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Simple Summary: We know that neuropeptides and G protein-coupled receptors regulate the physi-
ology and behavior of animals and that the pea aphid (Acyrthosiphon pisum) is a serious agricultural
pest and model insect. In this study, we investigated the short neuropeptide F and its receptor in
pea aphid. Feeding analysis showed that the probing time and total phloem duration significantly
decreased in response to sSNPF and predicted sSNPFR gene silencing in RNAi assays. The silencing of
sNPF significantly reduced the aphid’s reproduction but not survival. Our findings will help in the
design of control strategies by using the molecular biological approach.

Abstract: Insect short neuropeptide F (sNPF), an ortholog of prolactin-releasing peptide of inverte-
brates, regulates diverse biological processes, including feeding, olfaction, locomotion, and sleep
homeostasis in insects. However, its function is still unclear in an important model insect and agricul-
tural pest, the pea aphid (Acyrthosiphon pisum). Here, we investigated short neuropeptide F (ApsNPF)
and its receptor (ApsNPFR) in A. pisum. The sNPF gene contains three exons and two long introns. In
addition, the genome contains a single sSNPF receptor with seven transmembrane domains. Stage-
and tissue-specific transcript profiling by gqRT-PCR revealed that ApsNPF and ApsNPFR were mainly
expressed in the central nervous system. The receptor was also detected in antennae, midgut, and
integument. The highest expression levels were found in first instar nymphs compared to other
developmental stages. Besides, the starvation-induced pattern indicated that the sSNPF network
depends on the nutritional state of the insect. An electrical penetration graph showed that probing
time and phloem duration of A. pisum on broad bean plants decreased in response to dssNPF and
dssNPFR in RNAi assays. sNPF silencing reduced the number of nymphs per female but not aphid
survival. We believe that our results advance in-depth knowledge of the sSNPF/sNPFR signaling
cascade and its place in regulating feeding behavior in insects. In turn, it may contribute to the
potential design of new strategies to control aphids, with a focus on the sNPF system.

Keywords: Acyrthosiphon pisum; short neuropeptide F; G protein-coupled receptor; transcriptional
expression; RNA interference; feeding regulation

1. Introduction

Neuropeptides regulate a wide array of behavior and physiological processes in
arthropods, including feeding, molting, courtship, social interaction, and development.
They play their role by binding as ligands with cognate G protein-coupled receptors
(GPCRs), which initiates the signaling process [1,2]. Feeding is a complex behavior present
in all species, and it is modulated by environmental clues and internal processes. For
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survival, animals coordinate internal and external cues, and they act in ways that maintain
energy homeostasis centrally and peripherally and ensure proper nutrition intake [3].

The discovery of short neuropeptide F occurred when a specific antibody against the
neuropeptide F of Moniezia expansa was applied to assay the similar peptide in insects.
Interestingly, the result was the isolation of a novel neuropeptide in Leptinotarsa decemlin-
eata [4]. These peptides were identified by the use of NPF antibodies, called NPF-related
peptides. They were composed of a short chain of 8-12 amino acids compared to NPF
(36-42 amino acids), so they were renamed short neuropeptide F (sNPF) [5]. The cognate
receptor for short neuropeptide F (sNPF) was first documented in Drosophila melanogaster.
It belongs to the superfamily of GPCRs and exhibits 62-66% similarity and 32-34% identity
with vertebrate type 2 NPY receptors [6].

Peptides that pertain to the sNPF lineage are highly conserved and characterized
mainly by xXPxLRLRFamide, whereas some insects (flies and mosquitoes) present a mod-
ified RWamide sequence at the carboxy-terminal [7]. Until now, sNPF peptide and its
receptor have been demonstrated in all model and representative insects, such as D.
melanogaster [8,9], Bombyx mori [10,11], Schistocerca gregaria [12,13], Anopheles gambiae [14],
and Tribolium castaneum [15]. sNPF peptide acts as a neuromodulator and is attributed to a
variety of physiological functions, such as memory and olfaction [16,17], locomotion [18],
reproduction and survival [19,20], hormone release or suppression [9,21], energy homeosta-
sis [22], and sleep and circadian rhythms [23-26]. However, the primary function of sSNPF
signaling is in feeding either regulatory [10,27-30] or inhibitory [12-14,31].

Although sNPF peptides have been widely studied in numerous insects, their local-
ization and function in A. pisum is still unknown. The pea aphid is an important phloem
sapsucking model insect, and it is also a notorious agricultural pest that mainly targets
horticultural crops and causes significant yield losses [32]. Moreover, in various studies,
A. pisum is regarded as a model insect due to its host adaptability, parthenogenesis, and
polyphenism [33].

To study the function of ApsNPF and ApsNPFR and whether there is a relationship
between sNPF signaling and feeding, we investigated the transcripts of both genes in
different developmental stages, tissues, and under the condition of induced starvation
stress. Furthermore, we knocked down these genes in RNAi assays and studied the feeding
behavior through an electrical penetration graph (EPG) approach. We also analyzed the
influence of sNPF silencing on physiological attributes, such as reproduction and survival.
We believe that our results may advance our current knowledge of the sNPF/sNPFR
signaling cascade and its place in the regulation of feeding behavior in insects. In turn, this
may contribute to the potential design of new strategies to control aphids, with a focus on
the sNPF system.

2. Materials and Methods
2.1. Insect Rearing

We experimented with the green strain of parthenogenetic A. pisum derived from
a long-established apterous population at our laboratory (initially brought from Ghent
University, Belgium). Insects were reared on 3—4-week-old broad bean (Vicia faba) seedlings
in an environment-controlled incubator (Jiangnan, Ningbo, China) at a standard condition
of 20 £1 °C, 70 & 5% RH and an 16:8 h (light:dark) photocycle. Aphids were maintained
at a low density of ~5 insects per plant in order to prevent the development of a winged
population and competition. The nymphs aged 0-12 h were collected and deposited on
fresh broad bean leaves to obtain synchronously developed insects.

2.2. Identification of Sequence and Phylogenetic Analysis

From the published literature on A. pisum, neuropeptide and neurohormone pre-
cursors [34], as well as GPCRs [35], cDNA sequences encoding ApsNPF and ApsNPFR,
were obtained. The open reading frame (ORF) for precursor and receptor were con-
firmed through the ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/, accessed on
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7 February 2020). For precursor, the signal peptides were predicted using the SignalP-5.0
server (http://www.cbs.dtu.dk/services/SignallP/, accessed on 8 February 2020), and
the sequence logo of the C-terminal motif of ApsNPF was made using Weblogo [36].
For the receptor, transmembrane segments were predicted using the TMHMM server
(http:/ /www.cbs.dtu.dk/services/TMHMM/, accessed on 9 February 2020). ApsNPF and
ApsNPFR sequence alignments with other precursor and receptor sequences were made
with MEGA 5.2 and JalView 2.9, respectively [37,38].

sNPF gene sequences from other arthropod species were obtained using BLAST
(https:/ /blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 8 February 2020). The online tool
Splign (https:/ /www.ncbi.nlm.nih.gov/sutils /splign/splign.cgi, accessed on 17 February
2020) [39] was used by submitting the nucleotide accession number of already discovered
sNPF genes against whole genome shotgun sequences of target insects to determine and
analyze the exon-intron positions. A schematic figure illustrating the sNPF gene structures
was created using IBS 1.0 [40]. A phylogenetic tree was made by the selection of conserved
domain regions for ApsNPF and ApsNPFR, among other species, via ClustalX2 software
with the default settings: a neighbor-joining approach, followed by 1000 bootstrap tests,
p-distance model with a pairwise deletion in MEGA 5.2 [37].

2.3. Stage- and Tissue-Specific Expression Profile of A. pisum sNPF/sNPFR via gRT-PCR

The transcript expression levels of ApsNPF and ApsNPFR were quantified in different
developmental stages by collecting 20 aphids from each instar separately in 1.5 mL Eppen-
dorf Safe-Lock tubes (Life Science, Hamburg, Germany), quickly frozen in liquid nitrogen
(LN2), and stored at —80 °C. Likewise, samples were prepared to investigate the transcript
distribution of these two genes in various tissues. Hereto, 200 wingless adult aphids were
dissected carefully in chilled 0.01 M PBS under a stereomicroscope (Olympus, Tokyo, Japan).
Subsequently, antennae, central nervous system (CNS), embryos (embryos chain), midgut,
and integument were collected and immediately stored as mentioned above. A Bullet
Blender Blue (Next Advance, New York, NY, USA) was used to homogenize tissues before
RNA extraction. Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA,
USA) and purified through with an RNeasy mini kit (Beijing, China). The concentration
and quality of resultant RNA were measured on a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). cDNA was prepared using a PrimeScript
RT reagent kit with gDNA Eraser (Takara, Kusatsu, Japan). The resulting cDNA template
was used to perform a quantitative (real-time) reverse transcription-polymerase chain
reaction (qRT-PCR).

Appropriate gene-specific primers were designed using an online program, Primer
3 (http://bioinfo.ut.ee/primer3-0.4.0/, accessed on 3 March 2020), to assay the relative
expression level via qRT-PCR (Table S1) and obtained from Sangon Biotech (Shanghai,
China). To ensure the accuracy and stability of all samples, a melting curve analysis from 55
to 95 °C was conducted for all reactions. The specificity of each primer set was confirmed
by the melting curve, which showed only one peak that was gene-specific, and the linear
standard curve was used to determine the efficiency of amplification (E value) using the
equation E = 10 — 1/slope. The resultant efficacy was >90%. qRT-PCR was performed on
a LightCycler® 96 instrument (Roche, Basel, Switzerland). The reaction mix consisted of
5 uL of TB Green® Premix Ex Taq II (Takara, Japan), 2 pL of nuclease-free water, 1 pL of
each primer (forward and reverse), and 1 uL of cDNA template. The following thermal
cycling program was used as standard: an initial denaturation at 95 °C for 30 s, followed
by 40 cycles at 95 °C for 5 s and 60 °C for 20 s; at the end, the parameters were modified to
95 °C for 10's, 65 °C for 60 s, and 97 °C for 1 s. For the reference gene, we chose ribosomal
protein RPL7 (NM_001135898.1 [41]) and analyzed the relative quantification of expression
by using the 2744¢t procedure [42]. We conducted three biological replicates and one
technical replicate for this experiment.
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2.4. Transcript Pattern during Feeding and Starvation Stress via gRT-PCR

We investigated whether the fed (received food) and starvation stress states (no food)
of aphids correlate with the transcript expression of ApsNPF and ApsNPFR. Hereto, 60 wing-
less adult aphids for feeding (control) and an identical group for starvation (treatment)
were placed in a clip cage (3.5 x 1.5 cm, d x h) positioned on the ventral side of V. faba
leaves (three aphids per cage and three cages per seedling). The top opening of the clip
cage was closed with a fine cloth net. We used four sheets of fine cloth net inside the
cage for the starvation treatment to prevent the aphids from feeding [43]. After 3 and 6 h
of starvation stress, we randomly selected four aphids for whole-body RNA extraction
and 50 aphids for dissection to obtain CNS. Dissection was carried out carefully under a
binocular microscope, and samples were stored at —80 °C.

2.5. Double-Stranded RNA Synthesis and Injection

An injection-based RNAi bioassay was performed to explore the function of sSNPF
signaling in A. pisum. The unique nucleotide region of ApsNPF and ApsNPFR was selected
(Table S1) and added with T7 promoter sequence at their 5" ends, designed using primer
5 (Premier Biosoft, Palo Alto, CA, USA), and green fluorescent protein (GFP) was used as a
negative control. The primers were purchased from Sangon Biotech (Shanghai, China) and
specified using the polymerase chain reaction. A MiniBEST agarose gel DNA extraction kit
(Takara, Japan) was used to extract amplicons from the gel and measure their quantities.
Double-stranded RNA was prepared with a TranscriptAid T7 high-yield transcription
kit (Thermo Fisher, Vilnius, Lithuania); according to the protocol, its concentration was
measured, and then it was immediately kept at —80 °C. Furthermore, the integrity of
dsRNA was tested by 1% gel electrophoresis.

After the third day of adult emergence, we randomly chose the insects for injection.
Sharp needles (3.5-in 3— 000-203-G/X micropipettes, Drummond Scientific, Broomall, PA,
USA) were prepared by a PC-100 dual-stage glass micropipette puller (Narishige, Setagaya-
Ku, Tokyo, Japan). We injected dsRNA at 300 nL (~1.02 pg) for sNPF, sNPFR, and GFP. An
injection was carried out under a stereomicroscope (Olympus, Tokyo, Japan) between the
2nd and 3rd abdominal segments using a 20 nanoliter injector (World Precision Instruments,
Sarasota, FL, USA). Prior to injection, aphids were immobilized on a petri dish containing
1% flexible agarose gel with tiny x-shaped grooves to restrict aphid movement.

2.6. Transcript Expression after RNAi

After performing the RNAI bioassay, the insects were transferred in the clip cage
without a cloth net between leaf and insect. Insects were collected at 6, 12, 24, 36, 48,
and 72 h post-injection (hpi) for whole-body RNA extraction. Four aphids were chosen
randomly for each treatment, and three biological repeats were carried out.

2.7. EPG Analysis of Aphid Feeding Behavior

The EPG approach was used to compare data on probing and feeding behavior
between the dssNPF and dssNPFR treatments and the dsGFP control group [44]. After
12-24 hpi, an electrode of gold wire (2 cm x 18 pm) was glued to the dorsum of randomized
aphids by applying electrically conductive silver glue. The wired aphid was positioned on
a 3—-4-week-old broad bean seedling at the petiole end of the abaxial edge of the topmost
developed leaf, and the other side of the electrode was attached to the Giga-8 DC EPG
system [45]. The second electrode was inserted into potting soil. The entire experiment was
placed in a Faraday cage to protect against electromagnetic interference. EPG recordings
started immediately and were monitored for 8 h. The EPG waveform was analyzed
using the Stylet+ analysis protocol [43,46]. Subsequent analysis was conducted using the
automatic parameter calculation Excel Workbook of EPG data 4.4 [47]. Twenty replicates
were performed for each treatment.
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2.8. Survival and Reproduction Assay

Survival and reproduction assays were conducted to investigate the correlation be-
tween sNPF gene silencing and the physiological attributes of aphids. We injected dsRNA
into 10 aphids per treatment for positive control and identical for the negative control. The
aphids were reared on fresh leaves inside the clip cage, and we recorded the fecundity and
mortality of adults continuously after a 12 h duration from the beginning of the RNAi assay.
All experiments were performed in the artificial environment box, and three replications
were carried out for each treatment.

2.9. Statistical Analysis

ANOVA was performed, followed by the least significant difference (LSD) test, to
compare the reproduction data and the gRT-PCR data obtained from the spatiotemporal
assay of ApsNPF and ApsNPFR. The data obtained from variation in ApsNPF and ApsNPFR
during feeding and starvation stress and the expression pattern of both genes in response
to RNAi-mediated silencing were analyzed through a parametric independent Student’s
t-test for the comparison of two conditions: treatment and control. We compared the
aphid survival data after sNPF silencing via Kaplan-Meier survival log-rank analysis.
The feeding behavior data obtained from the EPG recordings were analyzed by ANOVA,
followed by LSD (p = 0.05), due to its normal distribution. Statistical analysis was conducted
employing IBM SPSS 20 (Systat Software, London, UK), and histograms were created using
OriginPro 8.5.

3. Results
3.1. Characterization of ApsNPF and Its Receptor

First, we confirmed ApsNPF and ApsNPFR cDNA sequences by using gene-specific
primers. In gene structural analysis, SNPF contains three exons and two long introns
between nucleotides at E28/N29 and Q82 /N83 positions (Figure 1C). The sNPF amino acid
and nucleotide sequence of the ORF are shown in Figure 1A. An alignment of ApsNPF with
sNPF peptides of other insects is presented in Figure 1B, and this reveals that they share the
[xPxLRLRFamide] consensus motif at the C-terminal end of the SNPF neuropeptide family.
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Figure 1. Bioinformatics analysis of short neuropeptide F (sNPF) from A. pisum. (A) Nucleotide
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and amino acid sequences of SNPF cDNA. The underlined letters are predicted signal peptides, grey
background amino acids represent mature peptides, and italic and bold letters are the dibasic cleavage
sites. (B) Amino acid sequence alignment of sSNPFs with other insect species; at the bottom, there is
a consensus logo. (C) Comparative analysis of exon/intron structure of the gene encodes ApsNPF
with sNPF precursors of other insects. The diagram illustrates the gene structure, the rectangles are
protein-coding exons, and lines (with the length underneath) are the introns. Species abbreviation:
Ap (Acyrthosiphon pisum), Mp (Myzus persicae), N1 (Nilaparvata lugens), Dm (Drosophila melanogaster),
Aa (Aedes albopictus), Bm (Bombyx mori), St (Spodoptera frugiperda), Tc (Tribolium castaneum), At (Aethina
tumida), Am (Apis mellifera), and Cf (Camponotus floridanus). Table S2 contains the accession numbers
of precursors presented in this figure.

We also confirmed that the genome contains a single predicted receptor for the ApsNPF
precursor, which belongs to a typical rhodopsin-like GPCR family with seven alpha-helical
transmembrane segments. The SNPFR cDNA sequence includes an ORF of 1374 bp that
encodes a protein with 457 amino acids and a predicted MW of 51.44 kD. The ApsNPFR
sequence was aligned with other related receptors and revealed a high degree of sequence
identity and similarity, with the maximum conservation at the transmembrane regions
(Figure 2). Phylogenetic analysis of ApsNPF and ApsNPFR with other insects is presented
in Figure 3, and this demonstrates close proximity with other hemipterans, including Aphis
craccivora and Nilaparvata lugens.
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Figure 2. Amino acid multiple sequence alignment of ApsNPFR with sNPFR from other insects
(Drosophila melanogaster, Schistocerca gregaria, Tribolium castaneum, Bombyx mori, Solenopsis invicta, and
Anopheles gambiae. The degree of similarity is indicated by the height of yellow or brown bars below the
sequences. Transmembrane domains are indicated by black horizontal bars (with numbers at the top;
TM1-TM?7).
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Figure 3. Phylogenetic relationship of sNPF precursors with other insect species (A) and sNPF
receptors of invertebrates (blue box) with PrRP receptors of vertebrates (red box) (B). Loa loa sSNPFR
was selected as outgroup. The percent bootstrap support values are indicated by the number at
branches. Table S3 contains the precursor and receptor accession number.

3.2. Stage- and Tissue-Specific qRT-PCR Analysis Shows a Spatiotemporal Transcript Expression of
A. pisum sNPF/sNPFR

The relative expression patterns of ApsNPF and ApsNPFR mRNA in A. pisum in
different developmental stages and tissues were investigated by qRT-PCR. The transcript
profile of these two genes was normalized to the reference gene, RPL7 (Figure 4). The
results revealed that ApsNPF is present in all instars, including adults, but the expression
level was highest in first instar nymphs (F4 19 = 31.01, p < 0.001: Figure 4A). Interestingly, a
similar pattern was also observed for ApsNPFR. The highest transcript level was detected
in the first instar (F410 = 33.7, p < 0.001: Figure 4C), although all life stages exhibited
expression of ApsNPFR.
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Figure 4. Analysis of relative expression levels of A. pisum sNPF and sNPFR transcripts measured by
qRT-PCR. Development expression profile of ApsNPF and ApsNPFR (A,C) and spatial expression
profiles of ApsNPF and ApsNPFR (B,D). Acronyms used on X-axis: CNS (central nervous system), Ct
(cycle threshold). The bars correspond to the average of three independent replicates. Results are
shown as means + S.E. Different lowercase letters above each bar indicate significant differences
among different treatments using one-way ANOVA followed by LSD (p < 0.05).

The transcript distribution of ApsNPF and ApsNPFR varied significantly in various
tissues. The highest expression of ApsNPF was detected in the CNS (F4 19 = 13.23, p = 0.001:
Figure 4B), and the complete embryos (including the head) also showed some expression.
In contrast, ApsNPF was absent (Ct > 30) in antennae, midgut, and integument. For
the receptor, the transcript pattern of ApsNPFR was highest in the CNS, but it was also
expressed in other tissues, such as antennae, midgut, and integument (F4 19 = 101, p < 0.001:
Figure 4D, Table S5).

3.3. Transcript Expression during Feeding and Starvation Stress

sNPF and its receptor play a crucial role in feeding and nutritional state in numerous
insect species. We measured the transcript expression in fed and starved aphids. Both
genes showed a significant difference in fed and starved insects. The expression of ApsNPF
and ApsNPFR was significantly upregulated in starved aphids in comparison to fed aphids
(ts3.93 =0.11, p = 0.001: Figure 5A and ty3 12 = 2.42, p = 0.002: Figure 5C, Figure S1).

As the transcripts for ApsNPF and ApsNPEFR were primarily detected in the CNS (see
Section 3.2), it should be remarked here that we investigated the relative expression in the
CNS of starved aphids rather than investigating whole-body expression. Interestingly, we
observed the same upregulated expression of SNPF and sNPFR in starved aphids compared
to controls (t4399 = 0.04, p < 0.001: Figure 5B, and t4399 = 0.002, p = 0.001: Figure 5D,
Table S4). Additionally, the transcript expression levels of ApsNPF and ApsNPEFR were
upregulated with increasing stress of starvation hours.
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Figure 5. Effect of starvation on the transcript expression of ApsNPF and ApsNPFR in the adult whole
body (A,C) and central nervous system (CNS) (B,D). The bars correspond to the average of three
independent biological replicates. Results are shown as means + S.E. Asterisks on bars indicate
significant difference between the fed and the starved aphid calculated using statistical analysis
(independent student t-test, ** p < 0.01; *** p < 0.001).

3.4. RNAi-Mediated Silencing of ApsNPF and ApsNPFR via dsRNA Injection

We investigated the fluctuation in transcript expression of ApsNPF and ApsNPFR via
qRT-PCR after RNAi-mediated silencing. The transcript levels of ApsNPF and ApsNPFR
were significantly downregulated after 12 h by ~62% and ~32%, respectively (ts 312 = 2.20,
p < 0.05: Figure 6A, and ty3, = 1.84, p < 0.05: Figure 6B, Table S5). The inhibitory effect
of ApsNPFR was not long-lasting compared to ApsNPFE. We still detected a significant
reduction in the transcript level of ApsNPF at 36 hpi (t4333 = 0.76, p < 0.05), whereas
the transcript level of ApsNPFR was significantly lower only up to 24 hpi (t4351 = 0.97,
p <0.05).
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Figure 6. RNAi-mediated knockdown of sNPF (A) and sNPFR (B) expression levels in A. pisum.
The transcript patterns in pea aphids injected with sNPF (or sNPFR) dsRNA and GFP dsRNA
(control) were measured via qRT-PCR and normalized against RPL7. Acronyms used on X-axis:, hpi
(hours post-injection). The bars correspond to the average of three independent biological replicates.
Statistical analysis was performed using Student’s t-test (mean & S.E.; * p < 0.05; ** p < 0.01).

3.5. Effect on Feeding Behavior after ApsNPF and ApsNPER Silencing

The variation in probing and feeding behavior duration was studied via EPG after
RNAi-mediated silencing of sNPF and sNPFR as treatment and dsGFP as a control group.
We chose 19 and 14 EPG parameters related to probing (Table 1) and phloem activities
(Table 2), respectively. The activity of the stylet to reach the phloem was delayed in the
dssNPF and dssNPFR treatment groups compared to the dsGFP control group (p < 0.001).
Nevertheless, the number of total stylet probes prior to arriving at the phloem did not
differ between the control and treatment groups (p = 0.183). The number of probes and
total probing time were significantly lower in the treatment groups compared to the control
group (p = 0.011 and p < 0.001, respectively). Resultantly, the period of the no-phloem stage
significantly increased in the treatment groups (p = 0.045).

Table 1. Results for the EPG variables related to probing behavior (from initiation of EPG to before
reaching the phloem) of A. pisum in the dssNPF and dssNPFR treatments, as well as dsGFP control
groups, on broad bean seedlings.

Tissue Specificity Parameters dsGFP dssNPF dssNPFR
Epidermis Time of start of EPG to 1st probe (s) 291 +0.05°¢ 14.41 +£2.14° 820 + 0.86°
Time from 1st probe to 1st E2 (s) 7621 + 1424 ° 11786 & 865 2 10290 =+ 590 2b
Duration of 1st probe (s) 2084 £ 1532 1583 + 153 P 1699 + 97 2b
Epidermis and Duration of the non-probe period before the 1st E (s) 1365 + 61P 1749 + 1202 1688 + 108 @
mesophyll Number of probes to the 1st E 8240342 7540272 7.65+0.202
Number of F 2.35+0352 125+ 023" 1.55 +0.32%
Total duration of F (s) 62.0+9.6° 39.3+89° 419+952
Mean duration of F (s) 273 +512 23.6 +582 19.8+5.272
Time from 1st probe to 1st sustained E2 (>10 min) (s) 8298 4+ 1530 P 13649 + 7722 11078 & 630 3
Number of probes 12.35 £0.33 2 10.8 +0.40° 11.05 4+ 0.40 °
Total probing time (s) 28617 £432 23157 + 733 b 24121 + 453 b
Number of short probes (C < 3 min) (s) 5.69 + 0472 647 +1.24%2 6.13+0412
. Number of C 104 +0.832 945 +0.5442 9.75 £ 0562
All tissues Total duration of C (s) 9847 4+ 932 b 12631 + 809 12443 + 829 2
Mean duration of C (s) 847 + 3772 734 + 4342 757 +402
Number of np 9.15+0.78" 12.7 &£ 1222 12.1 £1.052b
Total duration of np (s) 3054 + 2982 3920 + 3972 3717 £3592
Mean duration of np (s) 264 +£282 403 £502 364 £ 882

Total duration of no phloem phase (s)

18729 + 981

22248 + 10252

21661 +£11192

Abbreviations used in the second column: s (seconds). Results are shown as mean =+ SE. Different lowercase
letters in the same row indicate significant difference at p < 0.05 level by LSD test.
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Table 2. Comparison of feeding behaviors related to phloem activity of A. pisum in the dssNPF and
dssNPFR treatments, as well as dsGFP control groups, on broad bean seedlings.

Tissue Specificity

Parameters

dsGFP

dssNPF

dssNPFR

Epidermis and

Time from start of EPG to 1st E2 (s)

8151 + 1600 b

12703 £+ 754 2

10633 + 619 2P

mesophyll
All tissues Time from start of EPG to 1st E2 (s) 9005 = 1646 P 13724 + 8162 11194 + 824 2
Time from start of EPG to 1st sustained E2 (> 10 min) (s) 9615 4 1744 P 14424 + 8212 13411 £ 5832
Phloem Number of E1 46040292 355+ 0.25b 370+031b
Number of E2 43540312 3154 034" 3.354+0.34°
Number of single E1 0.60 £0.11P 1.15+0.182 1.00 + 0.12 @b
Number of sustained E2 (> 10 min) 240+0.192 1.754+0.19b 1.95 + 0.15 2P
Total duration of E (s) 10530 £+ 1014 @ 6025 4+ 1014 P 7563 & 1085 P
Total duration of E1 (s) 265 +282 184 + 20" 191 £ 26°
Total duration of E2 (s) 11674 £ 13012 5788 + 1031 P 7181 & 1021 P
Mean duration of E1 (s) 65.8 4332 59.9 +2902 639+1792
Mean duration of E2 (s) 5933 + 467 2 2872 4+ 1020 3412 + 1008 P
Duration of 1st E (s) 5172 4 347 2 2842 4+ 519 b 3228 4+ 1021 2b

Duration of the longest E2 (s)

8543 + 12362

4096 + 1027

5112 4+ 1146

Abbreviations used in the second column: s (seconds). Results are shown as mean + SE. Different lowercase
letters in the same row indicate significant difference at p < 0.05 level by LSD test.

As aphids are phloem-sucking insects, the initial insertion of the stylet in the phloem
was delayed from ~2.2 h (dsGFP group) to 3.5 h and 2.9 h in the dssNPF and dssNPFR group,
respectively, as mentioned by “Time from start of EPG to 1st E” (p = 0.009). The complete
period of E, E1, and E2 waves was decreased in the treatments (p = 0.011, p = 0.046, and
p = 0.001, respectively). The number of E1 and E2 waveforms also decreased significantly
in the treatments (p = 0.027, p = 0.031, respectively). Likewise, mean duration of E2 and
longest E2 were reduced in the treatments (p = 0.036, and p = 0.020, respectively).

3.6. Effect of sNPF Silencing on Aphid Reproduction and Survival

After injecting dssNPF, dssNPFR, and dsGFP, we observed and recorded the aphid
reproduction rate and survival until the progeny ceased. The maximum reproduction was
seven and eight nymphs per day in the dsGFP and non-injected control groups, whereas
maximum reproduction was five and seven nymphs per day in the dssNPF and dssNPFR
treatments, respectively. The total numbers of N1 nymphs was significantly lower in the
dssNPF treatment, namely 38 per adult, compared to the control, with 61 and 71 per adult in
the dsGFP and non-injected group, respectively. However, the total number of N1 nymphs
was 59 in the dssNPFR treatment. (F3 5 = 14.6, p < 0.001: Figure 7A).

A B
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&
= @ 0.6
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2 ] z E L
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Figure 7. Influence of sNPF silencing on A. pisum reproduction and survival. (A) Reproduction rates in

the sNPF group and the two control groups. The bars correspond to the average of three independent
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biological replicates. Different letters on bars indicate the statistical difference at the 0.05 level.
(B) Survival analysis by Kaplan—Meier log-rank analysis showed no difference in survival between
the sNPF treatment group and the control group (p > 0.05). Acronym used on X-axis: dai (days
after injection).

The first dead aphid in the dssNPF and dssNPFR treatments and dsGFP control sample
was observed on the second day after the microinjection, but there was no mortality in the
non-injected group. Kaplan-Meier survival analysis showed that the dsGFP, dssNPFR, and
dssNPF groups did not differ significantly in overall survival. However, the cumulative
survival rate was reduced in the dssNPF group compared to the dssNPFR, dsGFP, and
non-injected groups (p > 0.05: Figure 7B).

4. Discussion

The current study elucidates the sSNPF precursor and predicted sSNPF receptor charac-
terization and function in an important model insect and crop pest, A. pisum. We amplified
the ApsNPF peptide, predicted ApsNPFR cDNA sequence, and studied feeding behavior
by applying RNAi bioassay. Furthermore, we observed the effect of SNPF and sNPFR
silencing on aphid reproduction and survival.

There is significant variation among the neuropeptides that originate from the sNPF
family. Hence, we identified that the gene structure encoding the sNPF peptide is greatly
variable. Consequently, the number of introns interrupting the coding sequence range
from two to four across the different insect species. Similarly, the number of exons among
different insect species varies from three to five. We also compared the sNPF isoforms with
other hemipterans (Myzus persicae and N. lugens), coleopterans (T. castaneum and Aethina
tumida), and hymenopterans (Apis mellifera and Camponotus floridanus), which encode a
single form of sSNPF. In contrast, lepidopterans (B. mori and Spodoptera frugiperda) encode
three (sNPF1-3), and dipterans (D. melanogaster and Aedes albopictus) encode four (SNPF1-4)
isoforms derived from the identical SNPF precursor (Figure 1C). However, we discovered
a consistent feature: the intron position is located after the N-terminal signal peptide in
the observed species. Although a previous study suggested that holometabolous insects
typically have longer sNPF precursors than hemimetabolous insects, as well as multiple
sNPF isoforms [7], this does not seem to be true for all holometabolous.

The spatial distribution of SNPF and sNPFR in A. pisum was very high and restricted in
the CNS, but the receptor was also detected in the antennae, midgut, and integument. Over
the different developmental stages of A. pisum tested, the SNPF precursor and receptor were
present in all stages of nymphs and adults, with a higher expression in first instar nymphs.
This transcript profile is identical to that of Drosophila, where enormous neurons denoting
sNPF existed in the CNS of the larva and adult stage [48]. However, our findings contradict
those reported for Glossina morsitans, where an absence of SNPF and sNPFR expression was
found in the larval instars due to differences in larval feeding behavior [49]. At the cellular
level in Drosophila, peptides of sSNPF were found to be colocalized in a wide array of neurons,
and these neurons ramify in the neuropil cites of the larval CNS [9]. As Nagata et al. [29]
and Root et al. [30] documented, the role of sNPF is in feeding initiation and food-seeking
behavior. We assume that the detection of ApsNPF and ApsNPER in all stages indicates their
role in regulating food initiation, growth, and development, particularly in the early instars.

Intriguingly, expression of sNPF was not detected in the A. pisum midgut in this
research, denoting that endocrine cells of the midgut do not produce sNPF (or if so, rarely),
which is similar to Drosophila adults [27,48] and S. gregaria [12]. However, these findings
contrast those reported for Periplaneta americana and A. gambiae, where bountiful expression
was detected in the midgut because numerous sNPF colocalized with nerves compared to
former species [46,50].

The highest expression of the ApsNPF receptor was detected in the CNS, which is
identical to pre-existing observations [6,11,13,28,50]. It was surprising that expression of
ApsNPFR was also found in the antennae, midgut, and integument, and this is similar to
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D. melanogaster and B. mori, although it contradicts observations in S. gregaria [11,13,48].
Further study of sSNPFR in Drosophila revealed that olfactory receptor neurons (ORNs) have
axons that extend from their antennae, which terminate in the glomeruli, and sSNPFR was
immunostained in the ORNSs of the antennae [51]. As expected, bountiful expression of
sNPFR was detected in the CNS and antennae of Drosophila [30]. We believe that these
observations suggest that SNPF plays a role as a neuromodulator [7] to shape the olfactory
behavior of A. pisum, which is similar to conclusions of previous studies [8,13,17]. These
observations indicate that SNPF plays a hormonal role in digestion and olfaction.

Starvation is one of the common stresses that stimulate olfaction and locomotion to
facilitate foraging behavior and the acquisition of nutrients for survival [52]. Interestingly,
sNPF expression and starvation correlated differently in different species. The expression
pattern of SNPF and sNPFR was upregulated during starvation stress in the CNS along the
entire body, which indicates that the transcript levels depend on the nutritional state of the
insect. The observation regarding the starvation-induced expression of SNPF and sNPER in
the brain contrasts with B. mori and S. gregaria [10,12,13], where the transcript profile of both
genes was downregulated in response to starvation. The correlation between starvation
stress and transcript expression may be due to the difference in the physiology of feeding
behavior in the mentioned species. Starvation induces transcript expression of sNPF
and sNPFR in A. pisum, which is similar to the other two dipterans, D. melanogaster [30]
and B. dorsalis [17]. Our results showed that SNPFR was detected in the CNS, antennae,
and midgut, which indicates that SNPF signaling not only exhibits a starvation-induced
property but can also play a role as a neural modulator in A. pisum in response to starvation,
similarly to Drosophila [52].

The primary documented role of sNPF discovered within the physiology of insects
is feeding. To identify the function of sNPF signaling in A. pisum, we knocked down
sNPF and its receptor. We studied feeding behavior using the EPG technique by means
of dssNPF and dssNPFER injection. The silencing of sSNPF and its receptor decreased the
probing duration and delayed the period of phloem sap ingestion. This revealed that the
sNPF signaling cascade regulates aphid feeding. Our results are in agreement with those
reported for Drosophila and Bactrocera, where sNPF peptides increased the hunger behavior
towards feeding [17,30,52]. Another interesting observation with Drosophila sNPF peptides
is that they can modulate the feeding rate and affect insulin-like peptides (DILP) in growth
regulation. Feeding assays instantiated that gain-of-function sNPF flies showed higher food
intake, and overexpression produced bigger and heavier flies than loss-of-function sSNPF-
RNAIi congeners [27,53]. Similarly, in A. mellifera and B. mori, the family of sNPF peptides
stimulated food-searching or feeding behavior and acted as a stimulatory peptide [28,29].
However, all of these observations contrast with S. gregaria and Aedes aegypti, where sSNPF
signals inhibited the feeding process and RNAi-mediated knockdown of sNPF signals
haphazardly increased their feeding in these species [13,31].

Finally, silencing of sNPF affected feeding in pea aphids, as well as their reproduction,
but it did not reduce survival. It might be that sNPF silencing lasted for a shorter period or
nutritional deficiency was not strong enough to cause death but affected reproduction only.
In Rhopalosiphum padi, the sNPF silencing period increased the death rate in response to
pesticide exposure and decreased adult longevity [20]. Previously, Will and Vilcinskas [54]
observed that aphids sacrifice their reproduction ability to survive a condition of low/no
nutrition availability.

As an important outcome of this project, our data explicitly linked sNPF/sNPFR
signaling and feeding. Therefore, we believe the results advance our current knowledge of
the sNPF/sNPEFR signaling cascade and its place in regulating feeding behavior in insects.
In turn, this research may contribute to the design of new strategies to control aphids, with
a focus on the sNPF system.
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5. Conclusions

In this project, we characterized sNPF and its receptor in the pea aphid A. pisum
and discovered that SNPF was expressed at high levels in the CNS, whereas sNPFR was
detected in CNS, midgut, and antennae. In addition, there was a starvation-induced
expression, indicating that the transcript levels depend on the insect’s nutritional state and
may stimulate locomotory behavior to obtain food. Indeed, the EPG recordings with dsSRNA
against sNPF and sNPFR confirmed the regulation of food uptake and feeding-related
behavioral processes. Hence, the RNAi assays demonstrated effects on aphid reproduction.
We believe these data increase our current understanding of the feeding mechanism and its
regulation in aphids, such as A. pisum, and provide insight into the biological role of sSNPF
and its receptor.
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Table S3: Accession number of genes used for phylogenetic analysis, Table S4: The Ct values of
qRT-PCR result obtained from the fed and starvation experiment. Table S5: Ct values of qRT-PCR
obtained from the spatiotemporal expression and gene silencing experiment, Figure S1: Reverse
transcription-polymerase chain reaction (RT-PCR) analysis of starvation with sNPF (A) and sNPFR
(B) compared with the expression of ribosomal protein L7 (RPL7).
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