVID-19 hospitalization was signif-
icantly associated with enplanement, percent of population Black, 
percent of population Hispanic and percent sun. Finally, COVID-19 
death was found to be significantly associated with population den-
sity, enplanements (quadratically), percent of population Black and 
percent sun. Across all states, the percent accuracy of COVID-19 pre-
dictions was 56%, 44% and 36% for cases, hospitalizations and deaths, 
respectively. 

Enplanement: This study’s findings of positive associations of 

COVID-19 cases and hospitalizations with enplanement are consistent 
with the Centers for Disease Control and Prevention (CDC) reports of 
increased risk of COVID-19 clusters due to on-board transmission of 
SARS-CoV-2 during long flights (Khanh et al., 2020). Other studies re-
ported increased risk of SARS-CoV-2 infections associated with air travel 
(Mouton et al., 2020; Hanson et al., 2020). However, another study 
reported that the risk of contracting COVID-19 during air travel was 
lower than the risk in an office building, classroom, supermarket or 
commuter train (Pombal et al., 2020). Also, two separate publications 
indicated a low risk of in-flight transmissibility (Hoehl et al., 2020; 
Schwartz et al., 2020). Simulation results for COVID-19 transmission 
during flight suggests that rapid mixing, dilution and removal of 
airplane air limit exposure risk for aerosol contaminants (transcom- 
report-final.pdf, 2021; Guidelines for Environmental Infection Control 
in Health-Care Facilities, 2003; ANSI/ASHRAE/ASHE). 

Population density: This study finding of the positive relationships of 
population density with COVID-19 cases and deaths has been inconsis-
tently reported. While some studies found such associations (Pekmezaris 
et al., 2021; Kadi and Khelfaoui, 2020; Olusola et al.), others could not 
confirm when adjusted for other factors such as population size (Hamidi 
et al., 2020). Such finding could possibly be due to superior healthcare 
systems. 

Environmental factors–Humidity, Percent Sun and Temperature: In 
this study, humidity and percent sun were inversely associated with 
increases in the observed number of COVID-19 cases, hospitalizations 
and deaths. Research suggests that absolute humidity conditions has a 
role in controlling the timing of influenza A (H1N1) epidemics (Shaman 
et al., 2011); humidity levels were associated with increases in influenza 
mortality in another study (Barreca et al., 2012). The association be-
tween humidity and number of COVID-19 cases has not been consistent. 
A recent study found that doubling time for confirmed COVID-19 cases 
correlates positively with temperature and inversely with humidity, 
suggesting a decrease in the rate of progression of COVID-19 with arrival 
of spring and summer in the northern hemisphere (Oliveiros et al., 
2020). Another reported no clear association between humidity and 
number of COVID-19 cases (Poirier et al., 2020). 

This study found no associations of the three COVID-19 outcomes 
with average winter temperature. Research suggests that temperature 
increase is associated with decreased transmission of COVID-19 cases 
(Poirier et al., 2020), while in winter (temperature below 3 ◦C) every 
1 ◦C increase in temperature was associated with increased numbers of 
COVID-19 cases (Xie and Zhu, 2020). 

Sociodemographic–Racial factor: This study findings of percent of 
the population Black associations with COVID-19 infections, hospitali-
zations and deaths and percent of population Hispanic association with 
hospitalization have been reported elsewhere (CDC, 2019). Much of the 
disproportional burden of COVID-19 among Black and Hispanic pop-
ulations is attributable to lower socioeconomic conditions, comorbid 
chronic conditions and structural inequities. In the US, factors that in-
crease COVID-19 transmissibility, such as living in a multi-generational 
or multifamily household, are more common among Hispanic and Black 
populations (NW, 2021); also, factors that negatively impact early 
treatment of COVID-19, such as lacking health insurance, are more 
common among Black and other minority groups (Mar 05 ADP, 2020). 
Healthcare resources impacting the management of COVID-19, such as 
diagnostic testing, are scarce in many predominantly minority com-
munities (Bilal et al., 2020; Bilal et al., 2020). 

Socioeconomic–Poverty: This study could not confirm associations of 
poverty and three COVID-19 outcomes (Lewis et al., 2020; Finch and 
Hernández Finch, 2020). Another study, however, found no evidence of 
poverty association with COVID-19 cases and deaths (Ettensperger, 
2020). Differently from previous research that used a community-based 
index sensitive to relative poverty and disadvantage (IDD-Technical- 
documentation-1.pdf, 2021), this study used data on percent of popu-
lation living in poverty, which is less sensitive to detect association of 
COVID-19 with poverty. 
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5. Limitations 

Our study had important limitations and strengths. First, the study 
suffers from low a priori statistical power due to the relatively small 
number of states used in the analyses. A post-hoc simulation study of the 
observed power indicating inflated Type I errors and some terms with 
low observed power is available upon request. Secondly, identified as-
sociations are ecological in nature, thus precluding one from drawing 
individual-level inferences on developing COVID-19. Thirdly, as a state- 
level analysis, environmental factors (e.g., temperature) as well as 
sociodemographic factors (e.g., percent Black) ignore within-state var-
iations. However, the very nature of this ecological association can be 
useful for large-scale public health action oriented towards a community 
or a subpopulation. 

6. Conclusions 

In summary, our study results indicate that US states with a combi-
nation of large number of enplanements, high population density, 
higher percentage of Black residents, high humidity and low sun expo-
sure may expect a more rapid increase in the number of cases, hospi-
talizations or deaths due to COVID-19 in the early phase of a COVID-19 
epidemic. Predictions for the three COVID-19 outcomes based on study 
multivariate models were accurate in approximately half of the states. 

7. Future directions 

If the study model-based analyses could be repeated using granular 
data at the city, county or Public Use Microdata Area level, the accuracy 
of predictive equations could be improved. This type of study can help 
public health prioritize and take a more effective and proactive stance 
on the prevention of a future respiratory-disease pandemic similar to 
COVID-19 by: 1) Identifying and targeting higher-risk subpopulations or 
geographical areas with preventive action early in the epidemic; and 2) 
Providing estimates of future healthcare and prevention needs based on 
new cases, hospitalizations and deaths expected to accumulate over 
time. 
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