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of nsSNPs in conserved telomere 
maintenance component 1
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Md. Imtaiyaz Hassan2*

Conserved telomere maintenance component 1 (CTC1) is an important component of the CST 
(CTC1-STN1-TEN1) complex, involved in maintaining the stability of telomeric DNA. Several non-
synonymous single-nucleotide polymorphisms (nsSNPs) in CTC1 have been reported to cause Coats 
plus syndrome and Dyskeratosis congenital diseases. Here, we have performed sequence and 
structure analyses of nsSNPs of CTC1 using state-of-the-art computational methods. The structure-
based study focuses on the C-terminal OB-fold region of CTC1. There are 11 pathogenic mutations 
identified, and detailed structural analyses were performed. These mutations cause a significant 
disruption of noncovalent interactions, which may be a possible reason for CTC1 instability and 
consequent diseases. To see the impact of such mutations on the protein conformation, all-atom 
molecular dynamics (MD) simulations of CTC1-wild-type (WT) and two of the selected mutations, 
R806C and R806L for 200 ns, were carried out. A significant conformational change in the structure of 
the R806C mutant was observed. This study provides a valuable direction to understand the molecular 
basis of CTC1 dysfunction in disease progression, including Coats plus syndrome.

Unlike prokaryotic chromosomes, eukaryotic chromosomes are linear and are much larger in size. The ends 
of the eukaryotic chromosome are composed of a specialized protein-DNA complex called telomeres which 
maintains the stability of the chromosome ends1. The telomeres can be identified as DNA strand breaks by 
the recombination and repair systems of the cell, which can proceed to end-to-end chromosome fusion and 
genomic instability leading to apoptosis2,3. The mammalian telomeric DNA contains double-stranded ’TTA​
GGG​’ repeats followed by 3′ G-rich single-stranded overhangs, and a T-loop structure is formed4. The 3′ G 
overhang forms G-quadruplex, which protects the telomere and inhibits the telomerase-dependent telomere 
extension5. The telomeres and the telomere-binding components shelterin suppress the unwanted DNA dam-
age response and promote the complete replication of the human genome, thus preventing senescence, which is 
usually associated with significant telomere shortening6,7. The two telomere binding components are shelterin 
and CST (CTC1-STN1-TEN1). Shelterin localizes specifically to double and single-stranded telomeric DNA. It 
consists of six subunits, including, a telomeric repeat binding factor 1 (TRF1), telomeric repeat binding factor 
2 (TRF2), TRF1- interacting nuclear factor 2 (TIN2), adrenocortical dysplasia homolog (ACD, now referred 
as TPP1), protection of telomerase (POT1), and repressor/activator protein (RAP1)8,9. Figure 1 illustrates the 
components of shelterin and CST complex. 

The human CST complex is composed of three proteins, namely conserved telomere maintenance compo-
nent 1 (CTC1), suppressor of CDC thirteen homolog (STN1) and telomere length regulation protein TEN1 
homolog TEN110,11. The CST complex plays a key role in the synthesis of telomeric C-strand12. Initially, the CST 
complex was identified to stimulate the DNA polymerase alpha (Polα) and have an essential role in telomere 
replication13. CTC1-TEN1 component of CST localizes to the single-stranded telomeric DNA and regulates the 
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overextension of G-overhang by regulating the telomerase activity. The TEN1 protein stabilizes the interaction 
of CTC1-TEN114,15. The CST complex is involved in restarting the replication process after fork stalling during 
the replication stress16. The telomeric G-rich part is very susceptible to G-rich repeats (G-quadruplexes or G4), 
which creates problems for the telomere replication machinery17, and the CST complex helps in removing the 
G4 regions18. The CST complex also binds to the 3′ end of the telomeres and regulates the DNA polymerase-α 
mediated syntheses of C-strand19. The misregulation of CST can affect the telomere length and it can lead to the 
formation of 3′ overhangs20.

CTC1 is composed of 1217 amino acid residues (UniProtKB ID: Q2NKJ3). The homolog of CTC1, Cdc13 
is found in yeast (Saccharomyces cerevisiae) has four OB folds21. OB folds consist of β-barrels, comprising of 5 
highly coiled β-sheets22. The CTC1 protein contains three OB folds; whereas, the STN1 and TEN1 contain only 
one OB-fold each12,23. The N-terminal OB folds 1 and 2 of CTC1 form a tandem repeat and is required to bind 
the CST complex to ssDNA, whereas the C-terminal OB-fold forms complex with STN1 and TEN1. Though the 
human CTC1 protein is a homolog of yeast Cdc13, the current evidence suggests that the human CTC1 does 
not employ telomerase to the telomeres like Cdc1324,25. It is suggested that CTC1 is involved in downregulating 
the telomerase activity, possibly through its interaction with TPP1, which is also known as a telomerase activity 
terminator23,26,27. A few years back, the structure of the C- terminal OB-fold of the CTC1 protein was character-
ized (PDB ID: 5W2L) (Fig. 2A). This crystal structure starts from residue 716 to 880, and it revealed classical 
OB-fold with extended loops28. Deletion of this region decreases the STN1-TEN1 complex by 20%. The knock-
down of the C-terminal OB-fold increases the length of the G-overhang. This human CTC1 OB-fold consists 
of three loops from residues (i) 745–759, (ii) 777–795 and (iii) 824–84922,29–31. Recently, a full-length structure 

Figure 1.   Schematic diagram of the shelterin and CST complexes bound to telomeric DNA. TRF1 telomeric 
repeat binding factor 1; TRF2 telomeric repeat binding factor 2; TIN2 TRF1 interacting nuclear factor 2; TPP1 
protein encoded by adrenocortical dysplasia homolog (ACD) gene; POT1 protection of telomerase; CTC1 
conserved telomere maintenance component 1; STN1 suppressor of CDC thirteen homolog; TEN1 telomere 
length regulation protein TEN1 homolog.

Figure 2.   Structural features and mutational distribution in CTC1. (A) Structure of the C-terminal OB-fold 
of CTC1 protein (lower panel) and its position in the protein sequence (upper panel). Figure was drawn using 
PyMOL (https://​pymol.​org/2). (B) Representation of the number of SNPs in CTC1 using dbSNP database.

https://pymol.org/2
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of the CTC1 complex with STN1-TEN1 was also determined using cryoEM with a resolution of 3.0 Å (PDB 
ID: 6W6W). The structure consists of seven OB-folds (OB-A, OB-B, OB-C, OB-D, OB-E, OB-F and OB-G)12.

Several naturally occurring mutations of the CTC1 protein cause Coats plus (CP) syndrome and Dyskeratosis 
congenita (DC) or bone marrow syndrome27,32,33. CP syndrome is an inherited condition characterized by an 
eye disorder called Coats disease plus abnormalities of the brain, bones, gastrointestinal system, and other body 
parts. DC is characterized by fingernails and toenails that grow poorly or are abnormally shaped (nail dystrophy); 
changes in skin coloring (pigmentation), especially on the neck and chest. Almost 20 mutations are found in 
CTC1, which inhibit the protein from binding to single-stranded DNA or interact with polymerase-α or bind-
ing to the STN1-TEN1 complex34,35. The shortening of telomere and development of CP syndrome are found 
to be associated with each other. Mutations in the CTC1 gene are responsible for CP, and their association with 
human disease is typically biallelic36–38.

All the non-synonymous SNPs (nsSNPs) are not structurally or functionally affecting, but many missense 
mutations are deleterious to human health39. One-third of the non-synonymous mutations are suggested to be 
deleterious from experimental studies40. Experimental studies done by Shastrula et al. suggest that the naturally 
occurring mutation R840W and V871M are more stabilizing28. The increased stability due to R840W is because 
of the introduction of hydrophobic tryptophan in the side chain. For V871M, it is due to the introduction of 
hydrophobic methionine, which increases the contact with surrounding residues. Taking the opportunity into 
consideration and the fact that CTC1 plays a crucial role in telomere maintenance and several non-synonymous 
mutations cause diseases, we intended to predict the effects of some nsSNPs on CTC1 using state-of-the-art 
computational methods41–43. We have taken the 971 mutations of the whole protein for sequence analysis and 
126 mutations that lie in the C-terminal OB-fold of CTC1 for the complete study. The present study will offer an 
in-depth analysis of 126 nsSNPs and their effect on the structure and function of CTC1 protein.

Materials and methods
Retrieval of data.  The sequence of human CTC1 protein was retrieved from the UniProt database (UniProt 
ID: Q2NKJ3) in FASTA format. A list of nsSNPs was prepared from the data available in dbSNP44, HGMD45, 
ClinVar46 and Ensembl47 databases, and literature search through PubMed. The duplicate nsSNPs were removed 
from the list. The crystal structure of the C-terminal OB-fold domain of human CTC1 was downloaded from 
the Protein Data Bank29 (PDB ID: 5W2L) (Fig. 2A). Four major classes of SNPs in CTC1 protein obtained from 
dbSNP and Ensembl are shown in Fig. 2B.

Prediction of deleterious mutations using sequence‑based tools.  Deleterious or damaging SNPs 
in CTC1 were predicted through various tools that are available through different public domains. A brief 
description of the tools and methods used in sequence-based predictions is given below:

SIFT.  Sorting Intolerant from Tolerant (SIFT) (http://​sift.​jcvi.​org/) algorithm is used to determine whether 
the non-synonymous amino acid substitutions are deleterious or not based on sequence homology and physical 
properties of the amino acid. If the SIFT score is less than or equal to 0.05, then the mutation is not tolerable48. 
A total of 971 nsSNPs were retrieved for the human CTC1 protein. The effect of these nsSNPs on the protein was 
predicted using the SIFT tool.

PolyPhen‑2.  Polymorphism phenotyping-2 (PolyPhen-2) (http://​genet​ics.​bwh.​harva​rd.​edu/​pph2/) is a 
sequence-based tool that accepts FASTA file format as input49. This tool considers the comparative and physical 
properties and estimates the damaging probability of the amino acid substitutions. It gives the Position-Specific 
Independent Count (PSIC) score for the mutant and then calculates the score deviation with the wild-type 
(WT). If the PSIC score is greater than 0.09, then the non-synonymous mutation is predicted as a deleterious 
mutation.

PROVEAN.  Protein variation effect analyzer (PROVEAN) (http://​prove​an.​jcvi.​org/) was used to identify the 
damaging missense mutations of CTC1 protein. It estimates the consequence of the mutations on the functional-
ity of the protein50. PROVEAN score of less than − 2.5 for an nsSNP is considered deleterious, whereas nsSNPs 
with a score greater than − 2.5 are considered neutral. All the 971 missense mutations of the Human CTC1 pro-
tein were analyzed by the PROVEAN tool.

Mutation assessor.  Mutation Assessor (http://​mutat​ionas​sessor.​org/​r3/) is a sequence-based tool that predicts 
the functional impact of an nsSNP on protein. The mutation assessor result is based on multiple sequence align-
ment and evolutionarily conserved residues51. The tool takes UniProt protein accession or NCBI Refseq protein 
ID as input for protein sequence and subsequently classifies the mutations as medium, low, or neutral for delete-
rious effects. The mutation assessor gives FI score for every non-synonymous mutation. If the FI score is more 
significant than 2.00, then the mutation is considered deleterious.

PON‑P2.  PON-P2 (http://​struc​ture.​bmc.​lu.​se/​PON-​P2/) is a machine learning-based classifier for the clas-
sification of amino acid substitutions on human proteins52. It classifies the amino acid variants into patho-
genic, neutral, and unknown categories. It can efficiently analyze large-scale variant datasets in less time. It also 
uses GO annotations and functional annotations, if available. PON-P2 takes nsSNP data in various formats. It 
requires amino acid substitution(s) and one of Ensembl gene identifiers or Entrez gene identifiers, UniProtKB/ 
accession ID, for identifier submission.

http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org/
http://mutationassessor.org/r3/
http://structure.bmc.lu.se/PON-P2/
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Prediction of the destabilizing nsSNPs using structure‑based tools.  The tools and methods used 
in structure-based predictions are described below:

STRUM.  STRUM (https://​zhang​lab.​ccmb.​med.​umich.​edu/​STRUM/) is a tool which calculates the change 
in ΔΔG between WT and mutant protein53. 3D models are generated starting from WT protein by the itera-
tive threading assembly refinement (I-TASSER) simulations and gradient boosting regression method. Physics 
and knowledge-based energy functions are incorporated on the structures modelled by I-TASSER and used to 
train STRUM models. One of the unique features of STRUM is that it combines various methods like multiple 
sequence alignment; some structural profile scores and gives the sequence profile score, which shows the prob-
ability of the given amino acid at a mutant position being found in the ensemble of homologous proteins. This 
tool accepts the FASTA format file as well as the PDB files as an input format. A mutation is destabilizing if the 
STRUM score, i.e., ΔΔG, is > 0.

MAESTROweb.  MAESTRO (https://​pbwww.​che.​sbg.​ac.​at/​maest​ro/​web) is a multi-agent stability prediction 
tool that estimates the free energy change on protein unfolding. It calculates the impact of a point mutation on 
the stability of the protein by calculating the free energy change (ΔG) between the WT and the mutant protein. 
MAESTRO takes PDB coordinate files as an input and applies machine learning techniques to calculate the 
Gibbs free energy change. The quality of the prediction decreases when modelled structures are used as input 
files. If the score for a mutation is less than 0, then the mutation alters the stability of the protein54.

SDM2.  Site-Directed Mutator (SDM2) (http://​marid.​bioc.​cam.​ac.​uk/​sdm2) calculates the change in protein 
stability between the WT and the mutant protein55. It takes the PDB coordinate file as input and uses envi-
ronment-specific amino acid substitution tables to estimate the point mutation’s protein stability. The updated 
version of environment-specific amino acid substitution tables is based on new parameters like packing density 
and residue length. The tool was tested with 2690 amino acid substitutions from 132 different 3D structures of 
proteins. If the ΔΔG is > 0 for a given non-synonymous SNP, SDM2 predicts it as a destabilizing nsSNP.

mCSM.  mCSM is a novel tool to evaluate non-synonymous mutations that uses a graph-based approach 
to predict destabilizing mutations. The predictive models are trained with the environment derived from the 
atomic distance patterns of different residues. According to mCSM, the mutational impact of each amino acid 
residue is linked with atomic distance patterns surrounding that residue. These distant patterns describe the 
mutated residue’s nature in the WT protein. This tool gives a better understanding of the mutations associated 
with diseases for a range of proteins. A mutation has an altering effect on a protein structure if the mCSM score 
(ΔΔG) is less than 056.

DUET.  DUET (http://​biosig.​unime​lb.​edu.​au/​duet/) is an integrated tool to study the effect of nsSNPs on pro-
tein stability. It uses Support Vector Machine and integrates the scores of mCSM and SDM and gives the com-
bined value of ΔΔG. DUET combines secondary structure and pharmacophore vector (used by mCSM) and 
residue relative solvent accessibility (used by SDM) and integrates it with supervised learning. The accuracy of 
the combined method is verified with the experimental thermodynamic data present in the training dataset. The 
input for DUET is the PDB structure file along with single point mutation, and this tool gives DUET score as well 
as mCSM and SDM score in the result57.

Identification of Pathogenic nsSNPs.  PMut.  PMut (http://​mmb.​irbba​rcelo​na.​org/​PMut) is used to 
predict the nsSNPs which are associated with the disease phenotype. The manually curated datasets obtained 
from Swiss-Prot is used to train the neural network-based classifier of PMut and predicted physicochemical 
properties and sequence conservation are used as prominent features. The updated version has enabled people 
to generate their predictors for specific families of proteins. It also gives access to the repository of the pre-
estimated predictions. PMut score for a pathogenic single point mutation is more significant than 0.0558.

MutPred2.  MutPred2 (http://​mutpr​ed.​mutdb.​org) is a web-based tool that classifies an amino acid substitution 
as disease-causing or neutral. MutPred2 uses a machine learning-based approach to predict the pathogenicity of 
a mutation and gives the molecular mechanism of pathogenicity. It also predicts the impact of a mutation in 50 
different protein properties. If the MutPred2 score is greater than 0.5 then the mutation is pathogenic59.

Analysis of packing density and accessible surface area.  Apart from predicting deleterious muta-
tions, the SDM2 tool also calculates the relative side-chain solvent accessibility (RSA), residue depth and res-
idue-occluded packing density (OSP) for the WT and mutant proteins. The newly updated version of SDM2 
includes these features mentioned above. It uses environment-specific amino acid substitution tables to estimate 
residue depth, RSA and OSP for the protein variants. Lee and Richards’s method has been used to calculate RSA. 
For the analysis of structural stability, residue depth and OSP are also very prominent properties of the protein 
structure60.

Analysis of aggregation propensity.  Solubility based on Disorder and Aggregation (SODA) (http://​
prote​in.​bio.​unipd.​it/​soda/) is a tool to calculate the aggregation, disorder, helix and strand propensity which 
arise due to the mutations. This tool takes protein sequence or the PDB format structure fila as an input. SODA 
predicts different variations like insertion, deletion, substitution and duplication using the PASTA 2.0, ESpritz-

https://zhanglab.ccmb.med.umich.edu/STRUM/
https://pbwww.che.sbg.ac.at/maestro/web
http://marid.bioc.cam.ac.uk/sdm2
http://biosig.unimelb.edu.au/duet/
http://mmb.irbbarcelona.org/PMut
http://mutpred.mutdb.org
http://protein.bio.unipd.it/soda/
http://protein.bio.unipd.it/soda/
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NMR and Fells methods. SODA gives a final score based on the difference of solubility between the WT and 
mutant protein61.

Analysis of noncovalent interactions.  The Arpeggio server calculates the number of interatomic inter-
actions of a protein structure62. About 15 types of interatomic interactions can be calculated by Arpeggio. PDB 
format structure files can be submitted to this server for interaction analysis. Arpeggio assigns atom types to 
each atom using OpenBabel via SMARTS queries. It finds the nearest-neighbor atoms within a 5Å radial cutoff 
and a structural interaction fingerprint (SIFt) is given to each pairwise interatomic contact. It gives the number 
of interactions and provides downloadable tabular data showing different covalent and noncovalent interactions. 
The interactions can also be visualized through this tool.

Analysis of conserved residues.  ConSurf tool (https://​consu​rf.​tau.​ac.​il/) was used to determine the 
degree of conservation of residues in a specific position using multiple sequence alignment63. The amino acid 
conservation is vital to understand evolution and the function and structure of a protein. The ConSurf tool uses 
the empirical Bayesian method or maximum likelihood (ML) to calculate the degree of conservation of each 
residue. The ConSurf score ranges between 1 and 9, where 1 is the score for most minor conserved positions, 
5 is the score for intermediate conserved positions, and nine is for highly conserved positions. The ConSurf-
DB also stores the pre-estimated scores for known PDB structures. The buried residues with a high degree of 
conservation are considered structural residues and the exposed residues with a high degree of conservation 
are considered functional residues. The computational approach and tools used in the mutational analysis are 
represented in Fig. 3.

MD simulations.  All-atom MD simulation for 200 ns was carried out on CTC1-WT, R806C, and R806L. 
MD simulation was performed under explicit solvent conditions at 300 K using the GROMACS 5.1.5 package 
while utilizing the GROMOS96 43a1 force field as described earlier64–66. The solvation was carried out in a cubic 
box filled with water with a dimension of 10 Å. Appropriate numbers of Na+ and Cl− ions were added to all 
three systems for neutralization while utilizing the genion tool in Gromacs. Energy minimization was carried 
out using 1500 steps of the steepest descent method to remove any steric clashes in the systems. Equilibration 
was carried out at 300 K using the two-step ensemble process (NVT and NPT) for 100 ps. The final MD run on 
each system was carried for 200 ns and a leap-frog integrator was used for the production of the time-evolution 
trajectories.

Result and discussion
A total of 971 reported nsSNPs were extracted from the dbSNP (http://​www.​ncbi.​nlm.​nih.​gov/​snp), the Human 
Gene Mutation Database (HGMD) (http://​www.​hgmd.​cf.​ac.​uk), ClinVar (http://​www.​ncbi.​nlm.​nih.​gov/​clinv​
ar/) and Ensembl (http://​www.​ensem​bl.​org/) databases. Some of the nsSNPs are not present in these databases, 
including a literature search on PubMed. Out of the 971 nsSNPs, 126 were mapped in the OB-fold region of 
human CTC1 protein. The C-terminal OB region structure (residue 716–880) present in the PDB database (PDB 
ID: 5W2L) was selected for the structural analysis. The present study focuses on the sequence-based analysis of 
all the missense mutations and the structure-based analysis of mutations that are present in the OB region of 
the selected protein structure.

A multi-tier approach was employed to identify the structural and functional consequences of the non-syn-
onymous mutations on the CTC1 gene. Sequence-based and structure-based approaches have been employed to 

Figure 3.   Overview of the used methods to predict the pathogenic mutations of the CTC1 protein at 
the sequence, structue and function levels.s

https://consurf.tau.ac.il/
http://www.ncbi.nlm.nih.gov/snp
http://www.hgmd.cf.ac.uk
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ensembl.org/
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obtain the high confidence deleterious nsSNPs. All the nsSNPs were subjected to sequence-based analysis using 
five web-based tools: SIFT, PolyPhen2, PROVEAN, Mutation assessor, and PON-P2. For the structure-based 
approach, STRUM, MAESTRO-web, SDM2, mCSM and DUET were used to analyze the 126 nsSNPs in the 
OB-fold region of CTC1. Disease phenotype identification of the high confidence nsSNPs had been made using 
MutPred2 and PMut web server. Figure 3 depicts an overview of all the computational approaches used in this 
study. We have also employed other approaches, namely analysis of packing density and accessible surface area, 
analysis of aggregation propensity and degree of amino acid conservation of the OB-fold of the CTC1 protein.

Identification of deleterious nsSNPs using sequence and structure‑based approaches.  Mul-
tiple tools were used to predict deleterious mutations. Because using a single tool can provide some false posi-
tives. The use of more tools can eliminate false predictions, and it may provide more accurate results. For the 
sequence-based approach, SIFT, PolyPhen2, PROVEAN, Mutation assessor and PON-P2 were used (Fig.  4). 
The SIFT web tool considers the physical properties and classifies the nsSNPs into tolerated (non-damaging) 
and intolerant (damaging) mutations. A higher value of tolerance index implies a low functional impact of a 
mutation on the protein and vice versa48. PolyPhen2 is another tool that also uses the amino acid sequence to 
determine damaging mutations. PolyPhen2 quantifies the non-synonymous mutations in three categories: pos-
sibly damaging (score > 0.2 and < 0.96), probably damaging (score > 0.96), and benign (score < 0.2). To improve 
the confidence level, three other tools PROVEAN, Mutation assessor and PON-P2 were used. PROVEAN uses 
a clustering approach where BLAST hits from the query sequence are used to form clusters, of which around 
30 are chosen to generate a prediction. A delta alignment score is calculated for each sequence in a cluster, and 
the score is averaged to generate a final and default PROVEAN score. PROVEAN score less than − 2.5 signifies a 
deleterious mutation. The mutation assessor uses conservation scores. Conserved regions are determined from 
multiple sequence alignment of the query sequences. A conservation score is generated for each region, which 
characterizes the functional impact of the substitution. A score of more than 3.5 is considered deleterious, a 
score between 2.0 and 3.5 is probably deleterious, and a score between 0.5 and 2.0 is considered normal. PON-P2 
classifies the amino acid variants into pathogenic, neutral and unknown categories using evolutionary conserva-
tion and physical and biochemical properties of amino acid.

The disease-causing mutation also alters the stability of a protein. A protein is either in a folded or unfolded 
form. In thermodynamics, the energy difference (Gibbs free energy) between folded and unfolded (Gu) protein 
can be calculated as ΔG = Gu − Gf. The change of protein stability and free energy landscape is calculated as 
ΔΔG = Gm − Gw, where Gm is the mutant protein and Gw is the WT protein. More negative ΔΔG value implies 
more stabilizing mutation and a positive ΔΔG value depicts destabilizing mutations53.

Our study has used five different structure-based stability predictors: STRUM, MAESTROweb, SDM2, mCSM 
and DUET. All of the tools use the PDB structure file of the WT protein as an input. Using the atomic coordi-
nates, they determines the stability of the variants by calculating the folding free energy. Most of these tools use 
a machine learning-based approach combining various functional genomics approaches and estimate impact of 
mutations on the structure and stability of protein41,67,68.

Figure 4.   Distribution of deleterious and neutral nsSNPs predicted by sequence-based tools for the entire 
sequence of CTC1 protein. The vertical axis shows the number of mutations. The horizontal axis shows the 
sequence-based tools; the orange bar depicts the number of predicted deleterious mutations, and the green bar 
depicts the number of predicted non-deleterious mutations.
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For the sequence-based approach, all the 971 nsSNPs of CTC1 were analyzed. SIFT, PolyPhen2, PROVEAN, 
PON-P2 and Mutation assessor predicted that out of the 971 missense mutations, 424 (43.66%), 254 (26.16%), 
351 (36.15%), 49 (5.04%) and 539 (55.51%) were deleterious, respectively (Supplementary Table S1). Out of 
the 126 mutations which lie in the C-terminal OB-fold of the protein predicted deleterious mutations by SIFT, 
PolyPhen2, PROVEAN, PON-P2 and Mutation Assessor were 38 (30.16%), 30 (31.25%), 53 (42.06%), 3 (2.39%) 
and 73 (57.94%), respectively (Fig. 5).

This study only focuses on the OB-fold region of human CTC1 protein, further analysis was done only for the 
missense mutations in this region. Out of the 126 nsSNPs of hCTC1 OB structure-based prediction by STRUM, 
MAESTROweb, SDM2, mCSM and DUET showed 125 (99.20%), 108 (85.71%), 81 (64.29%), 113 (89.68%) and 
94 (74.6%) missense mutations as destabilizing mutations (Supplementary Table S2, Fig. 6). For further study, 
we have only collected those mutations which are predicted to be deleterious by three different sequence-based 
tools and four different structure-based tools to increase the confidence level. After filtering out by this approach, 
75 (59.52%) mutations were collected are predicted as deleterious and destabilizing by both sequence-based and 
structure-based approaches. This 75 nsSNPs were then analyzed for disease phenotype association.

Figure 5.   Distribution of deleterious and neutral nsSNPs predicted by sequence-based tools for the C-terminal 
OB-fold region of CTC1 protein. The vertical axis shows the number of mutations. The horizontal axis shows 
the sequence-based tools; the orange bar depicts the number of predicted deleterious mutations, and the green 
bar depicts the number of predicted non-deleterious mutations.

Figure 6.   Distribution of destabilizing nsSNPs predicted by structure-based tools for the C-terminal OB-fold 
region of CTC1 protein. The vertical axis shows the number of mutations. The horizontal axis shows the 
structure-based tools; the yellow bar depicts the number of predicted destabilizing mutations and the grey bar 
depicts the number of predicted stabilizing mutations.
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Identification of pathogenic nsSNPs.  We have predicted the disease association of non-synonymous 
mutations using the PMut and MutPred web servers. These two methods find the disease phenotypes and clas-
sify the mutations into pathogenic or benign based on the pathogenicity score. Out of a total of 75 high con-
fidence nsSNPs obtained from sequence and structure-based analysis, PMut and MutPred predicted 12 (16%) 
and 23 (30.67%) nsSNPs as pathogenic, respectively. Out of 75 high confidence nsSNPs, only 11 mutations 
(S730R, S730G, R731W, R744G, G767R, F800C, R806C, R806L, W807C, R818L, and L860P) were identified 
as pathogenic from both the disease phenotype prediction tool. The further study focuses on these 11 muta-
tions out of the 75 mutations (Supplementary Table S3–S4). MutPred predicted the pathogenicity of these vari-
ations. According to MutPred, the mutations (S730R, S730G, R806C, R806L, W807C, and R818L) showed loss 
of strand. The mutations S730R, R731W and R744G show gain of helix, strand and loop. The variations F806C, 
R806C, R806L, W807C, and R818L also alters the ordered interface of CTC1 protein. G767 shows a gain of ADP-
ribosylation at that position.

Analysis of evolutionarily conserved residues.  Analyzing the conservation of amino acid residue 
in the protein structure can understand the importance of an amino acid residue and discloses its localized 
evolution42,69. The structural integrity of a protein also depends on the conserved residues. The tendency of an 
amino acid to mutate depends upon the degree of conservation. The OB-fold region of the human CTC1 protein 
was analyzed with the ConSurf tool for obtaining the degree of conservation of the residues. The ConSurf analy-
sis revealed that amino acid residues between 728 to 745, 792 to 820 and 850 to 861 are highly conserved than 
the other residues. It was also revealed that most of the highly conserved residues are buried (Fig. 7).

Analysis of aggregation propensity.  The function of a protein is greatly influenced by its solubility. 
Insoluble parts of a protein try to form aggregates which can cause diseases like Alzheimer’s, amyloidosis, and 
Parkinson’s diseases70,71. SODA (Solubility based on Disorder and Aggregation) was used to calculate the solubil-
ity of the protein variants to find the disease association61. SODA calculates the aggregation, disorder, helix, and 
strand propensity which arise due to the mutations. Out of the 11 mutations obtained from disease phenotype 
prediction, five nsSNPs decrease the solubility of the protein, whereas the other six mutations increase the solu-
bility of the protein (Table 1).

Analysis of noncovalent interactions.  Previous reports on the mutational analysis demonstrated that 
the effect of nsSNPs on the stability of the protein depends upon the changes in hydrophobic contacts. We 
have calculated the van der Waals, hydrogen bonding, electrostatic, and hydrophobic interactions in WT CTC1 

Figure 7.   Sequence Conservation analysis of the C-terminal OB-fold region of CTC1 protein using ConSurf 
webserver.
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and its mutants with the Arpeggio web server’s help. An increase and decrease in the number of bonds show 
mutations in the local and global environment. The 11 nsSNPs found to be pathogenic were analyzed using the 
Arpeggio webserver (Table 2).

Finally, out of 11 mutations, based on the solubility, aggregation propensity, SODA score and other harmful 
properties, R806C and R806L along with WT CTC1 were selected for MD simulation study. Both R806C and 
R806L showed less solubility, high aggregation propensity and were predicted to be deleterious by all of the 
structure-based tools with the SODA score of − 40.10 and − 47.17, respectively. Protein misfolding and aggrega-
tion are involved in many disease progression, including neurodegenerative diseases72–78. MutPred2 analysis also 
showed that both the mutations contribute to loss of strand and alters the ordered interface of CTC1.

MD simulations.  MD simulation was utilized to study the disorderly impact of R806C and R806L on CTC1 
conformation. The superimposed structural snapshots of CTC-WT, R806C and R806L taken at every 50  ns 
during the simulation are shown in Fig. 8. No significant difference is observed in mutants’ structures when 
compared with WT except the loop regions, which become more flexible during the simulation in R806C. Inter-
estingly, loss of the N-terminal helix was observed in both mutants during the early phase of the simulation, 
while it seems to disappear after 100 ns in the case of WT. Decrement was observed in the secondary structure 
content of mutants as compared to WT. A significant change was observed in the initial and final conformation 
of all three systems with RMSD calculated in PyMOL as 1.58 Å, 1.96 Å and 1.43 Å for CTC1-WT, R806C and 
R806L, respectively (Fig. 8).

The time evaluation RMSD plot CTC1-WT, R806C, and R806L is represented in Fig. 9A. The result indicates 
a significant shift in the mutants’ RMSD, especially in the case of R806C. We did not find any shift transition in 
the case of R806L while comparing with WT (Fig. 9A). It was observed that R806L was more stable and showed 
compactness with RMSD below ~ 3 Å, closely followed by WT (~ 3.5 Å RMSD). For R806C, the average RMSD 
was observed to be ~ 4 Å and the structure showing the unstable distribution of RMSD throughout the trajectory. 
The RMSD of R806C showed a sharp shift up to 6.5 Å suggesting unfolding transition of the CTC1 conforma-
tion upon mutation. During the RMSF analysis, the residual fluctuation pattern was similar in CTC1-WT and 
R806L, with two significant peaks in the 780–790 and 845–855 aa regions. While in the case of R806C, the 

Table 1.   Prediction of aggregation propensity of mutant CTC1 protein using SODA server.

Mutations SODA Impact

S730R 1.51 More soluble

S730G 2.43 More soluble

R731W  − 10.24 Less soluble

R744G 0.21 More soluble

G767R  − 4.19 Less soluble

F800C 12.64 More soluble

R806C  − 40.10 Less soluble

R806L  − 47.17 Less soluble

W807C 7.58 More soluble

R818L  − 16.54 Less soluble

L860P 6.91 More soluble

Table 2.   Calculation of non-covalent interatomic interactions of wild-type and mutant CTC1 structures using 
the Arpeggio server.

Variant van der Waals interaction Hydrogen bonds Ionic interactions Aromatic contacts Hydrophobic contacts

WT 97 117 18 29 387

S730R 101 115 20 31 399

S730G 98 117 18 31 388

R731W 106 119 16 51 409

R744G 95 116 15 31 382

G767R 105 117 18 33 390

F800C 100 118 18 20 339

R806C 97 117 18 31 386

R806L 98 117 18 31 386

W807C 97 117 18 25 366

R818L 102 114 14 31 393

L860P 102 118 18 31 375
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residual fluctuation showed a higher tendency with a few random peaks in the 770–790, 820–830 and 865–875 
aa regions (Fig. 9B).

To further investigate the compactness and stability of CTC1-WT and its mutants, we have calculated 
the Radius of gyration (Rg) of all three systems and plotted as a function of time (Fig. 9C). Here we found that 
there is no significant difference in the average Rg values of WT, R806C and R806L. However, a slight increment 
can be observed after 160 ns in Rg in the case of R806C, suggesting a loss in compactness, as RMSD suggested 
(Fig. 9C).

Conclusion
SNPs are considered as one of the most frequent genetic variants associated with several human diseases. Exten-
sive analysis of SNPs can give insights to understand disease-causing mechanisms and help find effective treat-
ments of diseases. In the present study, we have analyzed the nsSNPs of the CTC1, specifically the C-terminal 
OB-fold region. Sequence and structure-based analysis have shown that 126 mutations present in the C-terminal 
OB-fold of CTC1 where 75 mutations were found to be deleterious and destabilizing. A pathogenicity study 
revealed that 11 out of all the mutations are pathogenic. Although the RMSD calculation could not give any 
conclusive result, aggregation propensity analysis showed that almost 45% of the pathogenic mutations present 
in the C-terminal OB-fold of CTC1 tend to form aggregates or become less soluble. Pathogenicity of these muta-
tions may occurred due to structural changes caused by the gain or loss of noncovalent intramolecular forces. 

Figure 8.   Structural snapshots of CTC1- (A) WT, (B) R806C, and (C) R806L at an interval of 50 ns from 0 to 
200 ns of simulation. Structures were drawn using PyMOL (https://​pymol.​org/2).

Figure 9.   Conformational changes in CTC1 protein and its mutants. (A) Time evaluation of RMSD, (B) RMSF 
and (C) Radius of gyration of CTC1.

https://pymol.org/2
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MD simulation analyses, especially RMSD indicated a significant conformational loss in CTC1 protein struc-
ture due to R806C mutation. The results provide an in-depth understanding of the conformational behavior of 
CTC1 upon mutations. This study offers a detailed insight to understand the pathogenic nsSNPs of C-terminal 
OB-fold of CTC1 and the possible consequences of these mutations. These insights may be further used to build 
therapeutic strategies to cure CTC1 associated diseases.
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