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Oxidative stress-driven parvalbumin interneuron impairment
as a common mechanism in models of schizophrenia
P Steullet1,12, J-H Cabungcal1,12, J Coyle2, M Didriksen3, K Gill4, AA Grace4, TK Hensch5,6, A-S LaMantia7, L Lindemann8, TM Maynard7,
U Meyer9, H Morishita5,6,10, P O’Donnell11, M Puhl2, M Cuenod1 and KQ Do1

Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal
synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior.
Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric
disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the
basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in
schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse
etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex.
Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these
interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic,
dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to
protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant
treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress.
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Proper cortical excitatory-inhibitory balance through GABAergic
circuits is critical for supporting cognitive, affective and social
functions.1,2 Some of these inhibitory circuits are impacted in
psychiatric disorders (for example, autism,3 schizophrenia and4

bipolar disorder5). In particular, alterations in parvalbumin-
expressing interneurons (PVIs) are highly replicated findings in
postmortem brains of schizophrenia patients,6,7 and are reported in
bipolar (BP)8 and autism spectrum disorders (ASD).9 Anomalies in
PVIs therefore constitute a pathological hallmark common to
several different psychiatric conditions. Elucidating mechanisms
underlying the causes and consequences of these alterations
may help to identify biomarkers and novel targets for the improved
detection, prevention and treatment. Here, we review published
data and present novel results which provide compelling evidence
for the convergence of various genetic and environmental risk
factors onto oxidative stress leading to PVI impairment. We propose
this represents a 'common pathological pathway', which con-
tributes to schizophrenia, and at least some forms of ASD.

ABERRANT PVI CIRCUITS IN PSYCHIATRIC DISORDERS
PVIs, which express parvalbumin (a high-affinity calcium-binding
protein), are fast-spiking, non-adapting interneurons. Because

their inhibitory terminals synapse onto the cell body and axon
initial segment of their target neurons, PVIs control the output of
postsynaptic neurons via feedforward and feedback inhibition.
They coordinate the activity of neuronal assemblies, particularly in
high-frequency synchrony.1 PVI-associated circuits shape the
processing and flow of information required for sensory percep-
tion, working memory, attention, learning, memory and social
behavior. They also drive the early refinement of cortical networks.
Maturation of PVIs and their specialized extracellular matrix (the
perineuronal net, PNN) enveloping most PVIs10 define critical
periods of network plasticity during postnatal development.11

There is accumulating evidence for anomalies of PVI-associated
circuits in schizophrenia, but also in BP and ASD. In schizophrenia,
these alterations include reduced expression of parvalbumin,
GAD67 (GABA synthesizing enzyme), Kv3.1-containing K+--chan-
nels, changes in their pre- and postsynaptic terminals,7,12 and
abnormal PNN13 known to promote interneuron maturation,
synaptic/network stability14,15 and protection against oxidative
stress.16 Together with an immature developmental gene expres-
sion profile of PVIs in ASD and schizophrenia,17 this suggests a
defect in the proper maturation of these interneurons. Dysfunc-
tion of PVI-associated networks may lead to impaired high-
frequency neuronal synchrony,18 and contribute to altered
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Figure 1. Relationship between oxidative stress and PVI integrity in the ACC of 2–3 month-old animal models relevant to schizophrenia,
autism and/or redox dysregulation. (a) Oxidative stress (assessed by the immunoreactivity intensity against 8-oxo-2'-deoxyguanosine (8-oxo-
dG), a marker of mitochondrial DNA oxidation), number of PV-IR cells (PV cells) and number of PV cells enwrapped with a WFA-labeled PNN. #
indicates models for which the presented data are already published elsewhere.39,41 The references indexed below provide detailed
descriptions of each investigated model and its control. 22q11: mice with a 22q11.2 deletion (LgDel/+)42 (n= 7 animals per group); 15q13.3:
mice with a 15q13.3 deletion (Df[h15q13]/+)43 (n= 5, 7); 1q21: mice with a 1q21 deletion (Df[h1q21]/+) (from M Didriksen) (n= 4 per group),
SRR: serine racemace KO mice44 (n= 5, 7); FMR1: FMR1 KO mice45 (n= 7, 8); PV-GCLC: mice with conditional KO of GCLC (catalytic subunit of
the key synthesizing enzyme of GSH) in PVIs40 (n= 5 per group); GRIN2A: GRIN2A KO mice46 (n= 7 per group); GCLM: GCLM KO mice47 (n= 5
per group); GCLM GBR: GCLM KO mice treated with dopamine uptake inhibitor GBR12909 during postnatal development (P10-20)39 (n= 5 per
group); GRIN2A GBR: GRIN2A KO mice treated with GBR12909 during postnatal development (P10-20) (n= 7 per group); ODS BSO: ODS rats
treated with the specific inhibitor of GSH synthesis (BSO) during postnatal development (P5-16)38 (n= 4 per group); NVHL: rats with a neonatal
ventral hippocampal lesion41 (n= 6, 7); MAM: rats treated on gestation day GD17 with MAM48 (n= 4, 6); Poly(I:C): mice with a sub-threshold
prenatal immune challenge (on GD9) with poly(I:C); +Str: poly(I:C)-treated mice stressed at preadolescence (P30-40)49 (n= 5 per group). Data
are depicted by the mean± s.d. (in red: animal models; in blue: their respective controls). *** Po0.001; ** Po0.01, * Po05. (b) Quantile
density contours with linear regression (red) and smoothing spline (green) plots illustrating the relationships between changes in oxidative
stress (8-oxo-dG-IR), in number of PV cells, and in number of PV cells with WFA-labeled PNN (PV cells+PNN) for all animal models relative to
their respective controls (JMP11, SAS Institute, Cary, NC, USA). (c) As in (b) but illustrating the relationship between changes in number of PV
cells+PNN and in number of PV cells for all animal models relative to their respective controls. Brief method description: perfused fixed brains
from all animal models were sent to Lausanne where immunohistological preparation, image acquisition and analyses were performed blindly
using the methods described previously.39 Three to four sections per animal were used for the analyses. Analyses of 8-oxo-dG-IR intensity,
numbers of PV-IR cells and PV-IR cells surrounded with a WFA-labeled PNN were done in a region of interest comprising all layers of the ACC.
Oxidative stress was assessed in all cells of ROI. Each animal model was compared with its own control animals. Only males were analyzed,
except for the GRIN2A model where individuals from both sexes were used. On the basis of previously analyzed data,39 sample size was
choosen to detect ~ 25% change in number of PV-IR cells and ~ 75% change in 8-oxo-dG intensity with a power of 80% at a significant α-value
set to P= 0.05. Statistical significance was tested by comparing means of the different models with their respective controls using the
Dunnett’s test. When variances were not equal, we used the Welch’s test to give confidence and confirm the Dunnett’s test outcome. ACC,
anterior cingulate cortex; BSO, buthionine sulphoximine; KO, knockout; MAM, methylazoxymethanol acetate; NVHL, neonatal ventral
hippocampal lesion; ODS, osteogenic disorder Shionogi; PNN, perineuronal net; PV, parvalbumin; PV-IR, parvalbumin-immunoreactive; PVI,
parvalbumin inhibitory interneuron; WFA, Wisteria floribunda agglutinin.

Oxidative stress in PVI as mechanism in SZ models
P Steullet et al

937

Molecular Psychiatry (2017), 936 – 943



sensory perception, social and cognitive deficits found in patients.
Understanding the mechanism(s) driving PVI anomalies is there-
fore central to the development of novel therapeutic strategies,
targeting in particular negative symptoms and cognition.

PVIS ARE AFFECTED BY MANY GENETIC AND ENVIRONMENTAL
RISK FACTORS OF NEURODEVELOPMENTAL DISORDERS
Schizophrenia and ASD are disorders with heterogeneous
etiologies, involving a large array of genetic and environmental
vulnerabilities. In preclinical models, environmental risk factors (for
example, prenatal maternal stress, immune challenge, hypoxia,
early-life iron deficiency, maternal separation and social
isolation)19–24 and manipulations of genes associated with these
diseases (for example, DISC1, DTNB1, ERBB4, NRG1, SHANK3 and
CNTAP2)25–28 affect PVIs. Because of their positioning within
cortical networks, their activity-dependent maturation and the
plasticity of their associated networks, PVIs might be highly
sensitive to abnormal cortical organization. Changes in expression
of parvalbumin, GAD67, or GABA receptors may thus reflect
homeostatic adaptations to alterations of neuronal wiring caused
by diverse independent mechanisms of genetic and/or environ-
mental origins. Alternatively, PVI alterations induced by a large
variety of genetic and environmental factors may be attributed to
a single or a subset of pathological mechanism(s) common to all
these conditions. For example, PVI dysfunction in prefrontal cortex
could be secondary to reduced glutamatergic transmission.7,29

Another potential mechanism could be oxidative stress, for which
there is considerable evidence in schizophrenia, BP and ASD.30–35

Novel in vivo NAD+/NADH 31P-MRS technique has confirmed redox
dysregulation in schizophrenia patients.36 Indeed, PVIs are vulner-
able to redox dysregulation/oxidative stress.37–40 To examine the
hypothesis that oxidative stress is part of a common pathway
leading to PVI abnormalities, we performed a comparative
immunohistological analysis of oxidative stress and PVIs in the
anterior cingulate cortex (ACC) of a panel of genetic and/or
environmental models relevant to schizophrenia and ASD. Oxida-
tive stress was detected with an antibody against 8-oxo-2'-
deoxyguanosine (8-oxo-dG), a marker for DNA oxidation. PVI
integrity was assessed with an antibody against parvalbumin and
with the lectin, Wisteria floribunda agglutinin (WFA), to label the
PNN39 (for brief methods, see legend of Figure 1). Models included
genetically engineered mice-bearing human copy number varia-
tions linked to increased risk for schizophrenia and/or ASD (deletion
in the 22q11, 15q13 or 1q21 loci) or knockout (KO) for genes
associated with these disorders (FMR1, serine racemase (SRR) and
GRIN2A), rodents with deficient glutathione (GSH) synthesis (GCLM
KO mice, mice with conditional GCLC KO in PVIs, rats with transient
GSH depletion during development), mouse models of gene-
environment interactions (early postnatal oxidative challenge in
GCLM and GRIN2A KO mice), an environmental 'two-hit' mouse
model of schizophrenia (maternal immune challenge+peripubertal
stress), and neurodevelopmental rat models relevant to schizo-
phrenia (neonatal ventral hippocampal lesion (NVHL) and methy-
lazoxymethanol acetate (MAM)). All analyses were performed in late
adolescent/young adult animals (2–3 months old), and the results
are summarized below and in Figure 1.

OXIDATIVE STRESS AND PVI INTEGRITY IN PRECLINICAL
MODELS OF GENETIC AND ENVIRONMENTAL RISKS
Mice with the human 22q11.2 deletion (LgDel/+)
The 22q11.2 deletion represents the most common microdeletion,
and causes craniofacial, cardiovascular abnormalities, immunode-
ficiency and cognitive dysfunctions.50 Microdeletion of this region
accounts for ~ 0.3% of persons diagnosed with schizophrenia,51

and leads to structure and connectivity abnormalities in various

brain regions including the cortex, hippocampus, and cerebellum.
Mice modeling the human 22q11.2 deletion show cognitive
deficits, impaired sensorimotor gating and fear conditioning.52 In
addition, they have disrupted cortical neurogenesis, abnormal
interneuron migration/placement, reduced density of
parvalbumin-immunoreactive (PV-IR) synapses and abnormal
formation of excitatory synapses.52 Our analysis shows that,
relative to their control wild-type (WT) mice, adult LgDel/+ mice
displayed higher oxidative stress (+125% 8-oxo-dG immunoreac-
tivity intensity), decreased number of PV-IR cells (−22%), and PV-IR
cells surrounded by WFA-labeled PNN (-38%).

Mice with the human 15q13.3 deletion (Df[h15q13]/+)
Deletion or duplication of the chromosome region, 15q11-13,
cause severe neurological phenotypes. The 15q13.3 deletion
confers high risk for schizophrenia,53 but also epileptic seizures,54

attention deficit, aggression, developmental delay and ASD.55

Mice with such microdeletion (Df[h15q13]/+) display several
features resembling the clinical syndromes, including changes in
schizophrenia relevant domains like reduced evoked gamma
oscillations and seizure susceptibility.43 Relative to their control
mice, adult Df[h15q13]/+ mice showed increased oxidative stress
(+262% 8-oxo-dG immunolabeling intensity), lower number of PV-
IR cells (-35%) and PV-IR cells enwrapped with PNN (-45%).

Mice with the human 1q21 deletion (Df[h1q21]/+)
The symptoms caused by a 1q21.1 microdeletion overlap with
those seen in individuals with a 22q11.2 microdeletion. These
include congenital heart defect, facial abnormalities, develop-
mental delay, microcephaly and neuropsychiatric disorders,56

including schizophrenia.51 Compared to their control mice, adult
Df[h1q21]/+ mice, whose full phenotyping is ongoing, did not
show any significant oxidative stress, deficit in PV-IR cells and in
WFA-labeled PNN.

FMR1 KO mice
The Fragile X syndrome results from the expansion of an unstable
trinucleotide repeat, hypermethylation and transcriptional shut-
down of the fragile X mental retardation 1 (FMR1) gene causing
the lack of the FMR1 protein. Fragile X syndrome patients present
a complex neuropsychiatric phenotype. Half of the patients meet
the diagnostic criteria for ASD; many present anxiety, attention
deficit, cognitive impairment and preservative behaviors.57 Rare
mutations in the FRM1 gene are also associated with
schizophrenia.58 FMR1 KO mice have phenotypes that resemble
the human disorder45,59 and display abnormalities in GABAergic
circuits including reduced PV-IR cell density.60 In adult FMR1 KO
mice, we observed a strong increase in oxidative stress (+307%
8-oxo-dG immunolabeling intensity relative to their control WT
mice) together with a decreased number of PV-IR cells (-48%), and
PV-IR cells surrounded by WFA-labeled PNN (−50%).

SRR KO mice
Genetic and biochemical findings suggest that SRR, the enzyme
that converts L-serine to D-serine, and D-serine itself are reduced in
schizophrenia.61 Low levels of D-serine, the dominant endogenous
co-agonist of NMDA receptors (NMDAR) in forebrain, may thus
cause NMDAR hypofunction as observed in SRR KO mice.44

Although a previous study reported no alteration of parvalbumin
immunoreactivity in hippocampus, pre- and infralimbic cortices of
SRR KO mice,62 our analysis revealed reduced number of PV-IR
cells (−26% relative to their control WT mice) and PV-IR cells
surrounded by PNN (−35%) in the ACC of adult SRR KO mice. This
was accompanied by an increase in intensity of 8-oxo-dG
immunoreactivity (+410%).
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GRIN2A KO mice
A large genome-wide association study identified independent
loci associated with schizophrenia63 that contain numerous brain-
enriched genes involved in glutamatergic transmission, including
GRIN2A coding for the NMDAR subunit NR2A. Mutations in
GRIN2A gene have been identified in intellectual disabilities,
epilepsy, ASD and schizophrenia.64 GRIN2A KO mice show learning
deficits65 and altered emotional-like behaviors.66 Relative to their
control WT mice, GRIN2A KO mice display neither significant
oxidative stress nor PV-IR deficit. The number of PV-IR cells with
PNN was however slightly reduced in KO mice (−11% relative to
their control WT). However, when an additional oxidative
challenge was applied during early postnatal development (from
days 10 to 20), young adult GRIN2A KO mice showed significant
oxidative stress (+159% relative to WT), reduced number of PV-IR
cells (−17%) and PV-IR cells surrounded by WFA-labeled PNN
(−36%). The oxidative insult consisted of 10-days administration of
GBR12909 (GBR),39 a dopamine uptake inhibitor, leading to
elevated extracellular dopamine levels and subsequent generation
of reactive oxygen species (ROS) and reactive compounds.67 This
treatment mimics to some extent dopamine release induced by
environmental stress.68 Such GBR treatment did not have any
significant effects however in WT mice.39 These findings indicate
that an exogenous stress during development induces long-
lasting oxidative stress along with PVI/PNN deficits in GRIN2A
KO mice.

GCLM KO mice and other models of GSH deficiency
Altered levels of enzymatic and non-enzymatic antioxidants,
including decrease in GSH, are reported in blood or brain of
some patients suffering from schizophrenia, BP or ASD.
Polymorphisms and copy number variations in genes related to
the GSH synthesis and metabolism are associated with
schizophrenia.50,69–75 Moreover, subjects with high-risk genotype
of the key GSH synthesizing gene GCLC presents low prefrontal
GSH levels.76 Mice with a functional deletion of the modulatory
subunit (GCLM) of the key GSH synthesizing enzyme constitute a
model of redox dysregulation with 60–70% decreased brain GSH
levels.47 These mice display neurochemical, and behavioral
anomalies relevant to schizophrenia and BP.77 Relative to their
control WT, young adult GCLM KO mice showed oxidative stress
(+53% 8-oxo-dG immunolabeling intensity), but no PVI/PNN
deficit. However, an early-life GBR-induced oxidative insult (from
days 10 to 20) led to a further increase of 8-oxo-dG immunolabel-
ing (+127% relative to WT mice), along with a decreased number
of PV-IR cells (−44%) and PV-IR cells surrounded by PNN (−52%) in
young adult GCLM KO mice, compared with WT controls. In
osteogenic disorder Shionogi rats lacking the capacity for ascorbic
acid synthesis, a transient GSH depletion induced pharmacologi-
cally with the specific inhibitor of GSH synthesis (BSO) during the
postnatal period of PVI maturation (P5-P16) also sufficed to
decrease the number of PV-IR cells (−13% relative to control rats)
and to increase 8-oxo-dG immunolabeling (+77%) in the ACC of
adult animals. Finally, a genetically induced blockade of GSH
synthesis restricted to PVIs (PV:GCLC KO mice40) also led to
reduced number of PV-IR cells (−26% relative to their control mice)
and PV-IR cells surrounded by WFA-labeled PNN (−36%) in the
ACC. Together, this demonstrates that a GSH deficiency confers a
vulnerability to oxidative stress-induced PVI impairment.

Environmental 'two-hit' mouse model
Prenatal infection and exposure to traumatizing experiences
during peripuberty have been associated with increased risk for
neuropsychiatric disorders. Prenatal infection and psychological
trauma in peripubertal life can also synergistically increase the risk
for schizophrenia.78 Combining a sub-threshold prenatal immune

challenge (at embryonic day E9) using the viral mimetic, poly(I:C)
with sub-chronic unpredictable stress during pubescence (post-
natal days 30–40) causes synergistic effects on adult mouse
behaviors, neurochemistry and number of hippocampal PV-IR
cells.49,79 Here, it was found that the two environmental hits
synergistically affected the oxidative stress (+190%), the number
of PV-IR cells (−38%) and PV-IR cells enwrapped with WFA-labeled
PNN (−63%) in the ACC of adult poly(I:C)/stressed relative to their
naive control mice.

NVHL rat model
Developmental manipulations and insults inducing adult deficits in
rodents provide an opportunity to explore mechanisms involved in
a delayed emergence of anomalies driven by developmental
alterations. A widely used tool to assess developmental trajectories
of adult-onset prefrontal cortical deficit is the NVHL. This procedure
yields adult animals with PFC-dependent neurochemical, electro-
physiological and behavioral anomalies related to schizophrenia
phenotypes, all of which emerge during adolescence.80 In young
adult NVHL rats, there was a strong increase of 8-oxo-dG
immunolabeling intensity (+450% relative to control sham rats)
accompanied by a decrease in number of PV-IR cells (−43%) and
PV-IR cells surrounded by PNN (−55%) in the ACC.41

MAM developmental rat model
Dopamine dysfunction has been regarded as the primary factor
underlying psychosis. Administration in rats of the DNA-alkylating
agent MAM at gestational day 17 affects hippocampal-midbrain-
striatal circuits, causing an elevated subcortical dopamine function
through changes in descending outputs from the medial temporal
lobe.81 The MAM rat model incorporates the disruption of brain
development, believed to be fundamental to psychotic disorders.
Prenatal administration of MAM recapitulates a neurodevelop-
mental disruption leading to histological, neurophysiological, and
behavioral deficits analogous to schizophrenia.81 This includes
reduction of PV-IR cells within the medial prefrontal cortex and
ventral hippocampus.48 Our analysis of the ACC revealed an
increase of 8-oxo-dG immunolabeling intensity (+164%) in MAM
relative to their control rats. In parallel, the number of PV-IR cells
and PV-IR cells surrounded by WFA-labeled PNN were decreased
(−44 and − 49%, respectively).

IS OXIDATIVE STRESS CAUSAL TO PVI IMPAIRMENTS?
Overall, our analysis remarkably demonstrates that PVI deficit in
the ACC was in all cases accompanied by oxidative stress. By
contrast, significant oxidative stress and PVI deficit were absent in
the 1q21 deletion model and GRIN2A KO mice. Young adult GCLM
KO mice showed no PVI/PNN deficit despite small signs of
oxidative stress. However, both GRIN2A and GCLM KO mice were
susceptible to early postnatal oxidative challenge induced by GBR
(from P10 to P20) as evidenced by a long-lasting increase in
oxidative stress and PVI/PNN deficits. Considering all investigated
animal models, increased oxidative stress correlated negatively
with the relative decreased number of PV-IR cells or PV-IR cells
with PNN (Figure 1b), suggesting a direct link between oxidative
stress and PVI anomalies. Furthermore, there was a strong
relationship between the decreases in number of PV-IR cells and
number of PV-IR cells with PNN (Figure 1c), indicating that both
reduction of PV immunoreactivity and weakening of PNN are
coupled, thus reinforcing their relation to oxidative stress. The
association between oxidative stress and PVI deficit in the medial
prefrontal cortex has been also observed in other models not
reported here: rodents treated with NMDAR antagonists,37,82

isolated mice bearing a deletion of the NMDAR subunit NR1 in
forebrain interneurons,83 isolated rats,23 socially defeated rats,84

mutant DISC1 mice85,86 (Figure 2). Although we have focused on

Oxidative stress in PVI as mechanism in SZ models
P Steullet et al

939

Molecular Psychiatry (2017), 936 – 943



prefrontal cortex, several studies have shown that PVIs of other
brain regions can be also susceptible to redox dysregulation/
oxidative stress.37,47,84,87 The nature of the genetic vulnerabilities
and the timing of environmental insults during development
might affect however differentially PVI networks across brain
regions involved in cognitive, affective and social dimensions
leading to heterogeneous clinical phenotypes.

A causal effect of oxidative stress on PVI integrity or phenotype
is strongly supported by the fact that oxidative stress precedes PVI
deficit in the hippocampus47 and by the protective effect of
antioxidants on PVIs in several models (GBR-treated GCLM mice,39

ketamine-treated mice,37 isolated rat,23 isolated mice with
deletion of NR1 in forebrain interneurons,83 social defeated rats
and84 NVHL rats41). Many early-life stressors relevant to environ-
mental risk factors for schizophrenia (maternal separation, hypoxia
and early-life iron deficiency) also lead to PVI deficit in medial
prefrontal cortex and/or hippocampus of rodents19–21,24 (Figure 2).
Although the link between PVI deficit and oxidative stress
has not been investigated in the above studies, it is a reaso-
nable hypothesis that oxidative stress contributes to prefrontal
and hippocampal PVI deficit induced by these environ-
mental insults known to generate oxidative stress31,88 and/or
neuroinflammation.19,98,99

As fast-spiking neurons, PVIs contain many mitochondria to meet
their high-energy demand.100 Therefore, they are vulnerable to
weakened antioxidant defenses,39,40,87 excessive production of
ROS37 and diminished mitochondrial support.92,93 However, PVIs
are also particularly susceptible to redox dysregulation/oxidative
stress during their postnatal maturation when their fast-spiking
properties are not yet fully developed101 and the formation of the
protective PNN enwrapping them are not yet complete.16 Based on
the fact that a peripubertal antioxidant treatment can abolish
oxidative stress and rescue PVI/PNN deficit in the NVHL rat model,41

we propose a hypothesis in which redox dysregulation/oxidative
stress halts normal PVI maturation in the prefrontal cortex without
causing their death,82 possibly via epigenetic mechanisms.102,103

The deleterious effect of oxidative stress on PNN integrity16 may be
also central to the failure of PV circuits to properly mature as PNN is
crucial for PVI maturation and synapse formation. As consequence,
oxidative stress might impair the PVI-associated network plasticity,
that is, activity-dependent regulation of the number of excitatory
and inhibitory synapses on PVIs.103,104 This would be consistent
with the observation of an immature-like transcriptome in PVIs of
schizophrenia and autism patients.17

CONVERGENCE ONTO OXIDATIVE STRESS: INTERPLAY
BETWEEN GLUTAMATERGIC, IMMUNE AND REDOX SYSTEMS
It is remarkable that oxidative stress is observed in so many
models of genetic and environmental risks for psychiatric diseases.
It is unlikely however that the mechanisms causing oxidative
stress are similar in all models. Oxidative stress could be a
consequence of perturbations within a number of systems known
to be disrupted in these disorders, that is, glutamatergic,
neuroimmune, dopaminergic, antioxidant and mitochondrial
systems.105 Thus, NMDAR hypofunction causes a susceptibility to
oxidative stress. This could be due to the neuronal production of
IL-6 mediating NADPH oxidase activation106 and/or the weakening
of the antioxidant capacities.37,64,83,90 This might explain the
effects observed in SRR and GRIN2A KO mice (Figure 2).
Furthermore, phencyclidine administration results in hypermethy-
lation of CpG sites in the promoter of PV gene which includes
binding sites for Nrf2, the master regulator of antioxidant
defense.102 This may also contribute to oxidative damage and
PV deficits. Concerning the environmental 'two-hit' model, we
propose that a sub-threshold immune challenge primes microglia
to be activated at pre-pubertal stress49 resulting in ROS
production and PVI/PNN deficits. Excess dopamine also generates
ROS, which may not be efficiently neutralized when the
antioxidant defenses are suboptimal as in GCLM and GRIN2A KO
mice. Thus, a central role for oxidative stress is compatible with
glutamatergic and dopaminergic dysregulations, as well with
neuroinflammatory processes. The mechanisms by which oxida-
tive stress and PVI deficits occur in several models that we
analyzed (copy number variations mouse models, FMR1 KO mice,

Figure 2. A common mechanism of oxidative stress-induced
PVI/PNN deficit in animals modeling genetic and/or environmental
risks, and experimental disruptions of brain development relevant to
schizophrenia and/or autism. Bold boxes and text represent animal
models where PVI deficit has been linked to redox dysregulation/
oxidative stress in the present study or in published works: 22q11:
mice with a 22q11.2 deletion (LgDel/+); 15q13.3: mice with a 15q13.3
deletion (Df[h15q13]/+); 1q21: mice with a 1q21 deletion (Df[h1q21]/
+), SRR: serine racemace KO mice; FMR1: FMR1 KO mice; PV-GCLC:
mice with conditional KO of GCLC in PVIs; GRIN2A: GRIN2A KO mice;
GCLM: GCLM KO mice; GCLM+hyperdopaminergia: GCLM KO mice
treated with dopamine uptake inhibitor GBR12909 during postnatal
development (P10-20); GRIN2A+hyperdopaminergia: GRIN2A KO mice
treated with GBR12909 during postnatal development (P10-20); ODS
+transient GSH deficit: osteogenic disorder Shionogi rats treated with
the specific inhibitor of GSH synthesis (buthionine sulphoximine)
during postnatal development (P5-16); NVHL: rats with a neonatal
ventral hippocampal lesion; MAM: rats treated prenatally (GD17) with
methylazoxymethanol acetate; Poly(I:C)+stress: mice with a sub-
threshold prenatal immune challenge (on GD9) with poly(I:C)
followed by chronic stress at preadolescence (P30-40); GRIN1+social
isolation: isolated mice with conditional GRIN1 KO in forebrain
interneurons;83 rats socially isolated;23 social defeated rats;84 ketamine
administration;37 DISC1 mutant mice; and85,86 selenoprotein P (SEPP1)
KO mice87). Boxes with normal text represent animal models for
which PVI deficit is very likely linked to redox dysregulation/oxidative
stress. Indeed, PVI deficit and oxidative stress are reported in separate
studies for the following models: prenatal stress;24,31 maternal
separation in rats;19,31 early-life iron deficiency;20,88 hypoxia;21,31

DTNB1 mutant mice; and25,89 PCP.90,91 Mice with COX10 KO in PVIs
(PV-COX10)92 and PGC1-α KO mice83,93 are models of mitochondria
impairment which likely display redox dysregulation/oxidative stress.
Dotted boxes, animal models with PVI deficit for which redox
dysregulation/oxidative stress may be expected based on literature
data: CHRNA7 KO mice;94,95 mice with disrupted NRG1/ErbB4
signaling. KO, knockout; NVHL, neonatal ventral hippocampal lesion;
PCP, postnatal treatment with phencyclidine; PNN, perineuronal net;
PV, parvalbumin; PV-IR, parvalbumin-immunoreactive; PVI, parvalbu-
min inhibitory interneuron.26,96,97
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MAM and NVHL rat models) remain, however elusive, but may
involve dysregulation within the systems mentioned above.
Interestingly, the 22q11 locus contains the gene encoding COMT
(a dopamine degrading enzyme) and six genes for proteins
expressed in mitochondria,107 among which at least two (PRODH,
and TRXR2) are implicated in the defense against oxidative
stress.108 Likewise, MAM is known to decrease brain GSH levels.109

Our hypothesis that abnormal PVI-associated networks in
schizophrenia and ASD has a neurodevelopmental origin and
implicates redox dysregulation/oxidative stress should be how-
ever further tested in other models. For instance, mice with a
deletion of α-7-nAChR, whose expression and function are
affected in schizophrenia,110 display reduced expression of
parvalbumin, GAD67, and NMDAR in PVIs.94 In this model,
oxidative stress might also be the mechanism responsible for
the PVI deficit, as activation of α-7-nAChR inhibits NF-kB-
dependent pathways and mediates Nrf2-induced antioxidant
responses, supporting an anti-inflammatory and neuroprotection
role for this nicotinic receptor.95 Interestingly, the gene CHRNA7
coding for this receptor is located within the 15q13.3 loci and may
contribute to the neuropsychiatric phenotype caused by a
microdeletion of this chromosomal region.111

Likewise, impaired PVIs in mutant mice with reduced dysbindin-
1 [ref. 25] could result from oxidative stress as dysbindin interacts
with the antioxidant enzymes peroxiredoxins 1 and 2.89 The
neuregulin-1/ErbB4-mediated pathway, whose involvement in the
etiology of schizophrenia is strongly suspected, is also required for
migration and appropriate wiring of PVIs in the postnatal cortex.26

Postnatal conditional KO of ERBB4 on PVIs leads to reduced
glutamatergic drive and tends to diminish NMDAR function in
these interneurons.96 Involvement of redox dysregulation/oxida-
tive stress in the PVI anomalies mediated by the disruption of
neuregulin-1/ErbB4 signaling remains speculative, although this
cascade has been implicated in neuroprotection against oxidative
stress112 and in stimulation of antioxidant defense.97

In contrast, aberrant migration of interneuron precursors and
perturbed positioning of PVIs within the cortical circuits due to
genetic and/or prenatal environmental factors may be mediated
by mechanisms independent of oxidative stress. Manipulations of
other genes associated with intellectual disability and ASD (for
example, MECP2, NLGN3, Shank3; CNTNAP2) reveal diverse
abnormalities within cortical GABAergic circuits.27,28,113–115 Both
increase and decrease in number of PV-IR cells are reported.
Moreover, Shank1 and Shank3B KO mice show a reduced number
of PV-IR cells but no deficit in WFA-labeled PNN in the
somatosensory cortex.27 In contrast to the schizophrenia models,
this suggests no convergent mechanism responsible for PVI
anomalies in ASD relevant models.

CONCLUSION
Redox dysregulation/oxidative stress is a common pathological
mechanism affecting prefrontal PVIs during postnatal maturation in
a strikingly diversified number of models relevant to schizophrenia
and some forms of ASD. Although our analysis focused on oxidative
stress-induced PVI deficit in the prefrontal cortex, this deficit may
also hold for other brain regions like the hippocampus, as shown in
some models of schizophrenia (for example, GCLM KO, ketamine,
MAM, poly(I:C) and social defeat.22,37,47,48,84 This confluence
suggests that oxidative stress could be the main agent responsible
for PVI-associated network anomalies particularly in schizophrenia.
The fact that peri-adolescent administration of antioxidants can
restore or protect PVI integrity in some animal models provides a
strong support that early antioxidant-based treatments might be
beneficial to PVI-associated networks. Knowing the role of PVIs in
cognition and social behavior, this could improve cognitive
processing and ameliorate general functioning of patients. Such
preventive intervention will require however the identification of

reliable biomarkers for brain oxidative stress/redox dysregulation
and PVI function in high-risk individuals.
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