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Abstract: The use of biocatalysts for the production of both consumer goods and building 

blocks for chemical synthesis is consistently gaining relevance. A significant contribution 

for recent advances towards further implementation of enzymes and whole cells is related 

to the developments in miniature reactor technology and insights into flow behavior. Due 

to the high level of parallelization and reduced requirements of chemicals, intensive 

screening of biocatalysts and process variables has become more feasible and 

reproducibility of the bioconversion processes has been substantially improved. The 

present work aims to provide an overview of the applications of miniaturized reactors in 

bioconversion processes, considering multi-well plates and microfluidic devices, update 

information on the engineering characterization of the hardware used, and present 

perspective developments in this area of research. 

Keywords: multi-well plates; microreactors; enzyme immobilization; flow reactors; fluidic 

properties 

 

1. Introduction 

Biocatalysis relies on the catalytic ability of enzymes to promote the chemical conversion of educts 

into given products. Biocatalysis hence differs from fermentation processes, where de novo synthesis 

of molecules is made from carbon and energy sources [1]. The wide plethora of biological agents used 

as sources for biocatalysts, combined with the use of different environments as bioconversion media 

and suitable engineering approaches for the characterization of the bioconversion process, allowed for 

an undeniable success when the implementation of biocatatytic systems at laboratory scale is 

considered. Enzyme technology is applied for the production of bulk and speciality chemicals; drugs 
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and intermediates; goods for food and feed industry; soaps, cleaning and personal care products; 

textile, oil, wastewater and waste processing, occasionally aiming at incorporation in sustainable 

energy production processes; production of plastics and similar synthetics; biosensors. Enzyme 

technology is furthermore used in several medical, materials and bioremediation applications [2–5]. 

Despite of a comparatively lower start, the implementation of bioconversion processes at an industrial 

scale, meaning products commercialized at a scale over 100 kg on an annual basis, is almost doubling 

every decade. A recent study established the number of bioconversion processes at industrial scale at 

about 150 [1]. Alongside, the market for enzymes has increased in an almost exponential manner from 

the 1960s to 2000. Some shots in the arm can account for such a development pattern. Some of those 

significant milestones include the use of detergent proteases, the development of enzymatic methods 

for starch processing and the application of enzymes in synthesis. Alongside came also new 

approaches for the improvement or identification of more efficient biocatalysts. These include the 

introduction of recombinant DNA technology as well as new methodologies for assessing biodiversity 

(viz. metagenome approach, sequence-based discovery). The latter overcame the limitation of 

traditional screening methods, ascribed to the low number of microorganisms that can be cultured from 

those in a typical soil sample [6–8]. The introduction of recombinant DNA technology, and later, of 

enzyme engineering, through directed and particularly through random mutagenesis, namely using 

directed evolution, has actually strongly contributed to a revitalization of biocatalysis in the last 25 

years [7,9–13]. This resurgence was particularly welcome, since it allowed both to further expand the 

potential of biocatalysis and to contribute for the rebuttal of some criticisms of biocatalysis, which 

were voiced in roughly the same time frame. Some key papers were also published, that suitably 

addressed such criticisms [11,14–16]. A common remark from these papers is the need to avoid 

generalizations. 

Table 1. Advantages, criticisms and comments on biocatalysis. 

Advantages Criticisms Comments 
High selectivity of 
enzymes 
(substrate, stereo-, 
region- and functional 
group selectivity 

Narrow range 
of substrates 
for a given 
enzyme 

The remarkable chemical selectivity of enzymes favors production of single 
stereoisomers, minimizes side reactions, eases downstream and reduces 
pollution.  
Although some enzymes seem limited to a single substrate (viz catalase) many 
others, namely hydrolases, act on a wide range of substrates 

Operation under mild 
conditions 

Enzymes are 
limited to 
aqueous 
environments 

The ability to act as catalyst at atmospheric pressure and relatively low 
temperatures (as compared to chemical catalysts) decreases production costs 
Several enzymes are active in non-aqueous environments, and occasionally 
present novel activities under such media. 

Environmentally 
friendly 

Enzymes only 
accept low 
substrate 
loadings. 
 
 

As proteins, enzyme catalysts are fully biodegradable, and present no relevant 
hazard for humans (but for occasional allergic reactions), unlike most chemical 
catalysts. Biocatalysis has low energy demands, hence minimizing emissions 
of greenhouse gases  
Although in nature enzymes are typically faced with low titers, they have been 
shown to perform efficiently under high substrate concentrations  

High catalytic 
efficiency 

Enzymes are 
too expensive 

High turn-over numbers, 
If the cost issue is addressed on a price per kg basis of an enzyme and a 
transition metal this remark is not obvious, far from it. Yet, and although 
enzymes are major players in some area, such as detergents, where low cost is 
a major asset, their use in the production of plenty of commodities as well as in 
the energy sector (viz. biodiesel) is far from the choice in industry 
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Table 1. Cont. 

Enzymes can be 
modified to enhance 
activity, selectivity, 
stability 

High 
sensitivity of 
enzymes and 
operation in a 
limited range 
of pH and 
temperature 

Although low stability of enzymes is often claimed, many enzymes display 
high operational stability. Enzyme immobilization has partly contributed to 
this, as well as to widen the mode of operation, albeit at an increase in 
production costs. Adequate processing of the exhausted immobilized 
biocatalyst may bring along further costs 

 

One of the criticisms of biocatalytic systems that is still put forward is that they are relatively slow 

to implement [2,17]. The rapid and consistent emergence of microscale processing techniques that 

have been successfully implemented recently, based in the use of microwell plates and/or 

miniature/micro- bioreactors, are contributing much to speed up the development of bioconversion 

systems. Many of these developments take place alongside with research efforts within the same field 

focused in fermentation and cell culture systems [18–23]. The high level of parallelization achieved in 

such devices allows for the high throughput required in the different stages of development of a 

bioconversion process. These may include the biocatalyst screening step; the generation of libraries of 

recombinant biocatalysts with improved activity/selectivity/stability; the selection of suitable 

operational conditions, both for biocatalyst production or for performing the biocatalytic step, 

including strategies for enzyme immobilization [24–34]. Within the wide array of configurations and 

working volumes available, the present work will focus on miniature (less than 10 mL) bioreactors, 

multiwall plates and microchannel reactors. Alongside with the high number of variables and 

parameters that can be assessed simultaneously, miniaturization also allows for significant reductions 

in manpower, as well as in the amounts of reagents required and in waste production, with significant 

contributions to cost reduction in process development and well as making the process  

greener [35–37]. Miniaturization down to the microfluidic environment presents further advantages, 

namely a more rapid heat exchange and mass transfer, as compared to conventional, larger scale 

systems. Within the scope of process intensification, microscale processing techniques have also been 

developed that are dedicated to the downstream step [38], namely involving centrifugation [39], 

chromatography [40], liquid-liquid extraction [41,42] or microfiltration [43].  

2. Miniature Systems  

2.1. Multi-well Plates as Bioreactors 

Multi-well plates have been intensively used for high throughput screening of enzyme activity, in 

assays based in the production (depletion) of a chromogenic or fluorogenic product (substrate), 

allowing for the simultaneous evaluation of up to 106 different variants [29,44]. Screening can be 

performed in liquid media or in solid media [45]. Within this scope, multi-well plate based screening 

has been mostly used for profiling hydrolases, and, to a minor extent, proteases [46]. Multi-well plates 

have also been used to evaluate the kinetics of biotransformation systems [24,47]. Dynamic pH 

monitoring as strategy for the determination of kinetic parameters has also been performed, using as 

model system the hydrolysis of 4-nitrophenol catalyzed by penicillin acylase, and based in the color 

change of a pH indicator [48]. A similar approach was developed recently for assessing fat quality in 
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foods [49]. The test relied on the influence of fat composition in lipase activity and was monitored by 

absorbance shift. Recently, Rachinskiy and co-workers developed an experimental set-up based in 

multi-well plates that allows for the high throughput of enzyme performance and stability [50]. 

Enzymes are submitted to extreme conditions for short time periods in order to anticipate their long 

term stability under milder conditions. The methodology combines the high level of parallelization 

provided by multi-well plates, thorough temperature control, on line techniques to monitor shifts of 

given parameters (viz. pH) along the time course of the reaction and software for processing the  

raw data.  

The commercialization of multi-well plates with pH (or dissolved oxygen) sensitive sensor spots 

embedded in each well, coupled to on-line data acquisition (www.presens.de), favors the 

implementation of this approach for evaluation of kinetic data, although limited to bioconversion 

systems where pH (oxygen) changes are involved (Table 2). 

Table 2. Characterization of bioconversion systems using multi-well plates. 

Microreactor Bioconversion system Comments Ref. 
96-well plate Hydrolysis of 4-nitrophenyl 

acetate to 4-nitrophenol and 
acetic acid catalyzed by free 
penicillin acylase 

Evaluation of kinetic parameters. Design of 
experiments based on the color change of pH 
indicator along the time course of the reaction 

[48] 

24-round and 96-
round and 96-
square deep well 
plates 

Baeyer-Villiger oxidation of 
bicyclo[3.2.0]hept-2en-6-one to (-
)-(1S,5R)-2-oxabicyclo[3.3.0]oct-
6-ene-3-one and (-)-(1S,5R)-3-
oxabicyclo[3.3.0]oct-6-ene-2-one 
catalyzed by free whole cells of 
Escherichia coli with 
cyclohexanone monooxygenase 
activity 

Evaluation of operational parameters (viz. well shape, 
shaking frequency, biocatalyst concentration, filling 
volume) in the outcome of the bioconversion. 
Glycerol was used as source of reducing power for 
regeneration of the NADP+/NADPH system. 
Validation of the “sacrificial well” approach. 
Comparison of kinetics in multi-well plate and stirred 
reactor. Quantification of substrate/products by GC  

[24] 

24-square well 
plates 

Sitosterol side-chain cleavage to 
4-androstene-3,17-dione (AD) 
using whole resting cells of 
Mycobacterium sp. NRRL B-
3805 

Establishes the feasibility of microtiter plates as 
platforms for the characterization of multi-enzyme 
bioconversion systems and as tools for solvent 
selection in complex bioconversion systems. 
Highlights some key operational parameters that have 
to be considered (viz. evaporation, chemical 
interaction of solvent and plate material)  

[30,51] 

24-square and 96-
round well plates 

Production of L-erythrulose from 
lithium hydroxypyruvate and 
glycolaldehyde using E. coli 
lysates with transketolase activity 

Evaluation of the statistical significance of initial 
reaction rate data at multi-well scale. Effect of mixing 
in the bioconversion pattern. Further validation of the 
“sacrificial well” approach. Quantification of 
substrate/products by HPLC  

[47] 

96-round well 
plates 

Ester hydrolysis catalyzed by 
esterase 

Establishes a multi-well platform for the fast 
characterization of biocatalysts. Relies on 
fluorescence techniques for on-line monitoring of the 
product formed. A mathematical model was 
developed, which allows for relating the pH-shift that 
takes place during the reaction, and the concentration 
of the resulting product. 

[50] 

96-well plates Alcoholysis of p-nitrophenyl 
acetate with 1-propanol promoted 
by a esterase in anhydrous 
environment 

Screening for suitable methodologies for enzyme 
immobilization in multi-well plates 

[52] 
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To be representative such studies require an understanding of the impact in mass transfer 

phenomena and flow dynamics due to operation on a microliter scale. In the particular case of  

multi-well plates, mixing is typically promoted by shaking rather than by stirring. Some exceptions to 

this pattern are the use of micro stir bars in the screening of activity for the whole cell reduction of  

6-bromo--tetralone to 6-bromo--tetralol within yeast and rhodococci libraries [53] and in the 

assessment of mixing conditions in the production of L-erythrulose promoted by a transketolase [47]; 

or gas sparging through porous membranes inserted into the base of each well, used for microbial cell 

growth [54]. The shape of the well (viz. round well vs square well), along with the static surface area to 

volume ratio and shaking intensity has been shown to affect biocatalyst activity in bioconversion 

systems requiring oxygen, hence gas-liquid mass transfer, such as the Baeyer-Villiger oxidation of 

bicyclo[3.2.0]hept-2-en-6-one [24]. Such behavior has been ascribed to the pattern of oxygen transfer. 

Given the relevance of gas-liquid transfer in oxygen dependent reactions, particular care has been 

given to the identification of operational condition that favor oxygen transfer into the liquid phase, 

hence preventing operating in biased conditions due to oxygen limitations. This is mostly due to: (a) 

enhanced shaking intensity within given boundaries, a lower boundary where oxygen transfer rate is 

distinguishable from static cultures, and an upper boundary, corresponding to a kinetic limited regime 

or to liquid spillage out of the vessel; (b) increased shaking amplitude; (c) a high static surface to 

volume ratio where it is assumed that oxygen transfer to the liquid phase mostly occurs at the surface 

of the liquid rather than by entrained bubbles; (d) improved mixing in square shaped wells, which 

emulate baffles [24,55–59]. Operation under suitable gas-liquid volumetric mass transfer coefficient, 

kLa, matching those observed in conventional laboratory (or higher)-scale bioreactor has been shown 

feasible in miniaturized systems, either based in given multi-well plates and in miniature bioreactors, 

and this parameter used as criterion for scale-up of fermentation systems [59,60–63]. When multi-well 

plates are used, a higher ratio of the gas–liquid exchange area to the volume of the bulk liquid can be 

made available. Miniaturization gives relevance to physical properties such as surface tension, which 

counters gravitational forces and bubbling, that are further enhanced alongside with size reduction. 

This pattern is therefore relatively unnoticed in 24-well plates, and increasingly noticeable in 48-, 96- 

and 384-well plates [55,64,65]. Given those two physical characteristics, a reasonable oxygen transfer 

rate can be obtained even under a poor degree of mixing of the bulk liquid in multiwall plates [65]. 

Optical methods for measuring surface tension of liquids contained in multiwall plates have hence 

been developed, in order to adequately cope with the high throughput nature of the process [66]. 

When gas-liquid transfer is not needed, the degree of mixing required is no longer related to a given 

demand for mass transfer between the two phases. Mixing takes place at different levels, macro-, 

meso- and micro-mixing. Macro-mixing relates to mixing at a macroscopic scale, hence at the scale of 

vessel, and leads to large-scale distribution patterns, such as residence-time distribution and 

concentration gradients. Meso-mixing relates to the blending of feed columns of fluid with the bulk 

fluid, and corresponds to the process where the reactant incoming into the reactor moves away from 

the plume and is reduced to turbulent eddies. Unlike macro-mixing, that relates to the whole lifetime of 

an element of fluid in the vessel, meso-mixing relates only to the early moments of an element of fluid 

that has entered the reactor. Micro-mixing promote contact of fluids at the microscopic or molecular 

scales. Micro-mixing comprehends a viscous-convective alteration of elements of fluid followed by 

diffusion [67,68]. In a relative timescale, micro-mixing and reaction times are comparable [69]. With 
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miniaturization, micro-mixing tend to be predominant. Furthermore, and alongside with the decrease 

in linear dimensions, shorter mixing times are needed, hence diffusion limitation are minimized. 

Although this pattern is typical of microfluidic devices [20,85], the pattern is already observed at 

multi-well plate level. Thus, while assessing the relevance of mass transfer in miniaturized system, 

using as model system the production of L-erythrulose catalysed by transketolase, Matosevic and co-

workers noticed that only when the 24-well reaction plate was vigorously mixed, the initial reaction 

rate statistically matched data obtained from non-shaking 96-well plate [47]. Multiwell plates are 

typically made of polypropylene or polystyrene, with the later being preferred due to the lack of 

leakage of toxic substances [56]. 

2.2. Microfluidic Systems 

Microfluidic reactors provide another format for miniaturized bioconversion systems. Unlike micro-

well plates, microfluidic reactors allow for processing small volumes (10−9 to 10−12 m3) of fluid within 

channels, where at least one dimension is smaller than 1 mm (typically tens to hundreds of 

micrometers), and are compatible with continuous flow mode of operation. Microfluidic devices 

themselves are concomitantly of small dimensions, from some mm to micrometers [20,70,73,85]. 

Microfluidic reactors consist of a network of miniaturized channels, embedded in a flat surface, 

comonly called “chip” [20,71,72] (Figure 1). Along with this chip type of microreactors, simpler 

microcapillary devices are also extensively used, where the microchannel is the reaction space, and 

thus no control of microfluidics is required. On the other hand, they do not allow for the integration of 

different processes into one reaction device, unlike chip microreactors [73]. 

Figure 1. Scheme of a typical microfuidic device, with a microchannel and 2-ways inlet 

and outlet. Microreactors are commercially available from Chemtrix, CPC–Cellular 

Process Chemistry Systems GmbH Ehrfeld Mikrotechnik, Micronit/Future Chemistry, 

Microinnova, Mikroglas, Syrris, among others. 

 
 

Scaling-up a bioconversion process for conventional bioreactors encompasses the use of a suitable 

engineering criterion, that is to be maintained constant throughout scales, such as the volumetric 

oxygen transfer coefficient (kLa), volumetric power consumption, mixing time or impeller tip speed, 

Microchannel 

2-way inlet 

2-way outlet 
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when microreactors are considered the operational conditions can be scaled by simply operating 

multiple systems in parallel, a process termed numbering-up or scaling-out. This feature is particularly 

attractive since it takes away the technical and financial risks associated with scaling a given process 

in traditional manner. 

2.2.1. Materials 

A wide array of materials has been used to build microfluidic reactors, among them polymers, glass, 

metals, and ceramics. Polymer-based devices typically present low cost and allow for the easy 

integration of flow control systems (viz. pneumatic valves, sensors), but are often sensitive to organic 

solvents [74]. Poly(dimethylsiloxane), or PDMS, a soft, optically transparent elastomer, is a typical 

choice for building microreactors [75]. This low-cost polymer is stable in aqueous environment and 

due to its low interfacial free energy there is a low probability of other polymers or fluids reacting with 

or attaching to its surface [75–77]. PDMS is however prone to swell or even dissolve in the presence 

of some organic solvents, and has a relatively limited temperature stability, although the later is 

compatible with common biological applications. Besides, its elastic properties lead to some 

restrictions in the design, since a high aspect ratio of the microchannels may result in pairing, where 

parallel structures attach to each other, whereas low aspect ratio can result in sagging, hence making 

the recommended aspect ratio for PDMS structures to be within 0.2 and 2 [76,78,79]. Other polymers 

commonly used are SU-8, an epoxy photosensitive epoxy resin that allows for adequate aspect ratio 

structures to be obtained [74,80], and silicone. The later polymer is actually also widely used for 

microreactor building. Not only fabrication methods that are well established for semi-conductor chip 

production are easily amenable, but also silicone has high thermal conductivity, allowing for excellent 

heat transfer capability. Furthermore, when oxidized, silicone becomes chemically inert towards most 

chemicals and solvents [71,74]. Glass is another widely used material for building microfluidic 

reactors, despite its rigid, brittle nature. Glass is however chemically inert to most reagents and 

solvents, and since it is transparent allows for visual inspection of events inside the reactor. Besides 

methods for fabrication, such as photolithography, are well established [70,71,78]. Stainless steel is the 

preferred metal for building microreactors. A well-established material, resistant to organic solvents 

and a wide array of chemicals, enables operation under pressure and high temperatures. Typically 

these reactors are larger than those made from polymers or glass, and are mostly used for pilot-plant or 

production scale, although they are also available for academic research purposes [70,71]. Methods for 

fabrication of microfluidic chip reactors include laser ablation, micro-injection molding, surface 

treatment and photolithography, perhaps the most popular. A detailed description of the different 

methodologies can be found in [70]. 

2.2.2. Flow in Microfluidic Devices 

Continuous flow is by large the preferred mode of operation in large-scale processing in the 

chemical industry [81], so the use of microfluidic devices brings high-throughput, lab-scale process 

optimization closer to the large-scale processes [82–84]. Flow in microfluidic reactors can be single 

phase or multiphase, where in the later case two or more phases are separately added to the reactor, 

typically in co-current mode. Most common junctions for multiphase flow are T, cross, interdigitated 
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multilamellar mixer,  and Y junctions, the latter being widely used in two-phase bioconversion 

systems [70,85] (Figure 2).  

Figure 2. Examples of junctions in microfluidic devices: (a) Y junction; (b) T junction  

(c)  junction. Arrows suggest direction of flow. 

 

The flow dynamics and mass transfer in a microfluidic environment, however, differs from larger 

systems. Given the small dimensions, the flow regime is typically laminar, interfacial forces are 

dominant over gravitational forces and since turbulence is not present due to the high viscous forces, 

mixing relies on molecular diffusion [85,86]. The laminar flow favors the control and modeling of the 

reaction, and provide high surface area to volume ratio (>200) and interfacial areas, a feature 

particularly advantageous in two-liquid extractive bioconversion systems [20,73,87]. In such 

environment Reynolds and Bond numbers are usually small and the Peclét number is high [88,89]. The 

Reynolds number, Re, represents the ratio inertial to viscous force (1): 

(1)                         
Lu 

  Re


  

where u is the linear velocity of the fluid, L is the hydraulic diameter of the microchannel and  is the 

kinematic viscosity. The Bond number, Bo, expresses the ratio of gravitational to surface tension 

forces (2): 

(2)                     
L g 

  Bo
2




  

where  and are the density difference and the interfacial tension between two phases, respectively, 

and g is the gravitational acceleration. The Peclét number, Pe, expresses the ratio of forced convection 

to diffusion (3): 

(3)                              
D

Lu 
  Pe   

where D is the diffusion coefficient. Also relevant in the characterization of multiphase flow is the 

Weber number, We, which provides the ratio between inertial and surface tension forces, (4), and is 

useful in the analysis of thin film flows and formation of droplets and bubbles. Despite of the small 

paths involved, We in the range of some hundreds can be obtained in microfluidic devices [70] 

(4)                         
u L 

  We
2




  

a b c 
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Finally, the capillary number, Ca, (5), is also a relevant dimensionless parameter in the analysis of 

multiphase flow. It relates viscous (elongation) to surface tension forces acting across the interface: 

(5)                               
u 

  Ca



  

where  is the viscosity of the fluid. Tipically much lower than 1 [89], Ca allows to distinguish two-

phase flow patterns and the mechanisms of break-up in T-junctions [90]. 

A common approach to improve diffusion-induced mixing is to use long and narrow microchannels 

(high aspect ratio channels) [86,91]. When channel dimensions are of tens of microns, the diffusion 

path is small enough for the mixture of different fluid streams to be complete in a few seconds, a time 

span that is considerably enlarged, to tens of seconds, when the channel dimensions are in the 

hundreds of microns [92]. Micro-mixers have hence been developed as to increase the interfacial 

surface and therefore decrease significantly the diffusion length [73,92]. Micro-mixers can be of 

passive or active nature. In the former case, mixing is promoted by diffusion or chaotic advection, 

whereas in the later, the flow is disturbed by the action of an external source. Passive mixing can be 

obtained by lamination, where the inlet streams are divided into several substreams, and then 

combined together in a single stream; or by chaotic advection, induced by special geometries in the 

mixing channel, such as zig-zag microchannel, and obstacles on the wall or in the microchannel 

[73,93] (Figure 3).  

Typically fluids are delivered to the microreactor through the use of either syringe or HPLC pumps, 

within a broad range of flow rates, from L min−1 to L min−1 [71]. The connection between 

microreactors and macroscopic fluid delivering device is performed using a large array of components, 

such as Luer-to-Luer or Luer-to-barb connectors, common HPLC fittings and high-pressure 

interconnect devices to interface with standard capillary tubing [94]. 

Figure 3. Examples of typical configurations to enhance mixing in microchannels: (a) 

obstacles on the wall of the microchannel; (b) obstacles in the microchannel (c) zig-zag 

microchannel. Arrows suggest direction of flow. 

  

   

   

   

   

 

a b c  

2.2.3. Applications of Microreactors in Biocatalysis 

The use of microreactors for the analysis and development of bioconversion systems has mostly 

relied in the use of enzymes or at most cell lysates as biocatalysts [73]. Irrespective of the approach 

used, the microreactor approach has systematically been shown to outperform conventional batch-wise 

operation, namely when the rate of substrate processing is considered, which could be somehow 
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anticipated, given the favorable mass and heat transfer characteristics of the former [73,95,96]. 

Different configurations have been used within the scope of microreactors. The simplest form is the 

operation in a single liquid phase, where substrate and enzyme aqueous solution are fed separately to 

the microreactor and the reaction takes place along the microchannel. This was used for the 

hydrolysis/transgalactosylation by glycosidase [97], for the bioluminescent reaction between ATP and 

luciferin, promoted by luciferase to ultimately yield oxyluciferin and AMP [98], and for the oxidation 

of 3,4-dihydroxy-L-phenylalanine (L-DOPA) with laccase [95]. In all cases the efficiency of the 

approach was demonstrated, which somehow paved the way for more complex approaches. One of 

these is a likely extension of the former, since organic-aqueous or ionic liquid-organic solvent two-

liquid phase systems were used. This allowed for the conversion of sparingly water-soluble substrates 

or for the enzymatic resolution of chiral compounds. The experimental set-up for these occasionally 

featured -shaped microreactors, allowing for three independent feeding channels. Further details are 

given in Table 3. 

Table 3. Examples of microfluidic systems for enzyme catalysis in liquid phase. 

Microreactor Bioconversion system Comments Ref. 

Chip type microreactor, made 
of glass, with Y-junctions at 
the inlet and at the outlet, 
continuous mode of operation. 
Oxygen (half) saturated L-
DOPA and laccase solutions 
fed from each inflow 

Oxidation of L-DOPA with laccase in 
full aqueous media 

High (roughly 90%) conversion 
yields were obtained for 
residence times under 2 minutes. 
Model predictions, based in the 
reaction-diffusion equation, 
provided a good approach to 
experimental data  

[95] 

Chip type microreactor, made 
of glass, with Y-junctions at 
the inlet and at the outlet, 
continuous mode of operation. 
n-Hexane and substrates; and 
buffered enzyme solution fed 
from each inflow. In the Y- 
shaped outlet buffer and n-
heptane phases were 
recovered 

Synthesis of isoamyl acetate in n-
heptane/buffer catalyzed by lipase, 
using acetic acid as acyl donor 

Faster reaction rates were 
observed in the microfluidic 
system, when compared to batch 
runs. Model simulations obtained 
by numerical solution of non-
linear systems provided a good fit 
to experimental data 

[96] 

Chip type microreactor, made 
of Poly(methyl methacrylate), 
PMMA, with Y-junction at 
the inlet, continuous mode of 
operation 

Hydrolysis of p-nitrophenyl--D-
galactopyranoside and 
transgalactosylation on 
p-nitrophenyl-2-acetamide-2-deoxy-
-D-glucopyranoside, both promoted 
by galactosidase 

Hydrolysis was performed in 
fully buffered media, whereas 
transgalactosyation was 
performed in buffer-acetonitrile 
solvent system, to minimize 
reverse reactions. Both reactions 
were enhanced as compared to 
the batch system  

[97] 

Chip type microreactors, made 
of PDMS, with Y-junction at 
the inlet, continuous mode of 
operation  

Bioluminiscent reaction promoted by 
luciferase 

The reaction was performed in 
full aqueous media, with 
luciferin/luciferase and ATP 
solutions fed to each side of the 
junction. The microfluidic 
technique allowed for the 
determination of Michaelis-
Menten rate constants with a 
single experiment 

[98] 
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Table 3. Cont. 

Microreactor Bioconversion system Comments Ref. 
Chip type microreactor, made 
of glass, with Y- or -junction 
at the inlet, and Y- and single 
junction at the outlet, 
respectively, continuous mode 
of operation. The -junction 
was used for the separate 
inflow of ionic liquid (IL), 
enzyme and isoamyl alcohol; 
IL acetic anhydride and 
enzyme; and n-heptane 
 

Synthesis of isoamyl acetate in n-
heptane/ 1-butyl-3-methylpyridinium 
dicyanamide, catalyzed by lipase, 
and with acetic anhydride as acyl 
donor 

Lipase was retained in the 
interface given its amphiphilic 
nature. The system allowed for 
simultaneous esterification and 
product recovery, showed a 3-
fold increase in reaction rate 
when compared to conventional 
batch runs, and higher 
productivity. Parallel or slug flow 
could be observed depending on 
the relative flow rate of the ionic 
liquid and of the organic solvent 

[99] 

Chip type microreactor, made 
of glass, with Y-junctions at 
the inlet and at the outlet, 
continuous mode of operation. 
Aqueous phase with enzyme 
and KCN, and organic phase 
containing aldehyde were fed 
from each inflow  

Synthesis of optically pure 
cyanohydrins using a cell lysate 
containing S-selective hydroxynitrile 
lyase 

The crude cell lysate allowed for 
enantioselective synthesis of 
cyanohydrins in microchannels 
with a reaction rate and 
selectivity only achieved in larger 
batch mode under intense 
shaking, where a stable emulsion 
was formed. No clogging of the 
microchannels was observed 

[100,
101] 

Chip type microreactor, made 
of glass, with Y-junctions at 
the inlet and a single outlet, 
continuous mode of operation. 
Aqueous phase containing the 
enzyme and n-decane 
containing substrates were fed 
from each inflow 

Esterification of propionic acid and 
n-butanol catalyzed by lipase  

Kinetic parameters obtained in 
microfluidic system matched 
those obtained in conventional 
batch mode of operation. 
Activation and inactivation 
patterns were also similar in both 
scales  

[102] 

Chip type microreactor, made 
of glass, with Y-junctions at 
the inlet and a single outlet, 
continuous mode of operation. 
Aqueous phase containing the 
enzyme and iso-octane 
containing substrates were fed 
from each inflow 

Dehalogenation of p-chlorophenol 
catalyzed by laccase 

The surface of the microchannel 
was partially modified with 
octadecylsilane groups to provide 
a hydrophobic nature, and thus 
phase separation at the outlet of 
the microchannel 

[103] 

 

Enzymes can be advantageously used in immobilized form since this strategy allows for increased 

volumetric productivity and often improves stability. Continuous mode of operation is made possible, 

mostly using a packed-bed reactor (PBR) configuration, since this overcomes the continuous stirred 

tank reactor (CSTR) configuration, by allowing for higher conversion or space-time yields 

[2,104,105]. In order to retain the biocatalyst, particularly if in free form, membrane reactors operating 

in CSTR mode are commonly employed, where it is assumed that the contents of the reactor are 

perfectly mixed [2]. Other screening devices can be used if the biocatalyst is attached to a carrier or 

encapsulated. Ex-situ filtration or centrifugation, followed by recycling back into the reactor, is an 

alternative strategy for enabling continuous mode of operation [105]. Optional to PBR configuration, 

is the expanded or fluidized bed reactor, where the enzyme particles are retained by a hydrodynamic 

balance between gravity and drag forces promoted by the up-flow substrate stream [105,106]. The 

approaches commonly used for immobilization in conventional multiphase biocatalysis can also be 

used in microreactors, with particular focus on covalent methods, cross linked enzyme aggregates 
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(CLEA) and adsorption (specific and non-specific) methods [107]. The experimental set-ups are 

preferably either chip-type reactors with activated channel walls where the enzyme binds, or enzyme 

immobilized monolith reactors, where a support is packed inside a capillary tube (Table 4). 

Table 4. Examples of microfluidic systems with immobilized enzymes. 

Microreactor Bioconversion system Comments Ref. 
Capillary tubes with a frit at one 
end, packed with dried cross-linked 
(+)-γ-lactamase, mixed with 
controlled pore glass (120–200 
mesh, 500-Å nominal pore 
diameter) in a 1:1 ratio  

Conversion of benzamide 
to benzoic acid using -
lactamase. Other substrates 
were screened, namely 
amides, with -lactam 
emerging as the preferred 
substrate, although the 
immobilized enzyme 
easily hydrolyzed several 
aromatic amides  

The immobilized enzyme was stable for 6 h at 
80 °C and kinetic constants were determined 
in the microreactor. 
Packing the capillary tubes with the cross-
linked enzyme without controlled pore glass 
led to prohibitive back pressure levels 

[108] 

Same as above, or monolith 
microreactor. Immobilization in 
monoliths was achieved by binding 
to the surface epoxide groups  

Conversion of N-benzoyl-
L-phenylalanine into L-
phenylalanine catalyzed by 
L-aminoacylase 

CLEA capillary column reactor and monolith 
reactos allowed for 100% conversion at 20ºC 
and 40 °C respctively, well below the 
optimum temperatue of 85 °C 

[109] 

Capillary glass tube Novozym® 
435 

Conversion of 1-methyl-
cyclohexene to 1-methyl-
cyclohexene oxide and 
epoxidation of alkenes in 
the presence of hydrogen 
peroxide 

Effective transfer of a batch process to a 
packed-bed flow reactor, allowing for a 
significant reduction in reaction time. 
Furthermore, the flow reactor allowed for 
hydrogen peroxide to be used over prolonged 
periods of time 

[110] 

Cross-linked enzyme aggregates, 
CLEA, immobilized onto the inner 
wall of poly(tetrafluoroethylene), 
PTFE, microtubes (0.25 mm inner 
diameter) 

Hydrolysis of acetyl-D,L-
phenylalanine catalyzed by 
immobilized acylase 

Successful implementation in a microreactor 
configuration of a methodology for preparing 
CLEA applicable to electronegative enzymes  

[111] 

Capillary glass microreactor 
containing a silica monolith. 
Glucose oxidase or choline oxidase 
were separately immobilized on the 
surface of the polyethylenimine 
(PEI) coated monolith 
 

Conversion of D-glucose 
to D-gluconic acid 
catalyzed by glucose 
oxidase or conversion of 
choline to choline acetate 
catalyzed by choline 
oxidase  

Simple method for preparation of monolith 
with controlled porosity, allowing for low 
pressure drop and avoiding mass transfer 
limitations. Enzyme immobilization was 
effective on the PEI-activated surface of the 
monolith, through interaction due to the 
electronegative and the electropositive nature 
of the former and the later. Kinetic constants 
were easily established since on-chip 
electrochemical detection allowed fast 
monitoring of enzyme kinetics 

[112] 

Chip type microreactor, made of 
PDMS, supplemented with 
pyrogenic silicic acid as a filler and 
simultaneously providing hydroxy 
groups for surface chemistry. 
Enzyme was covalently 
immobilized on silanised walls of 
the microchannels by coupling 
with glutardialdehyde 

Hydrolysis of lactose 
catalyzed by -
glycosidase. Operated in 
continuous mode and in 
aqueous phase 
  

The microstructured enzyme reactor was 
effectively tested in continuous production. A 
residence time above 33 minutes was required 
to achive a conversion yield of 100 mM 
substrate in excess of 60%. The system 
endured 5 days of continuous operation 

[113] 

Chip type microreactor, made of 
PDMS, with the enzyme entrapped 
in the PDMS crosslinked matrix  

Hydrolysis of urea 
catalyzed by urease. 
Operated in continuous 
mode and in aqueous 
phase 

Urea conversion significantly decreased for 
flow rate above 0.064 cm3 min−1 for and initial 
substrate concentration of 100 mM. Promising 
results were also referred for operation with 
glucoamylase in starch hydrolysis 

[114] 
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Table 4. Cont. 

Microreactor Bioconversion system Comments Ref. 
Stainless steel plate with 34 linear 
channels. Full volume of the 
reactor of 25 microL. The walls of 
each channel were coated with a 
layer of �-aluminum oxide for 
covalent immobilization of the 
enzyme. The layer was derivatized 
with derivatized with (3-
aminopropyl)triethoxysilane and 
the amino groups activated with 
glutardialdehyde 

Transglucosylation 
reactions catalyzed by -
glucosidase. 2-
Nitrophenyl--D-
glucoside, oNPGlc, or 
cellobiose were used as 
donor substrates and 
glycerol as acceptor, to 
obtain -glucosylglycerol 
in two stereochemical 
forms, 1-O--D-glucosyl-
rac-glycerol and 2-O--D-
glucosyl-sn-glycerol. 
Hydrolysis of lactose to 
galactose and glucose with 
glucosidase. 
In both cases, reactions 
were performed in aqueous 
environment and in 
continuous mode  

Residence times were within 0.2 to 90 s. High 
yields of GG, roughly of 60% and 80%, 
based on cellobiose and oNPGlc converted, 
respectively. Near exhaustion of substrate 
(80%), yields about 120 mM of GG from the 
reaction of 250 mM cellobiose and 1 M 
glycerol. 
Determination of kinetic parameters for 
lactose hydrolysis. Sustained hydrolysis of 
lactose (100 mM) at 80 °C was observed for 4 
days, corresponding to a space-time yield of 
500 mg glucose mL−1h−1 at a stable 
conversion in excess of 70%. 

[115,
116] 

Microreactor composed of PTFE 
tubing (0.5 mm inner diameter) 
with enzyme covalently linked. 
Glutaraldehyde and 
paraformaldehyde were used as 
crosslinkers 

Hydrolysis of N-glutaryl-
L-phenylalanine p-
nitroanilide catalyzed by 
-chymotrypsin. Operated 
in continuous mode and in 
aqueous phase 

Hydrolysis yield was kept at 90% and above 
for a substrate concentration of 1 mM, in a 
continuous flow (4 L min−1) for some days 

[117] 

Chip type microreactor with 
microchannels in PDMS with 
enzyme-containing 
poly(ethylene glycol) (PEG) 
hydrogel microstructures fabricated 
in microfluidic 
channels 

Hydrolysis of p-nitro-
phenylphosphate with 
alkaline phosphatase. 
Operated in continuous 
mode and in aqueous 
phase. 

A pH sensitive fluorophore was incorporated 
in the hydrogel microstructures to allow for 
reaction through the variation of the emission 
intensity ratio with pH. The immobilization 
approach system was reported to be also 
effective when applied to the applied to urea 
hydrolysis by urease.  

[118] 

Capillary poly(ether ether ketone) 
(PEEK) tubes, with inner diameters 
within 0.1-2.0 mm, filled with 
silica monolith-entrapped enzyme, 
produced by sol-gel methodology, 
from tetramethoxysilane and 
methyltrimethoxysilane 

Transesterification 
between (S)-(-)-glycidol 
and vinyl n-butyrate 
catalyzed by a protease. 
Continuous operation in 
organic environment 

The microreactor outperformed the batch 
reactor used for control regarding conversion, 
when operating at higher flow rates (from the 
total range of 4.0  10−4 to 5.0 mLmin−1). No 
changes in conversion were observed at a given 
superficial liquid velocity with variations in tube 
diameter. Moreover, the conversion increased 
with a decrease in the enzyme content. The 
whole suggested mass transfer limitations 

[119] 

Chip type microreactor, made of 
PDMS as a microfuidic fuel cell. 
Three enzymes were immobilized 
alongside the bottom wall of the 
single stream channel. Bilirubin 
oxidase (BOD)-adsorbed O2 
cathode and a glucose anode 
prepared by co-immobilization of 
glucose dehydrogenase (GDH), 
diaphorase (Dp) and vitamin K3-
modified poly-L-lysine, VK3-PLL. 

Oxygen reduction 
catalyzed by BOD; 
Reduction of 
VK3/oxidation of NAD+ 
catalyzed by Dp and 
NADH regeneration 
catalyzed by GDH 

The cell performance, based on output 
current, increased with channel height. 
However, the volume density of current and 
power were enhanced when cell height 
decreased 

[120] 
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2.2.4. Visualization and Quantification of Fluid Flow 

Gaining the in-depth in fluid mechanics, mixing and heat transfer required for the engineering 

characterization of miniature and microreactors has required both hardware and software tools, able to 

collect the required data, process them and generate models representative of the system dynamics. 

Contribution to the visualization of fluid flow has been made possible through the use of adequate high 

speed cameras, often combined with (micro) particle image velocimetry, ()PIV, and software for 

image analysis [17,121–127]. Generation of detailed predictive models, representative of the dynamics 

of flow, which can incorporate reaction data, has been made possible with computational fluid 

dynamics (CFD). CFD allows therefore for the design and analysis of a given system, as well as for the 

simulation of fluid flow, (bio)chemical reaction, mass and heat transfer [19,62,87,128,129]. The 

models developed within the scope of CFD methods are typically anchored in the Navier–Stokes 

equations and in the convection-diffusion equation [19,130].  

3. Conclusions  

The introduction of miniaturized devices in biocatalysis is becoming widespread and is clearly 

contributing to speed up the rate of process development in a cost effective manner. The large 

parallelization capability allows for simultaneously evaluating a large array of possibilities, hence 

improving process optimization. Miniaturization encompass the use of multi-well plates and 

microfluidic devices, each playing preferred roles in the development, characterization and ultimately 

implementation of bioconversion processes to production scale. The use of microfluidic reactors is the 

mainstay of this later feature, since processes are easily scaled by parallelization of devices, ruling out 

the need for elaborate and not always fully reproducible, scale-up procedures. Furthermore, when 

compared to typical bioreactors, microreactors present the advantage of high surface-to-volume ratio, 

high heat and mass transfer rates and ease of maintenance. The level of development and the effective 

application of this concept to bioconversion systems strongly relies on its multidisciplinary character, 

combining biotechnology, (micro)electronics and (micro)mechanics, microscopy and software for 

image analysis and data processing. Microreactors are becoming increasingly effective with the 

concomitant miniaturization of monitoring and controlled fluid delivery devices. Furthermore, the 

commercial availability of microreactors is increasing, which clearly favors the dissemination of te 

concept. Given the development trends in the field, and aiming not to be pictured as a panacea for the 

(bio)chemical (as biocatalysis should also not be) it can be expected that the relevance of 

miniaturization within biocatalysis and biotransformations is to further increase, and alongside, to 

further establish this area as a key player within the scope of a sustainable development.  
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