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Background. All YTH domain family members are m6A reader proteins accounting for the methylation modulation involved in the
process of tumorgenesis and tumor progression. However, the expression profiles and roles of the YTH domain family in lung
adenocarcinoma (LUAD) remain to be further illustrated. Methods. GEPIA2 and TNMplot databases were used to generate
the expression profiles of the YTH family. Kaplan-Meier plotter database was employed to analysis the prognostic value of
the YTH family. Coexpression profiles and genetic alterations analysis of the YTH family were undertaken using the
cBioPortal database. YTH family protein-associated protein-protein interaction (PPI) network was identified by using
STRING. Functional enrichment analysis was performed with the help of the WebGestalt database. The correlation analysis
between the YTH family and immune cell infiltration in LUAD was administrated by using the TIMER2.0 database. Results.
mRNA expression of YTHDC1 and YTHDC2 was significantly lower in LUAD, whereas YTHDF1, YTHDF2, and YTHDF3
with apparently higher expression. YTHDF2 expression was observed to be the highest in the nonsmoker subgroup, and its
expression gradually decreased with the increased severity of smoking habit. LUAD patients with low expression of YTHDC2,
YTHDF1, and YTHDF2 were correlated with a better overall survival (OS) time. The YTHDF1 genetic alteration rate was
26%, which was the highest in the YTH family. The major cancer-associated functions of YTH family pointed in the
direction of immunomodulation, especially antigen processing and presentation. Most of the YTH family members were
significantly correlated with the infiltration of CD4+ T cells, CD8+ T cells, macrophages, and neutrophils, indicating the deep
involvement of the YTH domain family in the immune cell infiltration in LUAD. Conclusion. The molecular and expression
profiles of the YTH family were dysregulated in LUAD. YTH family members (especially YTHDC2) were promising
biomarkers and potential therapeutic targets that may bring benefit for the patients with LUAD.

1. Introduction

As the leading cause of cancer-related deaths in global, lung
cancer is composed of two major subtypes lung squamous
cell carcinoma (LUSC) and lung adenocarcinoma (LUAD),
with LUAD exhibits relatively higher incidence and mortal-
ity [1–3]. While tremendous efforts have been made in drug

discovery against LUAD, the clinical outcomes of most
patients with LUAD remain to be poor [4]. Hence, exploring
novel biomarkers and molecular targets is of great value for
the development of the LUAD therapeutic strategy.

Dysregulation of RNA methylation has frequently been
reported to be implicated in the initiation and progression
of cancer [5–7]. N6-Methyladenosine (m6A) modification,
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as the most common RNA methylation, has received inten-
sive attention these days and is expected to be a promising
therapeutic target against cancer [8]. With the function of
recognizing m6A-modified mRNA and regulating the
expression of target genes, the YT521-B homology (YTH)
family as the major reading proteins (known as “readers”)
is composed of five proteins that carry the highly conserved
YTH domain in common. These proteins are further classi-
fied into three categories: YTH domain-containing 1
(YTHDC1), YTH domain-containing 2 (YTHDC2), and
YTH m6A-binding protein (YTHDF) including YTHDF1-
3. Accumulative studies have shown the robust association
between YTH family members and various types of cancer
[9]. For instance, there was proved to be a positive correla-
tion between YTHDF1 overexpression and poor prognosis
in patients with liver cancer [10]. In addition, the silence of
YTHDF2 resulted in the increased invasion of tumor cells
in pancreatic cancer [11]. Furthermore, it was reported that
YTHDC2 could promote radiotherapy resistance of
nasopharyngeal carcinoma via activation of the AKT signal
pathway [12]. However, the expression signatures and func-
tion of YTH family proteins in LUAD initiation and
progression is still lacking.

In the present study, we aimed to further broaden the
understanding of the role of the YTH family in LUAD
through various public databases, thereby providing novel
insights into the diagnosis and treatment of LUAD. The
expression profiles, prognostic value, and functional enrich-
ment analysis of YTH family members in LUAD were eval-
uated, and the correlation of immune cell infiltration with
the YTH family was also discussed.

2. Materials and Methods

2.1. GEPIA2 and TNMplot. Gene Expression Profiling Inter-
active Analysis (GEPIA) 2.0 and TNMplot are two databases
that support comprehensive expression analyses based on
TCGA and GTEx data [13–15]. The expression profiles of
YTH family members in LAUD and normal lung tissue were
retrieved from these two databases. A cutoff of 0.05 in p
value was set as statistical significance. The relative expres-
sion of each YTH in LUAD was compared using GEPIA2.
The color density of each block represents the median
expression value of each YTH member in LUAD tumor
tissue, normalized by the maximum median expression
value across all blocks. All the databases used in our study
were summarized in Supplementary Table S1.

2.2. UALCAN. UALCAN is a portal for tumor subgroup anal-
ysis of different gene expressions [16]. In this study, UALCAN
database was also applied to analysis the different expressions
of YTH family members based on smoking habits. A cutoff of
0.05 in p value was set as statistical significance.

2.3. Kaplan-Meier Plotter. Kaplan-Meier plotter database is
used for evaluating the prognostic role of the expression
level of specific gene [17]. In this study, overall survival
(OS), first progression (FP), and postprogression survival
(PPS) of LUAD patients with different expressions of each

YTH family member were compared, respectively, through
the Kaplan-Meier plotter database. A cutoff of 0.05 in p
value was set as statistical significance.

2.4. cBioPortal. cBioPortal is a database of cancer genomics
which provides download and analysis of genomic alteration
data of diverse types of cancer [18, 19]. A dataset of 230
patients with LUAD (TCGA, Firehose Legacy) from cBio-
Portal was used for the analyses of coexpression and genetic
alterations of the YTH family.

2.5. STRING and Cytoscape. Probable protein-protein inter-
actions (PPIs) among YTH family members were predicted
using STRING, and a database provides an interactive
network among interested proteins [20, 21]. In addition,
152 YTH-associated genes were selected from cBioPortal,
then, Cytoscape was used to generate the molecular interac-
tion networks [22].

2.6. WebGestalt. WebGestalt is a comprehensive tool online
that supports gene set enrichment analysis and network
topology analysis [23]. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and Gene Ontology (GO)
enrichment analyses were performed by using WebGestalt
to get the enrichment pathways correlated to the YTH
family in LUAD.

2.7. TIMER2.0. TIMER2.0 is a public resource that offers
comprehensive analyses of immune cells infiltration in vari-
ous types of cancer [24]. Here, we conduct the “immune
association” module to obtain the scatterplots which show
the association between the expression of YTH family
proteins and different types of infiltrated immune cells
(CD4+ T cells, CD8+ T cells, B cells, dendritic cells, macro-
phages, and neutrophils).

3. Results

3.1. Expression Profiles of YTH Domain Family in Patients
with LUAD. Data returned from both GEPIA2 and
TNMplot databases demonstrated that the mRNA expres-
sion of YTH domain family members in LUAD tissues was
of widely divergence comparing with that in adjacent
normal tissues, especially in the cases of YTHDC2 with
significantly lower expression, and YTHDF1, YTHDF2,
and YTHDF3 with apparently higher expression only in
TNMplot database (Figures 1(a) and 1(b)). Moreover, the
expression abundance of each YTH member in LUAD
varied. The results showed that the relative expression of
YTHDC2 was the lowest in the YTH domain family, while
the expression of YTHDF3 was the highest (Figure 1(c)).

There was no significant difference in the expression of
YTH family molecules in the four clinical stage subgroups
of LUAD (data no shown). While intriguingly, based on
the classification of the status of smoking habits (non-
smoker, smoker, reformed smoker1 (who are current
reformed smokers for ≤15 years) and reformed smoker2
(who are current reformed smokers for >15 years)) in
LUAD patients, YTHDC2 expression was observed to be
the highest in nonsmoker subgroup, and its expression
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gradually decreased with the increased severity of smoking
habit, suggesting that the smoking habits might reflect the
expression of YTHDC2 level, and even for the LUAD patient
with smoking, smoking cessation can effectively reduce
YTHDC2 expression (Figure 2). Moreover, we made the
logistic regression analysis using LUAD data from TCGA,
and the results showed that the relationship between

smoking and YTHDC2 expression was not statistically
significant, indicating that more samples are needed to verify
the relationship between them (Supplementary Table S3).
Furthermore, we analyzed the prognostic effect of
YTHDC2 on both smoking and nonsmoking LUAD
patients and found that both smoking and nonsmoking
patients with high expression of YTHDC2 showed better
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Figure 1: The mRNA expression levels of the YTH family in LUAD were compared with that in normal lung tissues. (a) Data were retrieved
from the GEPIA2 database. (b) Data were retrieved from the TNMplot database. (c) The relative expression levels of each YTH family
member in LUAD patients (GEPIA2). ∗p < 0:05.
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prognosis (HR = 0:65, p = 0:0011; HR = 0:19, p = 5:8e − 08;,
respectively) (Supplementary Figure S1).

3.2. YTH Domain Family in Prognosis of LUAD Patients. To
assess the prognostic value of the YTH domain family in
LUAD, the correlations between the expression of YTH
family members and survival endpoints like overall survival

(OS), first progression (FP), and postprogression survival
(PPS) were further analyzed through Kaplan-Meier plotter
website. As a consequence, LUAD patients with low expres-
sion of YTHDC2 (p < 0:001), YTHDF1 (p < 0:05), and
YTHDF2 (p < 0:01) were correlated with a better OS time
(Figure 3). Similarly, low expression of YTHDC1
(p < 0:001), YTHDC2 (p < 0:001), YTHDF2 (p < 0:001),
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Figure 2: The association between the expression of YTH family members and different smoking habits from UALCAN (nonsmoker,
smoker, reformed smoker). ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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and YTHDF3 (p < 0:05) were associated with a better FP
time (Figure 4). As for the PPS, it was YTHDC1 (p < 0:001),
YTHDC2 (p < 0:001), and YTHDF2 (p < 0:005) that linked
to a better prognosis (Figure 5).

3.3. Genetic Alterations of YTH Domain Family in LUAD.
The frequency and types of genetic alterations in the YTH
domain family in LUAD were obtained through the TCGA
database and cBioPortal tool. As presented in Figure 6(a),
the YTHDF1 genetic alteration rate was 26%, which was
the highest in the YTH family. Genetic alteration rates of
the other family members are 13% (for YTHDC1, YTHDC2,
and YTHDF2) and 22% (YTHDF3). In the aspect of types of
genetic alterations, gene amplification, missence mutation,
truncating mutation, and mRNA high/low were the main
genetic alterations in YTHDC1, YTHDF1, and YTHDF2.

Whereas barely missence mutation was observed in
YTHDC2, and scarcely missence and truncating mutation
were found in YTHDF3 (Figure 6(a)).

3.4. Interactive Network Analyses of YTH Domain Family
and Associated Molecules. The interactive network of the
YTH domain family generated by the STRING database
demonstrated that YTHDF1, YTHDF2, and YTHDF3 were
concordantly interacted with YTHDC1, revealing YTHDC1
acted as the hub node in this interactive network
(Figure 6(b)). However, YTHDC2 was relatively dissociated
from its family members in terms of the functional network
of interactive molecules. Furthermore, 152 most frequent
genes with changed expression level and concomitantly with
close correlation to YTH domain family were identified from
the cBioPortal database (Supplementary Table S2). Then, the
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Figure 3: The correlations between the expression of YTH family members and overall survival (OS) of LUAD patients were analyzed
through the Kaplan-Meier plotter website.
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interactive network of these 152 genes was established, which
further suggested that molecules including MMP1, HP,
MRC1, COL7A1, KRT14, ITGB4, CASR, and COL17A1
may serve as hub genes participating in the biological
processes of the YTH domain family in LUAD (Figure 6(c)).

To further understand what kinds of functions are
induced by the YTH domain family, the functional enrich-
ment analysis was performed on the basis of the 152
YTH-associated genes by using the WebGestalt database.
Consequently, YTH domain family members were mainly
enriched in biological functions such as biological regula-
tion, response to stimulus, metabolic process, multicellular
organismal process, and developmental process. Moreover,
YTH domain family members were also found to be highly
enriched in the following cellular component, including
membrane, vesicle, extracellular space, endomembrane

system, nucleus, protein-containing complex, and
membrane-enclosed lumen, and so on. As for the enrich-
ment of molecular function, protein binding, ion binding,
hydrolase activity, nucleic acid binding, structural molecule
activity, and molecular transducer activity are the top ones
with the highest enrichment (Figure 7(a)). In addition,
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way was used to exhibit the enrichment ratio of specific bio-
logical functions that contribute to the LUAD development.
The top-ranked YTH-associated biological functions involved
in the LUAD development were antigen processing and pre-
sentation, hemidesmosome assembly, formation of primary
germ layer, and appendage development (Figure 7(b)).

3.5. Correlation between Immune Cell Infiltration and Each
YTH Domain Family Member. Immune cell infiltration in
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Figure 4: The correlations between the expression of YTH family members and first progression (FP) of LUAD patients were retrieved from
the Kaplan-Meier plotter website.
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tumor is an indispensable component of tumor microenvi-
ronment and an independent index that reflects prognosis
and lymphatic metastasis status [25–27]. Thus, we use the
TIMER2.0 database to further illustrate the correlation
between immune cell infiltration and each YTH domain
family members. YTHDC1 expression was significantly
correlated with infiltration of several types of immune cells
ranging from macrophage (Rho = 0:146, p = 1:14 × 10–3) to
neutrophil (Rho = 0:224, p = 5:31 × 10–7), CD4+ T cell
(Rho = 0:233, p = 1:77 × 10–7), and CD8+ T cell
(Rho = 0:224, p = 5:32 × 10–7) (Figure 8(a)). YTHDC2
expression was significantly associated with infiltration of
macrophage (Rho = 0:145, p = 1:25 × 10–3), neutrophil
(Rho = 0:313, p = 1:09 × 10–12), CD4+ T cell (Rho = 0:235,
p = 1:32 × 10–7), CD8+ T cell (Rho = 0:185, p = 3:69 × 10–5),
and dendritic cell (Rho = 0:146, p = 5:22 × 10–4)

(Figure 8(b)). In addition, in the cases of YTHDF1, YTHDF2,
and YTHDF3, various immune infiltration signatures were
observed to have a significant correlation (Figures 8(c)–8(e)).
These data indicated the deep involvement of the YTH
domain family in the immune cell infiltration in LUAD.

4. Discussion

RNA methylation is a vital posttranscriptional modification
that participates in various human biological processes
[28]. Recent researches on m6A RNA methylation have
revealed its facilitating role in the initiation and develop-
ment of various types of cancer, thus, has gradually become
a new direction in oncology research and targeted drug
development [29, 30]. All of the five YTH domain family
members are m6A reader proteins—the key enzyme that
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Figure 5: The correlations between the expression of YTH family members and postprogression survival (PPS) of LUAD patients were
obtained from the Kaplan-Meier plotter website.
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regulates the methylation of target RNA by specific combi-
nation with m6A-containing mRNA. With huge potential
value, there are multiple studies reporting the role of YTH
family proteins in various cancer types. For instance,
YTHDF1 was proved to be an oncogene in hepatocellular
carcinoma (HCC) owing to its overexpression in HCC
patients and association with poor prognosis [10, 31]. The
oncogenic role of YTHDF1 may be achieved by the mecha-
nisms of Snail-induced EMT [32] and m6A-dependent acti-
vation of the WNT/β-catenin pathway [33]. However, the
role of YTHDF2 in HCC was found to be contradictory,
which acted as either oncogene in a m6A-dependent manner
or tumor suppressor gene through EGFR and ERK/MAPK
pathway [34, 35]. In the case of ovarian cancer, YTHDF1
was also found to be overexpressed and associated with poor
clinical outcome. YTHDF1 accelerated the growth and
metastasis of ovarian cancer in vivo and in vitro by promot-
ing the m6A-modified translation of EIF3C [36]. In the field
of lung cancer, the expression of YTHDF2 was aberrantly
higher and facilitated the proliferation and growth of cancer
cells, ribose-5-phosphate, and NADPH induced by pentose
phosphate pathway might be the mechanism underlies
[37]. YTHDF1 was demonstrated to promote proliferation
of cancer cells in nonsmall cell lung cancer (NSCLC),
whereas paradoxically, better prognosis and chemotherapy
sensitivity were correlated with high YTHDF1 expression

and implied the complicated and multiple mechanisms lurk-
ing beneath the phenomena observed above [38].

According to our knowledge, a study that systematically
focused on the expression, prognostic value, and pathophys-
iological function of the YTH domain family in LUAD is still
lacking. Hence, we preliminarily explore the expression pro-
files of the YTH domain family and found that only the
expression of YTHDC2 is significantly lower in all of the
LUAD datasets included in this study, while YTHDF1,
YTHDF2, and YTHDF3 are proved to be significantly
upregulated only in one dataset. Undoubtedly, YTHDC2
expression is more convincing because data retrieved from
multiple datasets showed high concordance. These indicated
that YTHDC2 might be the potential tumor suppressor
gene. YTHDF1, YTHDF2, and YTHDF3 might as well act
as the potential oncogenes with a lower level of evidence.

Then, we explored whether the prognostic value of YTH
proteins was in line with their expression trend. Only
YTHDC1 passed this round of screening cause its lower
expression was correlated with poorer prognosis with statis-
tical significance when using OS, FP, and PPS as the end-
points of survival. While higher expression of YTHDF1,
YTHDF2, and YTHDF3 was associated with better clinical
outcome, which is in contradiction with their expression
profiles in LUAD compared with normal lung tissue. These
results pushed YTHDC2 to the foreground as a novel

YTHDC1

YTHDC2

YTHDF1

YTHDF2

YTHDF3 22%

Genetic alteration

Amplification

Missense mutation (unknown significance) Truncating mutation (unknown significance)

Deep deletion mRNA High mRNA Low No alterations

13%

26%

13%

13%

(a)

YTHDF2

YTHDC1
YTHDF1

YTHDC2

YTHDF3

(b) (c)

Figure 6: Genetic alterations analysis and molecular interaction analysis of the YTH family in LUAD. (a) Genetic alteration profiles of the
YTH family in LUAD by using cBioPortal. (b) The interaction analysis within the YTH family from STRING. (c) The identification of 152
YTH-associated genes which was most frequently altered in LUAD through cBioPortal and Cytoscape.
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potential target gene against LUAD. Of course, more solid
evidence from experiments is needed.

To date, the role of YTHDF2 in lung cancer (especially
in LUAD) remains to be further explored. YTHDC2 can
promote 6PGD mRNA translation in lung cancer cells by
means of m6A modification. We made a horizontal com-
parison of YTHDC2 in different types of cancer. Unlike
the low expression of YTHDC2 in LUAD, YTHDC2
expression was increased in liver cancer and positively
related to tumor malignancy [39]. Whereas opposite
evidence of YTHDC2 as a tumor suppressor gene is also
reported in liver cancer [35], covering the underneath
mechanisms a heterogeneous veil. In addition, YTHDC2
exerts a promoting role in the colorectal cancer metastasis
through the hypoxia/HIF-1α/Twist1 signaling pathway
[40]. Our study also for the first time suggested that smok-
ing habits may negatively reflect the expression of YTHDC2
level in LAUD patients. Further investigations based on it
may have the opportunities to make breakthrough in
targeted drug development and precision medicine of
LAUD with smoking habit.

The functional enrichment analysis [41] in this study
screens out the biological process and functional interpreta-
tion of genes around the YTH family, which further broaden
our understanding of the role of the YTH family in the path-
ophysiological process of LUAD. The major functions of the
YTH family seem to point in the direction of immunomodu-
lation, especially antigen processing and presentation. This
was in accordance with the finding of a published paper,
showing that gene signature of antigen processing and pre-
sentation machinery may predict the therapeutic effect of
immune checkpoint inhibitors such as anti-PD-1/PD-L1
[42]. Another study gave a similar conclusion that impaired
antigen processing and presentation may account for the
acquired resistance of immune checkpoint inhibitors and thus
led to treatment failure [43] in lung cancer. Therefore, the
relationship between the YTH family and antigen processing
and presentation in LUAD is worthy of further exploration.

m6A methylation has been reported to play essential
roles in tumor immunity. Furthermore, profiles of immune
cells infiltration in tumor could act as novel biomarkers that
effectively improved the diagnosis and prognosis of many
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types of cancer [44, 45]. Our study found that in LUAD,
most of the YTH family members were significantly corre-
lated with the infiltration of CD4+ T cells, CD8+ T cells,
macrophages, and neutrophils. A previous study presented
that CD4+ T cells and CD8+ T cells were generally believed
to control cancer outcome, while macrophages and neutro-
phils produce various factors that induce inflammation and
stimulus tumor progression [46]. Taken together, the
abnormal expression of YTH family members (especially
YTHDC2) may alter the profiles of immune cell infiltra-
tion in LUAD through some kinds of specific mechanisms,
thus influence the clinical outcome and the therapeutic
effect of immunotherapy.

However, there were several limitations in our work. Our
analysis in this study was mostly based on the data from the
online databases, and further laboratory experiments were
needed to verify these conclusions. Moreover, further
research into the specific molecular mechanisms and mole-
cules interactions would be needed in the future.

5. Conclusions

In conclusion, the molecular and expression profiles of the
YTH family were dysregulated in LUAD. YTH family mem-
bers (especially YTHDC2) are promising biomarkers and
potential therapeutic targets that may bring benefit for
patients with LUAD.

Data Availability

The original contributions presented in the study are
included in the article/Supplementary Material, and further
inquiries can be directed to the corresponding authors.
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Figure 8: The correlation between immune cell infiltration and each YTH domain family member. The TIMER2.0 database was applied to
explore the role of (a) YTHDC1, (b) YTHDC2, (c) YTHDF1, (d) YTHDF2, and (e) YTHDF3 in different immune cell infiltration (CD4+ T
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