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Abstract

Objective: Ultrasound is an effective tool for rapid non-invasive assessment of cardiac structure 

and function. Determining the cardiorespiratory phases of each frame in the ultrasound video and 

capturing the cardiac function at a much higher temporal resolution is essential in many 

applications. Fulfilling these requirements is particularly challenging in preclinical studies 

involving small animals with high cardiorespiratory rates, requiring cumbersome and expensive 

specialized hardware.

Methods: We present a novel method for the retrospective estimation of cardiorespiratory phases 

directly from the ultrasound videos. It transforms the videos into a univariate time-series 

preserving the evidence of periodic cardiorespiratory motion, decouples the signatures of 

cardiorespiratory motion with a trend extraction technique, and estimates the cardiorespiratory 
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phases using a Hilbert transform approach. We also present a robust nonparametric regression 

technique for respiratory gating and a novel kernel-regression model for reconstructing images at 

any cardiac phase facilitating temporal super-resolution.

Results: We validated our methods using 2D echocardiography videos and electrocardiogram 

(ECG) recordings of 6 mice. Our cardiac phase estimation method provides accurate phase 

estimates with a mean-phase-error-range of 3–6% against ECG derived phase and outperforms 

three previously published methods in locating ECGs R-wave peak frames with a mean-frame-

error-range of 0.73–1.36. Our kernel-regression model accurately reconstructs images at any 

cardiac phase with a mean-normalized-correlation-range of 0.81–0.85 over 50 leave-one-out-

cross-validation rounds.

Conclusion and Significance: Our methods can enable tracking of cardiorespiratory phases 

without additional hardware and reconstruction of respiration-free single cardiac-cycle videos at a 

much higher temporal resolution.
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I. Introduction

Cardiovascular disease is the leading cause of death worldwide and ultrasound is an effective 

tool for rapid noninvasive assessment of cardiac structure and function [1]–[3]. Knowledge 

of the phase or location of each video frame within the cardiac and/or respiratory cycle is 

essential in many applications (e.g. gating [4], quiescence detection [5], 3D reconstruction 

[6]) and the ability to capture cardiac function at a high temporal resolution is vital for 

accurate diagnosis (e.g. wall and valve motion assessment) [3]. Typically, cardiac phase is 

tracked by a simultaneously acquired ECG or pulseoximetry signal and respiratory phase is 

tracked by motion of markers placed on the subject’s body [6]–[8]. Setting up such hardware 

is cumbersome particularly in pre-clinical studies involving small animals [1]. Moreover, 

frame rates of affordable commercial ultrasound transducers fall short in imaging small 

animals such as mice with high heart (310–840 BPM) and respiration (80–230 BPM) rates 

[9], [10]. In particular, there are very short-lived events within the cardiac cycle (specifically 

peak systole and diastole) that require ultrahigh temporal sampling. Previous studies have 

shown that frame rates of up to 2000–2700 Hz (250–350 frames/cardiac cycle) were 

required to capture the minute deformations for cardiac strain estimation [11]. To achieve 

such high frame rates, specialized hardware (e.g. retrospective ECG gating, plane wave 

imaging) has typically been utilized [3], [9], [10].

Contributions.

In this paper, we present a method for retrospective estimation of instantaneous cardiac and 

respiratory phases directly from cardiac ultrasound videos. We also present a robust non-

parametric regression technique for gating out respiratory frames and a kernel regression 

model for reconstructing images at any cardiac phase to facilitate temporal super-resolution.
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Related prior work.

Previous work on the estimation of cardiac and/or respiratory phases directly from 

ultrasound echocardiography videos is limited. In [14], Karadayi et al. compute a signal of 

the x- or y-coordinate of the center-of-mass of each frame, use a band-pass filter to remove 

frequencies outside the cardiac range, determine the dominant frequency in the periodogram, 

and apply matched filtering using single-period sine and cosine signals at the dominant 

frequency to estimate the instantaneous cardiac phase. However, the center-of-mass signals 

may not be reliable in all scenarios. In [4], Sundar et al. compute a signal of phase 

correlation between consecutive frames and apply a band-pass and low-pass filter to obtain 

an estimate of the instantaneous cardiac and respiratory phases, respectively. Phase 

correlation encodes global translation in the image plane and cannot model out-of-plane 

motion of the beating heart present in our data. In [15], Wachinger et al. use a manifold 

learning or non-linear dimensionality reduction technique called Laplacian Eigenmap to 

learn the low-dimensional manifold of the image sequence embedded in high-dimensional 

space and project the images onto the first eigen direction of the Laplacian of the image 

similarity graph to obtain a 1D signal encoding respiratory motion. In [16], Panayiotou et al. 
use a series of image filtering operations to obtain a binary mask of pixels predominantly 

affected by cardiac/respiratory motion, apply a linear dimensionality reduction technique 

called principal component analysis (PCA) on the intensities of image pixels within the 

binary mask, project the images onto the principal directions with high variation to extract 

1D signals encoding cardiac/respiratory motion, and postprocess these signals by 

suppressing undesired frequencies in the frequency domain. While the aforementioned 

approaches based on manifold learning and masked PCA are promising and generally 

applicable, in this paper, we present a method that can estimate the cardiac phases more 

accurately. Instead of using dimensionality reduction methods such as PCA or manifold 

learning to implicitly derive intermediate representations decoupling the cardiac and 

respiratory motion, our method explicitly addresses this problem through a trend extraction 

technique that works directly on the inter-frame similarity in the original high-dimensional 

space. It then goes a step further and estimates the instantaneous cardiac and respiratory 

phases of each frame using a Hilbert transform approach that is shown to be less sensitive to 

small short-lived fluctuations [13].

II. Method

In this section, we present the theory underlying the proposed methods along with visual 

illustrations of the intermediate results to help understand the underlying concepts. In 

Section II-A, we describe our method for estimation of instantaneous cardiac and respiratory 

phases (Figure 1). In Section II-B, we present a robust method to exclude video frames with 

significant respiratory motion. In Section II-C, we present a kernel regression model for 

reconstructing images at any cardiac phase facilitating temporal super-resolution.

A. Estimation of cardiac and respiratory phases

While there have been numerous efforts for the estimation of instantaneous phase and/or 

frequency in periodic univariate time series data [12], [13], [17]–[19], the methods that 

tackle this problem in a multivariate setting such as the case of cardiac ultrasound videos 
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wherein thousands of variables (pixel intensities) are involved is limited. Our strategy is to 

transform this complex multivariate problem into a univariate one and take advantage of 

existing methods to solve the problem.

We first compute the similarity between all pairs of images/frames in the given quasi-

periodic image sequence containing N frames to create a symmetric matrix S ∈ RN×N 

wherein the element S(i,j) is equal to the similarity between the ith and jth frame. Each row 

in the inter-frame similarity matrix S can now be seen as a univariate time series. The inter-

frame similarity metric must be chosen such that this time series preserves the periodicity 

characteristics of cardiorespiratory motion in the original image sequence. Here, we use 

normalized correlation to quantify inter-frame similarity; but in principle, other image 

similarity metrics can be used [20]. Figure 2(a) shows the inter-frame similarity matrix of 

one of our cardiac ultrasound videos wherein the periodicity characteristics of low-frequency 

respiratory motion and high-frequency beating heart motion can be observed. Notice that the 

rows of this matrix appear to be a superposition of two near-sinusoidal signals with the 

periodic signatures of cardiac and respiratory motion, respectively.

Next, we use a trend extraction technique called the Hodrick-Prescott (HP) filter [21] to 

decouple the periodic signatures of cardiac and respiratory motions from the frame 

similarity signal ui(t) corresponding to each row i of the matrix S by decomposing it into a 

sum of two components: (i) lower frequency trend component τresp
i (t) with periodicity 

characteristic of only respiratory motion, and (ii) higher frequency residual component 

rheart
i (t) with periodicity characteristic of only beating heart motion. The HP filter performs 

the decomposition of ui(t) = τresp
i (t) + rheart

i (t) by solving the following optimization 

problem:

arg min
τresp
i (t)

∑
t = 1

N
ui(t) − τresp

i (t) 2 + λ ∑
t = 1

N − 1
∇2τresp

i (t) 2
(1)

where ∇2τresp
i (t) = τresp

i (t + 1) − 2τresp
i (t) + τresp

i (t − 1) is the second-order difference or 

derivative of the trend signal and λ is a penalty parameter to control the smoothness of the 

trend component. λ should be set to a value that results in a good separation between the 

periodograms or power-frequency distributions of the resulting trend and residual 

component signals. This may depend on the frame rate of the ultrasound video and the heart/

respiration rate of the subject. We set λ = 6400 for all our experiments unless stated 

otherwise. Let Sresp and Sheart be the matrices whose rows contain the trend/respiratory and 

residual/heart-beat components (Figures 2(b,c)), respectively, of the frame similarity signal 

in the corresponding rows of matrix S. We then select the trend/respiratory and residual/

heart-beat component signals corresponding to one of the rows in S for phase estimation. A 

natural question that arises now is which of these rows is a better choice for phase 

estimation. We devised a procedure to make this choice objective based on the notion that if 

the HP filter was successful in decoupling the periodic signatures of cardiac and respiratory 
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motion, then the resulting trend/respiratory and residual/heart-beat component signals must 

be as near-sinusoidal or narrow-banded as possible. For each row i in the inter-frame 

similarity matrix S, we compute the periodogram or power-frequency distribution pi(f) of its 

heart-beat component signal, normalize it to sum to 1 to be treated as a probability 

distribution, and compute its entropy Ei pi = − ∑ f pi( f )log pi( f ) . The smaller this entropy 

value, the more narrow banded it would be. Hence, we select the row with the smallest 

entropy value. Let u(t) be the frame similarity signal of the selected row and let τresp(t) and 

rheart(t) be its trend and residual components (Figure 2(d)) that we will henceforth refer to as 

respiration and heart-beat signals, respectively. To suppress undesired frequencies, we apply 

a low-pass filter with a typical mice respiration cutoff frequency of 230 BPM to the 

respiration signal τresp(t) and a band-pass filter within the typical mice heart frequency range 

of 310–840 BPM to the heart-beat signal rheart(t).

Next, considering the narrow-band near-sinusoidal nature of the respiration and heart-beat 

signals (Figure 2(e)), we use the concept of the analytic signal involving the Hilbert 

transform as introduced by Gabor to estimate the instantaneous phase of each frame [12], 

[13], [22], [23]. Specifically, we compute the instantaneous phase ϕ(t) ∈ [−π,π) of a 

periodic time series x(t) to be the instantaneous phase of its analytic signal Ax(t) = x(t)

+iHx(t) involving its Hilbert transform Hx(t) as follows: ϕ(t) = arctan
Hx(t)
x(t)  and map ϕ(t) 

from [−π,π) to [0,1). Let ϕheart(t) and ϕresp(t) denote the instantaneous cardiac and 

respiratory phases (Figure 2(f)) computed from the respiration and heart-beat signals, 

respectively.

B. Gating out respiratory frames

Once the cardiac and respiratory phases of each frame have been estimated, they can be used 

to select or filter out frames from a desired part/point in the periodic cycle, a process 

commonly referred to as gating. In this section, we present a robust two-step method that 

uses these phase estimates to filter out video frames with significant respiratory motion.

In the first step, based on the observation that heaviest amount of the respiratory motion 

occurs within a short interval around the minima of the respiration signal τresp(t) (pink curve 

in Fig. 2(d)) with respiratory phase ϕresp(t) = 0, we perform a rough initial gating by 

discarding the frames Fcuto f f = t |ϕresp(t) < c ∨ ϕresp(t) > (1 − c)  whose phase distance 

from ϕresp(t) = 0 is below a specified cutoff value c = 0.2 chosen empirically. Figure 3(a) 

shows the discarded frames Fcutoff overlaid on the respiration τresp(t), heart-beat rheart(t), 

and respiratory phase ϕresp(t) signals.

In the second step, we learn a regression function L(ϕheart) : [0,1) → R to predict the frame 

similarity signal value for any cardiac phase by fitting a robust non-parametric regression 

model called Locally Weighted Regression (LOWESS) [24] to the dataset 

Chittajallu et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ϕheart(t), u(t) | ∀t ∉ Fcuto f f  containing the pair of the cardiac phase ϕheart(t) and frame 

similarity signal u(t) values of all frames that do not belong to the set of frames Fcutoff 

discarded in the first step above. Given any cardiac phase, LOWESS regression takes k-

nearest training samples based on their cardiac phase values and uses iterative weighted 

linear regression to predict the corresponding frame similarity signal value. This local fitting 

approach enables LOWESS regression to model a much wider class of functions than is 

possible with parametric approaches such as polynomial regression. Next, we compute a 

robust estimate of the standard deviation σL of non-respiratory frames around the LOWESS 

fit based on the median absolute deviation between the LOWESS fit L(ϕheart(t)) and frame 

similarity signal u(t) for all frames. Lastly, we gate out all frames 

Fresp = t: |u(t) − L(ϕheart(t))| > k × σL  whose frame similarity signal value is below the 

LOWESS fit by more than k = 2.0 (95% confidence interval) times the standard deviation σL

(Figure 3(b)). Figure 3(d) shows an m-mode view of one of our videos along the m-mode 

line shown in Figure 3(c). Figures 3(e,f) show the m-mode sequence ordered by the cardiac 

phase derived from the ECG signal and the cardiac phase estimated using our method, 

respectively, that look very similar. Notice the jaggedness/discontinuities along the 

horizontal direction at chamber wall in both these images that is caused by large movements 

induced by respiratory motion. Figure 3(g) shows the result obtained by ordering the m-

mode sequence by the cardiac phase estimated using our method and gating out the 

respiratory frames using the method described above. Notice the significant reduction in the 

jaggedness/discontinuities after gating out or discarding the frames with heavy respiratory 

motion.

C. Model to reconstruct images by cardiac phase

In this section, we present a kernel regression model to reconstruct the image at any cardiac 

phase. This model can then be used to generate a single-cycle video representative of the 

subject’s heart-beat at a higher temporal resolution from a low-frame rate video of multiple 

heart beats. Given a cardiac ultrasound video I(t) : {1,...,N} → Rm of N frames with m 
pixels each, we estimate the instantaneous cardiac phase ϕheart(t) of each frame and compute 

the robust LOWESS fit L(ϕheart) : [0,1) → R that maps cardiac phase to its frame similarity 

signal value as described in Sections II-A and II-B. We then use Nadarya-Watson (NW) 

kernel regression [25] to learn a function M(ϕheart) : [0,1) → Rm that reconstructs the image 

for any cardiac phase ϕ using a kernel-weighted local average as follows:

M ϕheart =
∑t = 1

N K ϕheart, ϕheart(t) I(t)
∑t = 1

N K ϕheart, ϕheart(t)
(2)

wherein we define the kernel 

K ϕheart, ϕheart(t) = exp −
ϕheart − ϕheart(t)

2

2σϕ
2 × exp −

L ϕheart − u(t) 2

2σL
2  as the product of two 

radial-basis function (RBF) kernels. The first RBF kernel gives higher weights to images 

Chittajallu et al. Page 6

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whose cardiac phase is closer (accounting for periodicity) to the target phase. Its bandwidth 

σϕ is set equal to a constant kϕ = 0.4 times the median difference in cardiac phase between 

consecutive frames of the given image sequence. The second RBF kernel gives higher 

weights to images whose frame similarity signal value is close to the LOWESS prediction 

L(ϕheart). Its bandwidth σL is set equal to a constant kL = 2.0 times the robust estimate of 

standard deviation σL of non-respiratory frames (∀t /∉ Fresp) around the LOWESS fit. As a 

result of this, frames with heavy respiratory motion will get very low weight values even if 

their cardiac phase is similar to the target phase. Figure 4(a) shows bandwidth of the kernel 

in phase and similarity space. The model M(ϕheart) can now be used to reconstruct a single-

cycle video representative of the subject’s heart-beat by generating images at any desired 

resolution/sampling of phases in the range [0,1). Figures 4(b,c) show m-mode views of the 

single-cycle videos reconstructed at 1x, 2x, 4x, and 8x temporal magnification using the NW 

kernel regression model with the proposed bivariate RBF kernel defined in both cardiac 

phase and frame similarity space vs a univariate RBF kernel defined in cardiac phase space 

only.

III. Experimental Data and Results

We used 2D cardiac ultrasound or echocardiography videos and simultaneously captured 

ECG recordings of 6 anesthetized mice to validate our methods. The ultrasound videos were 

acquired using the VisualSonics Vevo 2100 scanner at 233 frames per second (FPS). Each 

video consists of approximately 300 frames, 11 cardiac cycles, and 2 respiratory cycles.

We validated the cardiac phase estimates of our method by comparing them with the cardiac 

phase derived from the ECG signal which is the gold standard for cardiac gating. Figure 1(a) 

presents a visual comparison between the cardiac phase derived from the ECG signal 

through linear interpolation between R-wave peaks [12], [13] and the cardiac phase 

estimated directly from the video using our method on one of the 6 videos. Figure 1(b) 

presents a visual comparison of five video frames evenly spaced in time between two 

consecutive R-wave peaks of the ECG signal (top-row) and the corresponding minima of the 

cardiac phase signal computed using our method (bottom-row). Table I reports statistics of 

the error between the cardiac phases estimated by our method and the cardiac phases derived 

from the ECG signal for all the 6 videos where in the phases are in the normalized [0,1] 

range.

Next, we compared the performance of our phase estimation method with three previously 

published methods, namely: Phase correlation approach of Sundar et al. [4], Manifold 

learning approach of Wachinger et al. [15], and the Masked PCA approach of Panayiotou et 
al. [16]. For the phase correlation approach, we applied a bandpass filter in the mice cardiac 

frequency range (310–840 bpm) to the phase correlation signal to extract the cardiac signal. 

For the manifold learning approach, we project the high-dimensional image sequence onto 

the second principal direction and apply a band-pass filter in the mice cardiac frequency 

range (310–840 bpm) to extract the cardiac signal. For the Masked PCA approach, we 

compute the binary mask by thresholding the response of Frangi’s vesselness filter tuned to 

enhance the moving heart chamber walls that look like ridges, perform PCA on the 

intensities of pixels within the binary mask, project the high-dimensional image sequence 
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onto the second principal direction (projection onto the first principal direction only encodes 

respiratory motion in our data), and apply a band-pass filter in the mice cardiac frequency 

range to extract the cardiac signal. Note that each of these three prior works only propose a 

method for deriving a 1D signal reflecting the periodicity characteristics of the cardiac/

respiratory motion in the given image sequence. They do not provide an approach to 

compute the instantaneous phase from the derived signal. Hence, we compare the 

performance of these methods with ours in localizing the R-wave peaks of the ECG signal 

that corresponds to the peaks/valleys of the 1D signals derived by these methods. Table II 

reports the mean ± stddev frame error of different methods in locating the video frames 

corresponding to the R-wave peaks of the ECG signal for all 6 videos where in the result of 

the best performing method for each video is highlighted in bold. Note that the average 

duration between two consecutive frames is 4.29 ms and the length of cardiac cycle in our 

videos is 27.27 frames or 116.98 ms.

Next, we validated the accuracy of our kernel regression model for reconstructing images at 

any cardiac phase using leave-one-out-cross-validation (LOOCV). In each round of cross-

validation, we randomly pick one of the non-respiratory frames in the video, hold out the 

selected frame along with corresponding frames (closest in phase) in each cycle, fit our 

kernel-regression model on the remaining frames, use the fitted model to reconstruct the 

image at the cardiac phase of the held out frames, and compute the similarity between the 

reconstructed and original image using normalized correlation. The second column of Table 

III shows the mean ± stddev of normalized correlation between the reconstructed and the 

original images over 50 rounds of LOCCV for all 6 videos. As a baseline, the third column 

of Table III reports the mean±stddev of the normalized correlation between frames at R-

wave peaks of the ECG signal.

Lastly, we evaluated the quality of the single cycle videos reconstructed using our kernel 

regression model at different levels of temporal magnifications as described below. For each 

of the 6 videos in our dataset, we created the groundtruth single cycle video by cropping out 

the portion between two consecutive ECG R-wave peaks wherein the respiratory motion is 

minimal. We then temporally down-sampled each video by increasing factors between 1x 

(233 FPS) and 5x (47 FPS), reconstructed the single cycle video back at the original 

temporal resolution using our kernel regression model, and computed its similarity with the 

ground truth using normalized correlation. To avoid any potential bias towards the phase of 

the starting frame, we created the down-sampling videos starting from 7 random points in 

the first 14 frames (equal to half of the cardiac cycle length) and computed the mean and 

standard-deviation (stddev) of the similarity of the reconstructed videos with the ground 

truth. Figure 5 shows the results of this experiments. Note that the frame rate of our videos is 

233 FPS and the average heart rate of the mice in our dataset is 512 bpm. A 5x factor of 

down-sampling results in a 46 FPS video with only 5 frames per cardiac cycle beyond which 

the phase estimation begins to break down.

The supplementary material includes videos showing the instantaneous cardio-respiratory 

phases obtained using our phase-estimation method and the single-cycle videos at 1x, 2x, 

4x, and 8x temporal magnification generated using our kernel regression model for one of 

the 6 videos in our dataset.
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IV. Conclusion

In this paper, we presented a novel method for retrospective estimation of instantaneous 

cardio-respiratory phases directly from cardiac ultrasound videos, thereby eliminating the 

need of additional hardware to track them in, for example, small animal studies. We also 

presented a robust non-parametric regression technique for gating out respiratory frames and 

a novel kernel regression model for reconstructing images at any cardiac phase to facilitate 

temporal super-resolution.

We next plan to evaluate our methods on more datasets and address remaining pitfalls. Our 

phase estimation method makes a strong assumption of periodicity which may not hold in 

the case of subjects with cardiac arrhythmia. To address this, we will look into univariate 

methods for phase estimation in quasi-periodic signals that are more resilient to noise [18], 

[19], [26]. The use of normalized correlation to measure interframe similarity relies on an 

inherent assumption that a large part of the image is pulsating. To relax this, we will explore 

local patch-based similarity measures. Lastly, the local kernel weighted average in our NW 

kernel regression model may cause blurring at high temporal magnifications. We plan to 

alleviate this using a manifold kernel regression approach wherein the weighted average is 

computed in a diffeomorphic registration sense [27]. Source code1 of the proposed methods 

and the data2 used to validate them are available online.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of the close match between the cardiac phase derived from the ECG signal and 

the cardiac phase estimated using our method: (a) ECG signal simultaneously acquired with 

the image sequence (blue) overlaid with peaks of the R-wave in each cardiac cycle (red dot/

circle), cardiac phase derived from the ECG signal (Pink dashed line) through linear 

interpolation between R-wave peaks [12], [13], and the cardiac phase estimated directly 

from the image data using our method (green solid line) overlaid with the corresponding 

minima (black dot/circle), (b) Five video frames evenly spaced in time between the first and 

second R-wave peaks of the ECG signal (top-row) and the corresponding minima of the 

cardiac phase estimated using our method (bottom-row) constituting one cardiac cycle. 

Notice that the images in each column look very similar.
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Fig. 2. 
Illustration of our phase estimation method: (a) Inter-frame similarity matrix, (b) Trend 

matrix corresponding to respiratory motion, (c) Residual matrix corresponding to beating 

heart motion, (d) Frame similarity u(t) selected for phase estimation with associated trend/

respiration τresp and residual/heart-beat rheart signals, (e) Periodogram of the frame 

similarity, residual/heart-beat and trend/respiration signals along with periodicity 

characteristics (e.g. frequency, cycle duration) calculated based on the dominant frequency, 

and (f) Instantaneous cardiac and respiratory phases estimated using the Hilbert transform.
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Fig. 3. 
Illustration of the respiratory gating method: (a) The set of frames Fcutoff discarded (blue 

circles) in step-1 overlaid with the respiration τresp(t), heart-beat rheart(t), and respiratory 

phase ϕresp(t) signals, (b) The frame similarity signal u(t) vs cardiac phase ϕheart(t) overlaid 

with frames Fcutoff discarded in step-1 (blue circles), LOWESS fit L(ϕheart) (black solid 

lines), upper and lower bounds or 95% confidence interval (L(ϕheart)±2.0 ∗ σL) of non-

respiratory frames around the LOWESS fit (black dotted line), and frames Fresp (red circles) 

gated after step-2, (c) A frames from one of our cardiac ultrasound videos overlaid with the 

M-mode line shown in the next four images to the right, (d) M-mode frames in the order 

they appear in the input video, (e) M-mode frames ordered by cardiac phase derived from 

the ECG signal, (f,g) M-mode frames ordered by cardiac phase estimated using our method 
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before and after respiratory gating. Overlaid red bar markers in (d-f) indicate the frames with 

heavy respiratory motion discarded by our respiratory gating technique.
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Fig. 4. 
Illustration of temporal super-resolution using our kernel regression model: (a) Shows the 

frame similarity signal u(t) vs cardiac phase ϕheart(t) overlaid with LOWESS fit L(ϕheart) 

(black solid lines), upper and lower bounds or 95% confidence interval (L(ϕheart)±2.0∗ σL) 

of non-respiratory frames (black dotted lines), and the kernel bandwidth shown at a series of 

cardiac phases as red ellipses whose length along the phase and similarity axis is set to σϕ 
and σL as described in Section II-C, (b,c) M-mode views of single cardiac cycle videos 

reconstructed at 1x (27 frames/cycle), 2x (54 frames/cycle), 4x (110 frames/cycle), and 8x 

(220 frames/cycle) temporal magnification using the NW kernel regression model with (left) 

the proposed bivariate kernel defined in both cardiac phase and frame similarity space vs 

(right) a univariate kernel defined in cardiac phase space only.
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Fig. 5. 
Evaluation of the quality of single-cycle videos reconstructed using our kernel regression 

model at increasing levels of temporal magnification: We down-sampled each of the 6 

videos in our dataset by a series of factors between 1x-5x, reconstructed the single-cycle 

video back at the original resolution using our kernel regression model, and computed its 

similarity using normalized correlation (ncorr) with the ground truth created by cropping out 

the portion between two consecutive ECG R-wave peaks wherein respiratory motion is 

minimal. To avoid any bias to the starting phase, we created the down-sampled videos 

starting at 7 random points in the first 14 frames and computed the mean and stddev of the 

ncorr between the reconstructed and ground truth single cycle video. As a baseline, we show 

the mean ncorr among all consecutive frames (yellow dashed lines) and the min ncorr 

among all pairs of frames (green dashed lines) in the ground truth video.
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TABLE I

Error between the cardiac phases estimated using our method and those obtained from the ECG signal.

VID mean ± stddev median IQR range

1 0.06 ± 0.03 0.06 0.05 [0.00, 0.14]

2 0.06 ± 0.03 0.05 0.05 [0.00, 0.12]

3 0.06 ± 0.03 0.06 0.06 [0.00, 0.12]

4 0.04 ± 0.02 0.04 0.02 [0.00, 0.10]

5 0.06 ± 0.03 0.06 0.03 [0.00, 0.12]

6 0.03 ± 0.02 0.04 0.03 [0.00, 0.05]

Mean 0.05 ± 0.03 0.05 0.04 [0.00, 0.11]

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chittajallu et al. Page 18

TABLE II

Error in localization of the frames corresponding to the peaks of the R-wave in ECG signal using different 

methods.

mean ± stddev error in frames

VID Proposed Phase corr [14] Manifold learn [15] Mask PCA [16]

1 1.09 ± 1.08 4.09 ± 2.97 1.45 ± 0.78 1.55 ± 0.78

2 1.36 ± 0.08 2.91 ± 2.23 1.82 ± 0.94 1.73 ± 1.05

3 1.18 ± 0.03 3.45 ± 1.97 1.45 ± 1.08 1.55 ± 0.78

4 0.73 ± 0.86 4.64 ± 3.75 1.36 ± 0.98 1.18 ± 1.03

5 1.27 ± 0.86 4.70 ± 3.77 1.27 ± 0.86 1.36 ± 0.88

6 0.80 ± 0.40 6.00 ± 3.52 1.00 ± 0.63 1.10 ± 0.54

Mean 1.07 ± 0.55 4.30 ± 3.04 1.39 ± 0.87 1.41 ± 0.84
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TABLE III

Evaluation of our kernel regression model for reconstructing images by cardiac phase using leave one out 

cross-validation (LOOCV) of 50 rounds.

VID LOOCV (50) mean ± stddev ncorr QRS Peak Frames mean ± stddev ncorr

1 0.82 ± 0.03 0.70 ± 0.06

2 0.81 ± 0.03 0.71 ± 0.05

3 0.81 ± 0.03 0.70 ± 0.04

4 0.84 ± 0.03 0.74 ± 0.06

5 0.85 ± 0.03 0.72 ± 0.06

6 0.85 ± 0.04 0.77 ± 0.07

Mean 0.83 ± 0.03 0.72 ± 0.05
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