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Abstract: Wearable devices offer a convenient means to monitor biosignals in real time at relatively
low cost, and provide continuous monitoring without causing any discomfort. Among signals that
contain critical information about human body status, electromyography (EMG) signal is particular
useful in monitoring muscle functionality and activity during sport, fitness, or daily life. In particular
surface electromyography (sEMG) has proven to be a suitable technique in several health monitoring
applications, thanks to its non-invasiveness and ease to use. However, recording EMG signals
from multiple channels yields a large amount of data that increases the power consumption of
wireless transmission thus reducing the sensor lifetime. Compressed sensing (CS) is a promising data
acquisition solution that takes advantage of the signal sparseness in a particular basis to significantly
reduce the number of samples needed to reconstruct the signal. As a large variety of algorithms have
been developed in recent years with this technique, it is of paramount importance to assess their
performance in order to meet the stringent energy constraints imposed in the design of low-power
wireless body area networks (WBANs) for sEMG monitoring. The aim of this paper is to present a
comprehensive comparative study of computational methods for CS reconstruction of EMG signals,
giving some useful guidelines in the design of efficient low-power WBANs. For this purpose,
four of the most common reconstruction algorithms used in practical applications have been deeply
analyzed and compared both in terms of accuracy and speed, and the sparseness of the signal has been
estimated in three different bases. A wide range of experiments are performed on real-world EMG
biosignals coming from two different datasets, giving rise to two different independent case studies.

Keywords: compressed sensing; signal reconstruction; surface electromyography; biosignal; sensors;
wireless sensor networks

1. Introduction

Surface electromyography (sEMG) is a technique to capture and measure the electrical potential
at the skin surface due to muscle activity [1,2]. The registered EMG signal in a muscle is the collective
action potential of all muscular fibers of the motor unit that work together since they are stimulated by
the same motor neuron. The muscular contraction is generated by a stimulus that propagates from the
brain cortex to the target muscle as an electrical potential, named action potential (AP). sEMG signal is
frequently used for the evaluation of muscle functionality and activity, thanks to the non-invasiveness
and ease of this technique [3–5]. Common applications are fatigue analysis [6] of rehabilitation
exercises [5,7], postural control [8], musculoskeletal disorder analysis [9], gait analysis [10], movement
recognition [11], gesture recognition [12], prosthetic control [13–15], to cite only a few. Among these
applications monitoring and automatic recognition of human activities are of particular interests both
for sport and fitness as well as for healthcare of elderly and impaired people [16,17]. Wireless body area
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networks (WBANs) provide an effective and a relatively low-cost solution for biosignal monitoring in
real time [18,19]. A WBAN typically consists of one or more low-power, miniaturized, lightweight
devices with wireless communication capabilities that operate in the proximity of a human body [20].
However, power consumption represents a major problem for the design and for the widespread of
such devices. A large part of the device power consumption is required for the wireless transmission
of the signals which are recorded from multiple channels at a high-sampling rate [21]. Standard
compression protocols have a high computational complexity and the implementation in the sensor
nodes would add a big overhead to the power consumption. Compressed sensing (CS) techniques
that lie on the sparsity property of many natural signals, have been successfully applied in the WBAN
long term signal monitoring, since CS significantly saves the transmit power by reducing the sampling
rate [22–26]. Recent studies have applied CS to sEMG signals for gesture recognition, an innovative
application field of the sEMG signal analysis [27,28]. In this context, CS has a great importance in
reducing the size of transmitted sEMG data while being able to reconstruct good quality signals and
recognize hand movements. The fundamental idea behind CS is that rather than first sampling at a
high rate and then compressing the sampled data, as usually done in standard techniques, we would
like to find ways to directly sense the data in compressed form, i.e., at a lower sampling rate. To make
this possible, CS relies on the concept of sparsity which implies that certain classes of signals, sparse
signals, when expressed in a proper basis have only a small number of non-zero coordinates. The
CS field grew out of the seminal work of Candes, Romberg, Tao and Donoho [29–35], who showed
that a finite dimensional sparse signal can be recovered from several samples much smaller that
its length. The CS paradigm combines two fundamental stages, encoding and reconstruction. The
reconstruction of a signal acquired with CS represents the most critical and expensive stage as it
involves an optimization which seeks the best solution to an undetermined set of linear equations
with no prior knowledge of the signal except that it is sparse when represented in a proper basis.
To obtain the better performance in the reconstruction of the undersampled signal a large variety of
algorithms have been developed in recent years [36]. In the class of computational techniques for
solving sparse approximation problems, two approaches are computationally practical and lead to
provably exact solutions under some defined conditions: convex optimization and greedy algorithms.
Convex optimization is the original CS reconstruction algorithm formulated as a linear programming
problem [37]. Unlike convex optimization, greedy algorithms try to solve the reconstruction problem
in a less exact manner. In this class, the most common algorithms used in practical applications are
orthogonal matching pursuit (OMP) [38–42], compressed sampling matching pursuit (CoSaMP) [43,44],
normalized iterative hard thresholding (NIHT) [45]. All these algorithms are applicable in principle to
a generic signal; however, in the design and implementation of a sensor architecture is of paramount
importance to assess the performance with reference to the specific signal to be acquired. Additionally,
the performance of the algorithms can vary very widely, so that a comparative study that demonstrates
the practicability of such algorithms are welcomed by designers of low powers WBANs for biosignal
monitoring [26].

The aim of this paper is to explore the trade-off in the choice of a compressed sensing algorithm,
belonging to the classes of techniques previously described, to be applied in EMG sensor-applications.
Thus, the ultimate goal of the paper is to present a comparative study of computational methods for
CS reconstruction of EMG signals, in real-world EMG signal acquisition systems, leading to efficient,
low-power WBANs. For example, a useful application of this comparative study can be the selection
of the best algorithm to be applied in EMG-based gesture recognition. In addition, the effect of this
basis used for reconstruction on signal sparseness has been analyzed for three different bases.

This paper is organized as follows. Section 2 summarizes the basic concept of CS theory. Section 3
is mainly focused on CS reconstruction algorithms and in particular gives a complete description of
four algorithms: Convex Optimization, OMP, CoSaMP, and NIHT. Section 4 reports a comparative
study of the four algorithms performance when applied to real-world EMG signals.



Sensors 2019, 19, 3531 3 of 20

2. Compressed Sensing Background

In this section, we provide an overview of the basic concepts of the CS theory. In Table 1, for ease
of reference, a list of the main symbols and definitions used throughout the text are reported. Some of
these are currently adopted in the literature while other specific operators will be defined later.

Table 1. Notation.

Symbol Description

� element-wise product of two vectors, i.e., c = a� b = (a1b1, . . . , aNbN), a = (a1, . . . , aN), b = (b1, . . . , bN)
⊕ bitwise XOR between two binary arrays
bxcsr sr samples circular shift of vector x
sgn(x) element-wise sign function of a vector x
B† pseudo-inverse of matrix B
Λ = supp(x) support of x, the set of indices Λ = {j : xj 6= 0}
|Λ| = k cardinality of the set Λ (the number k of elements in the set)
||x||0 = |supp(x)| l0-norm of x
||x||p = (∑n

i=1 |xi|p)1/p lp-norm of x (for some 0 < p < ∞)
xΛ sub-vector of x indexed by set Λ
BΛ sub-matrix of B made by columns indexed by set Λ
supp

k,Ψ
(x) returns a set Λ of k indexes corresponding to the largest values |xi|||Ψi||2, Ψ = [Ψ1, . . . , ΨN ]

F(x, Λ) returns a vector with the same elements of x in the sub-set Λ and 0 elsewhere
[x]k = F(x, supp

k,Ψ
(x)) reduced operator

CS theory asserts that rather than acquire the entire signal and then compress, it is usually done
in compression techniques, it is possible to capture only the useful information at rates smaller than
the Nyquist sampling rate.

The CS paradigm combines two fundamental stages, encoding and reconstruction.
In the encoding stage the N-dimensional input signal f is encoded into a M-dimensional set

of measurements y through a linear transformation by the M × N measurement matrix Φ where
y = Φ f . In this way with M < N the CS data acquisition system directly translates analog data into a
compressed digital form.

In the reconstruction stage given by f = Ψx, assuming the signal f to be recovered is known
to be sparse in some basis Ψ = [Ψ1, . . . , ΨN ], in the sense that all but a few coefficients xi are zero,
the sparsest solution x (fewest significant non-zero xi) is found. The reconstruction algorithms exhibit
better performance when the signal to be reconstructed is exactly k-sparse on the basis Ψ, i.e., with
xi 6= 0 for i ∈ Λ, |Λ| = k. Thus, in some algorithms the N − k elements of x that give negligible
contributions are discarded. To this end the following operator is defined

Λ = supp
k,Ψ

(x) : |Λ| = k, γi > γj, γi = |xi|‖Ψi‖2, for i ∈ Λ, j /∈ Λ (1)

that selects the set Λ of k indexes corresponding to largest values |xi|‖Ψi‖2. The set Λ so derived
represents the so-called set of sparsity. Another useful definition in this context is the operator F(x, Λ)

that returns a vector with the same elements of x in the sub-set Λ and zero elsewhere, formally

F(x, Λ)Λ = xΛ, F(x, Λ)IN\Λ = 0, IN = {1, 2, . . . , N} , (2)

where IN \ Λ means difference of the two sets IN and Λ. The consecutive application of the two
operators gives rise to a k-sparse vector obtained from x by keeping only the components with the
largest values of |xi|‖Ψi‖2, and will be synthetically denoted by [x]k, called reduced operator. Thus

[x]k = F(x, supp
k,Ψ

(x)) . (3)
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A natural formulation of the recovery problem is within an l0-norm minimization framework, which
seeks a solution x of the problem

min
x∈RN

‖x‖0 subject to y = ΦΨx , (4)

where ‖·‖0 is a counting function that returns the number of non-zero components in its argument.
Unfortunately, the l0-minimization problem is NP-hard, and hence cannot be used for practical
application. A method to avoid using this computationally intractable formulation is to consider an
l1-minimization problem.

It has been shown [33] that when x is the solution to the convex approximation problem

min
x∈RN

‖x‖1 subject to y = ΦΨx (5)

then the reconstruction f = Ψx is exact. More specifically only M measurements in the Φ domain
selected uniformly at random, are needed to reconstruct the signal provided M satisfies the inequality

M ≥ Cν2(Φ, Ψ)S log N (6)

where N represents the signal size, S the index of sparseness, C a constant and ν(Φ, Ψ) the coherence
between the sensing basis Φ and the representation basis Ψ. Coherence measures the largest correlation
between any two elements of Φ and Ψ and is given by ν(Φ, Ψ) = max

k,j
|
〈
Φk, Ψj

〉
|, with ν2(Φ, Ψ) ∈

[0, N]. Random matrices are largely incoherent (ν = 1) with any fixed basis Ψ. Therefore, as the smaller
the coherence the fewer samples are needed, random matrices are the best choice for sensing basis.

The usually adopted performance metric to measure the reduction in the data required to represent
the signal f is the compression ratio CR defined as

CR =
N
M

, (7)

that is the ratio between the length of the original and compressed signal vectors. Instead sparsity is
usually defined as

SN =
k
N

. (8)

Sometimes is more convenient to define sparsity with respect to dimension M, thus giving SM = k/M.
Obviously the two equation are related by SM = CR SN .

3. The Algorithms

As the CS sampling framework includes two main activities, encoding and reconstruction, some
specific algorithms must be derived for this purpose.

3.1. Encoding

CS encoder uses a linear transformation to project the vector f into the lower dimensional vector
y, through the measurement matrix Φ. In addition of being incoherent with respect to the basis Ψ,
measurement matrix Φ must facilitate encoding practical implementation. One widely used approach
is to use Bernoulli random matrices Φ(i, j) = ±1. This choice allows saving of multiplication in the
matrix-product operation y = Φ f . Moreover, simple, fast and low-power digital and analog hardware
implementations of the encoder are possible [26].

3.2. Basis Matrix Ψ

A wide range of basis matrices Ψ can be adopted in Equation (4), three of the most familiar bases
will be used in this paper, namely DCT, Haar and Daubechies’ wavelet (DBW). Although DCT seems
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not to be an adequately sparse basis for EMG signal it was used in one of the two case studies because
of signal pre-filtering during acquisition as it will be explained in Section 4. Additionally, other recent
works [46,47] have demonstrated the validity of DCT basis for CS applied to EMG signal. Matrix Ψ for
Haar and DB4 was built using parallel filter bank wavelet implementation [48].

3.3. Reconstruction

CS reconstruction algorithms can be divided into two classes: convex optimization and
greedy algorithms.

3.3.1. Convex Optimization

L1-minimization

The CS theory asserts that when f is sufficiently sparse, the recovery via l1-minimization is
provably exact. Thus, a fundamental algorithm for reconstruction is the convex optimization wherein
the l1-norm of the reconstructed signal is an efficient measure of sparsity. The CS reconstruction
process is described by Equation (5) which can be regarded as a linear programming problem. This
approach is also known as basis pursuit.

By assuming f (k) = [ f (kN − N + 1), . . . , f (kN)] , k = 1, . . . , L is a frame of the EMG signal to
be reconstructed, Ψ = [Ψ1, . . . , ΨN ] is an N × N basis matrix, Φ an M× N Bernoulli matrix, then the
constraint in Equation (5) can be rewritten as

y = ΦΨx = Ax (9)

with A = ΦΨ. Introducing the Lagrange function

L(x, λ) = ‖x‖1 + λT(Ax− y) (10)

where T denotes matrix transposition thus to solve the problem (5) is equivalent to determine the
stationary point of L(x, λ) with respect to both x and λ. A usual technique for this problem is the
projected-gradient algorithm based on the following iterative scheme

xt+1 = xt − µ
∂L
∂x

∣∣∣∣
xt

(11)

where µ is a parameter that regulates the convergence of the algorithm. By deriving (10) we obtain

∂L
∂x

= sgn(x) + ATλ , (12)

then combining Equations (11) and (12) with constraint Axt = y and assuming (AAT)−1 is invertible,
it results

λ = −(AAT)−1 A sgn(xt) . (13)

Finally, the following iterative solution

xt+1 = xt − µ(I − AT(AAT)−1 A) sgn(xt) (14)

is obtained. To make the convergence parameter µ independent of signal power the following
normalized version of the algorithm can be adopted

xt+1 = xt − µ
‖xt‖1

N
P sgn(xt) (15)
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with P = I − A† A and A† = AT(AAT)−1. To initialize the algorithm a vector x0 given by

x0 = A†y (16)

that solves the following l2-minimization problem

x0 = arg min
x
‖x‖2

2 s.t. Ax = y (17)

has been chosen. The parameter µ determines the convergence of the algorithm; thus, to establish a
proper choice of its value a convergence criterion should be derived. However, a complete treatment
of convergence is a difficult task and is out of the scope of this paper. To face this problem the value of
µ has been chosen using a semi-heuristic criterion that bounds the steady-state ripple given by

‖xt+1 − xt‖2

‖xt‖2
< εmax, t→ ∞ (18)

where εmax specifies the desired accuracy. In such a way we obtain

µ ≤ εmax N
‖P sgn(x∞‖2

‖x∞‖2

‖x0‖1
<

εmax N
‖P sgn(x∞)‖2

(19)

which can be reduced to the more practical condition

µ ≤ εmax N
‖P sgn(x0)‖2

. (20)

An optimized version of the algorithm with a reduced number of products can be derived as follows.
Let us rewrite Equation (15) as

xt+1 = xt − µ
‖xt‖1

N
qt (21)

where

qt = Pst =
N

∑
j=1

Pjst(j) (22)

and
st = (st(1), . . . , st(N)) = sgn(xt) . (23)

The variation of q from (t− 1) to t

qt − qt−1 =
N

∑
j=1

Pj[st(j)− st−1(j)] (24)

only depends on

∆st(j) = st(j)− st−1(j) =


2 for st−1(j) = −1, st(j) = 1
−2 for st−1(j) = 1, st(j) = −1
0 for st−1(j) = st(j)

j = 1, . . . , N, (25)

which can be rewritten in a compact form as

∆st(j) = 2st(j)vt(j), j = 1, . . . , N (26)

where

vt(j) =

{
1 for st(j) 6= st−1(j)
0 for st(j) = st−1(j)

. (27)
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By defining
wt(j) = (st(j) + 1)/2 ∈ {0, 1} , (28)

Equation (27) is equivalent to
vt(j) = wt(j)⊕ wt−1(j) . (29)

Finally, from Equations (24), (26) and (29) and defining the set Ωt = {j/vt(j) = 1} we have

qt = qt−1 + 2 ∑
j∈Ωt

Pjst(j) . (30)

Thus, the summation in Equation (30) is extended only to the terms for which a sign changing from
st−1 to st occurs, thus reducing the number of products required at each step.

A pseudo-code of the L1 algorithm is reported as Algorithm 1.

Algorithm 1 L1-minimization

Input: A = ΦΨ, y, k
Inizialize: P = [p1 . . . pN ], P = I − A† A,

x0 = A†y
t = 0

Output: k-sparse coefficient vector x
while t < Niter do

st = sgn(xt), wt = (st + 1)/2 // reduce st to binary vector wt

if t > 0 then

vt = wt ⊕ wt−1
Ωt = {j/vt(j) = 1} // define the set of indices Ωt corresponding to a change from st−1 to st

qt = qt−1 + 2 ∑j∈Ωt pjst(j)
else

qt = Ps0

µ = εmax N
‖q0‖2

end if
xt+1 = xt − µ ‖xt‖1

N qt
t = t + 1

end while

3.3.2. Greedy Algorithms

Orthogonal Matching Pursuit (OMP)

This algorithm solves the reconstruction of k−sparse coefficient vector x, i.e., with xi 6= 0,
i ∈ Λ, |Λ| = k. The algorithm tries to find the k directions corresponding to the non-zero
x-components, starting from the residual r0 given by the measurements y. At each step t ≤ k the
column aj of A that is mostly correlated with the residual is derived. Then the best coefficients xt are
found by solving the following l2-minimization problem

xt = arg min
x
‖y− Atx‖2 , (31)

thus giving
xt = A†

t y . (32)

Finally, the residual, the difference between the actual measure and the A mathematical description of
the algorithm is reported in Algorithm 2.
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Algorithm 2 OMP

Input: A = ΦΨ, y, k
Initialize: r0 = y // residual

A0 = ∅ // columns

t = 0
Output: k-sparse coefficient vector x
while t < k do

λt = arg max
j
|aT

j rt−1| // find the column of A that is most strongly correlated with the residual

At = [At−1 aλt ] // merge the new column

xt = A†
t y // find the best coefficients xt from (31)

rt = y− Atxt // update the residual

t = t + 1
end while

Compressive Sampling Matching Pursuit (CoSaMP)

Differently from OMP, the CoSaMP algorithm tries to find the kS columns of AT that are the most
strongly correlated with the residual, thus making a correction of the reconstruction on the basis of
residual achieved at each step. The kS columns are determined by the selection step

Wt = arg max
|W|=kS

‖AT
W rt‖1 (33)

where AT
W is the sub-matrix of AT made by columns indexed by the set W, and rt is the residual

at current iteration step t. Thus, the algorithm proceeds to estimate the best coefficients h for
approximating the residual with the new columns indexed by Tt = Λt ∪Wt. As this step corresponds
to an LMS problem, it results

h = A†
Tt

y . (34)

Finally, the sparsity operator
x = F(h, Λt+1) (35)

with Λt+1 = supp(h)
k,Ψ

is applied to obtain the sparse vector x. At the end of the algorithm the residual

is updated with the new signal reconstruction AΛt+1 xΛt+1 . A pseudo-code of the algorithm is reported
in Algorithm 3.

Normalized Iterative Hard Thresholding (NIHT)

The basic idea that underlies NIHT algorithm is that the sparse components to be identified
give a large contribution to the gradient of residual. The algorithm tries to find these components by
following the gradient of residual rt = Axt − y, i.e.,

x̃t+1 = xt − µt
∂‖rt‖2

2
∂xt

, (36)

thus obtaining
x̃t+1 = xt − µt AT(Axt − y) . (37)

The sparse vector xt+1 is derived at each iteration t by applying the reduced operator to the estimated
vector xt+1,

Λt+1 = supp
k,Ψ

(x̃t+1) (38)

xt+1 = F(x̃t+1, Λt+1) . (39)



Sensors 2019, 19, 3531 9 of 20

Algorithm 3 CoSaMP

Input: A = ΦΨ, y, k
Initialize:{

r0 = y // residual

t = 0
Λ0 = arg max

|Λ|=k
‖AT

Λ r0‖1 // find k columns of AT that are most strongly correlated with residual r0

Output: k-sparse coefficient vector x
while t < Niter do

kS = γk, γ ∈ [0, 1] // number of new columns to be selected

Wt = arg max
|W|=kS

‖AT
W rt‖1 // find kS columns of AT that are most strongly correlated with residual rt

Tt = Λt ∪Wt // merge the new columns such that |Tt | = k + kS

h = A†
Tt

y // find the best coefficients for residual approximation

Λt+1 = supp
k,Ψ

(h) // find the set of sparsity Λt+1

x = F(h, Λt+1) // find sparse vector x

rt+1 = y− AΛt+1 xΛt+1 // update the residual

t = t + 1
end while

As in CoSaMP the initialization is made by choosing the columns of AT that are most strongly
correlated with residual

Λ0 = arg max
|Λ|=k

‖AT
Λ y‖1 (40)

and then estimating the best coefficients
x0 = A†

Λ0
y (41)

for residual approximation. A different step size has been used for each xt component by defining the
step size vector ρ as

ρ = min
j
‖aj‖2

(
1
‖a1‖2

, . . . ,
1

‖aN‖2

)
, (42)

thus, normalizing the components of the gradient vector AT(Axt − y). In this way the updated
equation for x becomes

x̃t+1 = xt − µtqt (43)

where qt = ρ� AT(Axt− y) is the normalized gradient vector and� denotes the element-wise product
of vectors. The value of µt has been estimated by minimizing the residual, i.e., such that

∂

∂µt
‖Axt+1 − y‖2

2 = 0 (44)

or
∂

∂µt
‖A(xt − µtqt)− y‖2

2 = 0 . (45)

A closed form of µt cannot be derived as it depends on the set Λt+1 selected after the updating of x̃t+1.
To circumvent this problem an iterative approach has been used, starting from an initial estimation
Λ?

t+1 of Λt+1 to compute µt(Λ?
t+1) and then updating Λ?

t+1 to the true value. In this way from previous
Equation (45) we obtain

µt =
qT

Λ?
t+1

AT (AxΛ?
t+1
− y)

qT
Λ?

t+1
AT AqΛ?

t+1

=
wTε

wTw
(46)
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where

w = AqΛ?
t+1

ε = AxΛ?
t+1
− y

Λ?
t+1 = supp

k,Ψ
(xt − µtq) . (47)

Algorithm 4 NIHT

Input: A = ΦΨ, y, k
Initialize:

Λ0 = arg max
|Λ|=k

‖AT
Λ y‖1 // find the columns of AT that are the

// most strongly correlated with residual

x0 = A†
Λ0

y // find the best coefficients for residual approximation

t = 0
Output: k-sparse coefficient vector x
while t < Niter do

rt = Axt − y // update residual

ρ = min
j
‖aj‖2

(
1
‖a1‖2

, . . . ,
1

‖aN‖2

)
// step size vector

qt = ρ� (AT rt) // normalized gradient vector

Λt+1 = Λ?
t+1 // initialize the set of sparsity Λt+1

if t > 0 then

while (stop criterion on Λt+1) do

x̃t+1 = xt − µt(Λt+1)qt // update xt with step size µt given by (46)

Λt+1 = supp
k,Ψ

(x̃t+1) // update set of sparsity Λt+1

xt+1 = F(x̃t+1, Λt+1) // find sparse vector xt+1

end while

else

x̃t+1 = xt − µt(IN)qt
[xt+1]k = F(x̃t+1, supp

k,Ψ
(x̃t+1)) // find sparse vector xt+1

end if
t = t + 1

end while

4. Comparative Study

To quantify the performance of the CS algorithms previously described a comparative study has
been conducted on two different sets of EMG signals, giving rise to case study A and case study B.

A similar study of CS applied to EMG signal was performed in [49]. In that work sparsity is
enforced to the signal with a time-domain thresholding technique, and reconstruction SNR is measured
with respect to the sparsified signal. In this work, to have an estimation of overall information loss of
the signal, after enforcing sparsity with reduced operator [x]k for each basis, we measured SNR with
respect to the original signal x.

4.1. Case Study A

The signals used in this study refer to three different muscles, namely biceps brachii, deltoideus
medius, and triceps brachii. They were recorded by the sEMG acquisition set-up described in [16] and
following the protocol outlined in [50,51]. The EMG signal was high-pass filtered at 5 Hz and low-pass
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filtered at 500 Hz before being sampled at 2 kHz. The algorithms were applied to frames of length
N = 1024, which is a large value enough to limit SNR variations among frames. In the simulations the
index k and the compression factor CF = M/N, i.e., the inverse of CR, were varied. The performance
has been measured based on the following equivalent signal to noise ratio

SNR = 20 log10
‖y‖2

‖y− yrec‖2
, (48)

where yrec is the reconstruction signal, by averaging the results obtained with different frames.

4.1.1. Basis Selection

Figure 1 compares for the three muscles the reconstruction error in three frames extracted from
the data set, as achieved with convex optimization using three different bases, DCT, Haar, and DB4.
Since the signal was pre-filtered at 500 Hz, this can lead to an improvement of sparsity in the frequency
domain making DCT worth testing.

Figures 2 and 3 report the SNR as a function of frame, sparsity and iteration respectively, for the
same muscles of Figure 1. DB4 basis clearly shows the best reconstruction performance in all the
conditions considered in these figures.
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Figure 1. Reconstruction error of EMG signal as achieved with convex optimization, using DCT, Haar,
and DB4 bases in frames corresponding to three muscles (a) Biceps (b) Deltoideus (c) Triceps.

4.1.2. Comparison of Algorithms Performance

As the ultimate goal of this paper is to study and compare the CS methods for the reconstruction
of EMG signals, a large experimentation has been carried out with the algorithms previously described.

Figures 4–8 report the performance achieved with the four algorithms L1, OMP, CoSaMP,
and NIHT under different experimental conditions. In particular the behavior of SNR as a function of
sparsity SM = k/M for the four algorithms and the three bases is shown in Figure 4, where a constant
value CF = 0.5 of compression factor is used. Here the sparsity SM with respect to the dimension M
has been adopted as for k > M the behavior is not of particular significance. It is evident from these
results the superiority of DB4 with respect to other bases as already pointed out in the previously
figures. Concerning algorithm performance, all the algorithms show a pronounced peak near the
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value of k/M = 0.4 – 0.5. This behavior is due to the fact that the SNR is measured with respect to the
original signal, and as k/M decreases the fidelity between x and [x]k deteriorates. Moreover, while for
OMP, CoSaMP, and NIHT, the SNR falls rapidly as k/M increases, the L1 algorithm remains nearly
constant beyond the maximum.

Figure 2. SNR vs. frame number, as achieved with convex optimization, using DCT, Haar, and DB4
bases, for the same muscles of Figure 1.

Figure 3. SNR vs. algorithm iterations, as achieved with convex optimization, for the same bases and
muscles of Figure 1.

Figure 5 reports the SNR as a function of sparsity SM = k/M for different values of CF. In these
cases, L1 and OMP have the better performance as they show a similar behavior. Figure 6 depicts the
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SNR as a function of compression factor CF and different values of SM. Also, in this case L1 and OMP
show the better performance.
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Figure 4. Case Study A—SNR as a function of sparsity SM = k/M with a compression factor CF = 0.5,
for the four algorithms, (a) L1, (b) OMP, (c) CoSaMP, (d) NIHT, using the same bases of Figure 1.

Figure 5. Case Study A—SNR as a function of sparsity SM = k/M and compression factor CF, for the
four algorithms, L1, OMP, CoSaMP, NIHT, using the DB4 basis.
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Figure 6. Case Study A—SNR as function of compression factor CF = M/N for the four algorithms
and three values of sparsity SM = k/M.

4.1.3. Noise Tolerance

Real data CS acquisition systems are inherently noisy, thus to simulate a more realistic situation
some experiments have been conducted with a noise superimposed to the signal. The effect of a noisy
signal y on CS reconstruction corresponds to an error xe in the sparse solution x given in this case by

x = xNF + xe (49)

where xNF denotes the noise-free solution. The error term xe can be particularized for the four
algorithms as follows:

xe,L1 = A†n

xe,OMP = A†
Λk

n

xe,CoSaMP = A†
Tn

xe,NIHT = A†
Λ0

n (50)

where n is the noise superimposed to y. It is straightforward to show that the following inequality

‖ f − fxe‖2

‖ f ‖2
≥
∣∣∣∣‖ f − f NF

xe ‖2

‖ f ‖2
− ‖ψxe‖2

‖ f ‖2

∣∣∣∣ (51)

holds, thus giving the relationship

SNR ≤ SNRNF SNRnoise

SNRNF − SNRnoise
(52)

where SNRNF and SNRnoise = ‖ f ‖2/‖ψxe‖2 refer to the xNF and xe components, respectively. For
high values of noise SNR degenerates to SNRnoise thus worsening the noise-free performance. It is
worth noticing that for L1 the SNRnoise is independent of k/M, as it results from Equation (50) and
the definition of SNRnoise. This implies that reducing the SNRnoise does not affect the reconstruction,
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thus resulting almost constant with k/M. For the other algorithms xe increases with k/M, so that a
maximum for the SNR is expected. Figure 7 reports the SNR as a function of sparsity SM for three
values of noise superimposed, while Figure 8 is the noisy version of Figure 6, in which a value of
SNR = 25 dB for the measurement signal y is used. The experimental results confirm the considerations
stated above for L1, which shows the worst behavior when the measure SNR decreases. As for
OMP, CoSaMP, and NIHT, their performances are almost independent of k/M for low values of it,
while suddenly worsen when k/M exceeds a critical value of about 0.5. Finally, Figure 9 reports the
computational cost and execution time on MATLAB respectively as functions of sparsity SM = k/M.
The execution time was computed using MATLAB tic-toc functions. These figures clearly show that
L1-minimization outperforms the other algorithms.

Figure 7. Case Study A—SNR as a function of sparsity SM = k/M for the four algorithms and three
values of noise superimposed to the signal.

Figure 8. Case Study A—SNR as a function of compression factor CF = M/N for the four algorithms
and three values of sparsity SM = k/M. A value of SNR = 25 dB for the measurement signal y is used.
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Figure 9. Case Study A—Execution time on MATLAB as a function of sparsity SM = k/M.

4.2. Case Study B

The EMG signals used in this case study come from PhysioBank [52], a large and growing archive
of well-characterized digital recordings of physiological signals and related data for use by biomedical
research community. In particular, the data come from the ‘Neuroelectric and Myoelectric Databases’
of PhysioBank archives. A class of this database, named ‘Examples of Electromyograms’ [53], has been
used; it contains short EMG recordings from three subjects (one without neuromuscular disease, one
with myopathy, one with neuropathy). The signals are sampled at a frequency of 4 kHz and the frame
has a length N = 1024, the same as case study A. As the signal from this dataset was not low-pass
filtered, it contains all typical EMG frequency components, therefore this time we discarded DCT and
Haar, using only DB4 basis. We chose to add this case study to analyse performances when signal has
the lowest sparsity as possible which is the worst scenario for the reconstruction performance.

Figure 10 reports the execution time as a function of sparsity SM for the four algorithms. Figure 11
compares the SNR as a function of sparsity SM for three values of CF, as obtained with the four
algorithms. As shown in these figures, the obtained results have a similar behaviour of those achieved
in case study A.

Figure 10. Case Study B—Execution time on MATLAB as a function of sparsity SM = k/M.
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Figure 11. Case Study B—SNR as a function of sparsity SM = k/M and compression factor CF, for the
four algorithms, L1, OMP, CoSaMP, NIHT, using the DB4 basis.

Finally, based on the experimental results previously reported a qualitative assessment of the four
reconstruction algorithms can be derived that explores the trade-off in the choice of a CS reconstruction
algorithm for EMG sensor application. To this end Table 2 summarizes the performance, in terms of
accuracy, noise tolerance, and speed, of the four reconstruction algorithms.

The L1 minimization algorithm has an excellent behavior for accuracy, noise tolerance, and speed,
thus outperforming the other algorithms. Among these, CoSaMP shows the best trade-off between
accuracy and speed.

Table 2. Comparison, in terms of accuracy and speed, of the four algorithms L1, OMP, CoSaMP, NIHT.

Algorithm Accuracy Noise Tolerance Speed Computational Cost

L1 Excellent Excellent Excellent O(N2 Niter)

OMP Good Good Bad O(M k3)

CoSaMP Fair Fair Good O(M k2 Niter)

NIHT Bad Fair Fair O(M N k)

5. Conclusions

This paper presents a comprehensive comparative study of four of the most common algorithms
for CS reconstruction of EMG signals, namely L1-minimization, OMP, CoSaMP, and NIHT. The study
has been conducted using a wide range of EMG biosignals coming from two different datasets.
Concerning algorithm accuracy, all the algorithms show a pronounced peak of SNR near the
value of k/M = 0.4 – 0.5. However, while for OMP, CoSaMP, and NIHT, the SNR falls rapidly,
the L1 algorithm remains nearly constant beyond the maximum. As for the effect of noise on CS
reconstruction, L1-minimization shows a behavior that is almost independent of k/M. The results on
computational cost and execution time on MATLAB show that L1-minimization outperforms the other
algorithms. Finally, Table 2 summarizes the performance, in terms of accuracy, noise tolerance, speed,
and computational cost of the four algorithms.
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