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Introduction
A major conclusion from the Genome-Wide Association 
Study (GWAS) by Adeyemo et al.1 for hypertension in 
African Americans (AAs) was that “alternate strategies … to 
identify rare variants, are clearly needed.” As a result, genomic 
analysis of the Minority Health Genomics and Translational 
Research Repository Database (MH-GRID) study, which 
was designed to focus on rare gene variants, included a large 
array of phenotype variables and exome variants. MH-GRID 
is a multicohort hypertension clinical study of self-report 
AAs living in the southeastern US, a geographic area of high 
incidence of hypertension and stroke called the Stroke Belt.2 
The cohort partners in the MH-GRID study include Genet-
ics of Left Ventricular Hypertrophy (Hyper-GEN), Reasons 
for Geographic and Racial Differences in Stroke, Genetics 
of Hypertension Associate Treatment, Jackson Heart Study, 
and Howard University Family Study. The data set contains 
.1,600 participants with extensive blood and urine analyses, 
self-report questionnaires on socioeconomic status, family his-
tory, medical records, and genomic exome data. Data mining 

methods, such as neural networks and matrix factorization, 
have recently been shown to uncover relationships in complex 
phenotypes, genotypes, and clinical data.3,4 We used an arti-
ficial neural network (ANN) to impute MH-GRID missing 
phenotypic data and then converted the expanded data set into 
a data mining software suite to detect associations between 
phenotypes and case/control hypertension status.

The implementation of an ANN was selected not only for 
data imputation but also for detecting patterns in hypertensive 
patient data as endophenotypes.4 Complex diseases are caused 
by multiple genetic, environmental, and behavioral factors. If 
a disease has heterogeneous etiologies, then the detection of 
operable genes is difficult as one set of genes can be important 
for one etiology but not for another. This could be an under-
lying difficulty with hypertension in prior GWAS efforts.5 
Endophenotype is an intermediate phenotype that combines 
genetic factors associated with a disease to reduce genetic 
heterogeneity. The MH-GRID data set is structured like 
an endophenotype since there is a control set and two cases, 
severe controlled and severe resistant hypertension (SRH).6
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To get maximal statistical power, all cohort data are 
desired, as missing values degrade association studies.7 The 
problem of databases containing missing values is common in 
biomedical informatics.8 This issue arises from various reasons; 
it may be that the medical procedures were not needed clini-
cally, that the procedure was not available in a cohort study, 
or that the measurements were taken but not recorded perhaps 
due to time constraints in the medical records or flagged in an 
upstream data cleaning operation. Missing data are a part of 
almost all clinical research, and investigators have to decide 
how to deal with them. For complete case analysis, only rows 
with all the values are used, this reduces the statistical power 
by lowering N. For available case analysis, substitution of 
missing values by one or more imputation methods increases 
N. Typical imputation methods include mean value method, 
replacing the missing value with mean value for that particular 
attribute; regression substitution method, replacing the miss-
ing value with historical value from similar cases; and match-
ing imputation method, and for each unit with a missing y, 
finding a unit with similar values of x in observed data and 
taking its y value. Other methods include maximum likeli-
hood and expectation-maximization (EM)., where some data 
mining models can deal with missing data better than oth-
ers.,9 Any decision regarding which technique to adopt really 
depends on the data set. Researchers must determine data-
appropriate ways to incorporate incomplete data into their data 
set or lose statistical power. Performance of ANNs is degraded 
when coded missing values are used,10 and when databases are 
highly skewed; ANNs have difficulty in identifying factors, 
leading to a rare outcome. The advantage that ANNs offer 
over statistical techniques is that the model does not have to 
be explicitly defined before the experiment begins. ANNs can 
capture the relevant data to develop robust models, whereas to 
derive a statistical model, prior knowledge of the relationships 
between the factors under investigation is required.11

We show here the use of ANNs for pattern detection in 
clinical phenotype data for use with hypertension data across 
more than six different data sources. Utilization of ANNs in 
clinical bioinformatics has increased recently with successful 
Big Data projects.12 For instance, an NN model was devel-
oped to predict the risk of in-hospital mortality using various 
physiological measurements from the intensive care unit.13 
Another study found that ANN performed better than binary 
logistic regression models in the detection of diabetes status 
from clinical data.14 A study related to the prediction of heart 
disease using ANNs with a clinical data set of 13 variables is 
similar to this study, and they found higher accuracy, sensitiv-
ity, and specificity than a state vector machine comparison.15 
These and other studies show the usefulness of ANNs for pat-
tern detection in real-world clinical data sets.

Methods
Data source is from a multicohort consortium called the 
MH-GRID Network that is a catalog of AA genomic data 

funded by the National Institute of Health. The purpose 
of MH-GRID is to collect and analyze biospecimen sam-
ples to define genetic, personal, and social–environmental 
determinants of severe hypertension, specific to people of 
African ancestry. Eligibility criteria included AA ethnic-
ity and age between 30 and 55 years at baseline. Exclusion 
criteria include patients with secondary forms of hyperten-
sion, primary forms of kidney disease, or major comorbidi-
ties such as diabetes, heart failure, end-stage renal failure, 
HIV, and liver disease. The estimated total enrollment of the 
MH-GRID study is 1,692 participants. Clinicians gathered 
demographic and anthropometric data as well as biospeci-
men samples from each participant. Age, sex, marital status, 
cigarette smoking status, and race and/or ethnicity were 
self-reported by the participant through patient health his-
tory survey using REDcap.16 The project phenotype file of 
critical or clinically important hypertension-related variables 
contains mixed data types composed of continuous, binary, 
and categorical values. The phenotype file of critical vari-
ables contains participant age (mean 46.2 years old), gender 
(65% female), systolic blood pressure (SBP), diastolic blood 
pressure (DBP), glomerular filtration rate (GFR), albumin 
creatinine ratio (ACR), heart rate (HR), total cholesterol 
(Tot_Chol), high-density lipoproteins (HDLs), low-den-
sity lipoproteins (LDLs), triglycerides (Tri_Glyc), weight, 
height, body mass index (BMI), fasting blood glucose (glu-
cose), blood urea nitrogen (BUN), marital status, and ciga-
rette smoking status (CigSmoke). Summary statistics on 
these variables is presented in Table 1. Lipid variables, fasting 
plasma glucose, and estimated GFR were measured by stan-
dard laboratory techniques.17 BMI was calculated as weight 
in kilograms divided by height in meters squared (kg/m2). 
Each participant was scored by an MH-GRID physician as 
either control, severe controlled hypertension (SCH) case, 
or SRH case. SRH was defined as participants with blood 
pressures that remain above 140/90 mmHg while using three 
antihypertensive agents of different classes.6 Those who had 
blood pressure levels below 140/90 mmHg were categorized 
as SCH if diagnosed as hypertensive and currently taking 
antihypertensive medication. Controls had normal blood 
pressures. The original MH-GRID human subject study was 
approved by MSM IRB 299568-4, and complied with the 
principles of the Declaration of Helsinki. Subjects gave their 
written, informed consent to participate in the research. The 
study presented here represents further analysis of data from 
that study, and was approved by MSM IRB 299568-14.

ANN implemented in this study was emergent18 with 
backpropagation using default learning parameters. This pack-
age was selected for multiprocessing on a high- performance 
cluster, alleviating the need for extensive tuning of learning 
rates, momentum values, kernel, and activation functions 
to speed up overall processing. Hidden layer was ten neu-
rons feed from one input neuron for each phenotype vari-
able. Prediction error was measured as a sum of square of 
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the difference between the output neuron activation and the 
expected value in the training set, described as a sum square 
error (SSE). Predictions were scored as correct if the output 
activation value was within 0.01 for single output neurons and 
0.1 for three output neurons combined.

The scale of the data values was normalized to prevent 
artificial significance of high magnitude data types. For 
instance, the mean of each attribute of the transformed set of 
data points can be reduced to zero by subtracting the mean of 
each attribute from the values of the attributes and dividing 
the result by the standard deviation of the attribute. As seen in 
Table 1, large numeric values can be found with Tri_Glyc and 
LDL when compared to the categorical or binary variables. In 
this study, two data normalization methods were examined, 
range and softmax. Range normalization, sometimes called 
min–max normalization, scales the data between 0 and 1, by 
subtracting the minimum value of an attribute from each value 
of the attribute and then dividing the difference by the range 
of that attribute: x′ = [x − min(X)]/[max(X) − min(X)], where 
X is the set of all values for that data variable. It has the advan-
tage of preserving exactly all relationships in the data, without 
adding any bias. If the range of data values for a variable is 
large, then the data become compressed. Softmax is a way of 
reducing the influence of extreme values or outliers in the data 
without removing them from the data set. It is useful with out-
lier data that one desires to include in the data set while still 
preserving the significance of data within a standard deviation 
of the mean. As a result, we also examined softmax, which also 
scales the data between 0 and 1 by using a variance transform: 

x∼ = [x − mean(X)]/var(X), where var(X) is the variance of 
the data values for that variable. Then, the softmax value is 
calculated as: x′ = 1/[1 + exp(−x)]. Using the logistic sigmoidal  
softmax normalization19 for input data, the data range for all 
variables was 0–1, with a mean of 0.5 for continuous data 
types. Gender was coded as a nominal binary variable with 
zero for female and one for male. Cigarette smoking status 
was coded 0.0 or 0.5 for nonsmoker and 1.0 for self-reported 
smoker. Marital status was coded nominal between 0.0 and 
1.0 in evenly spaced values for six different categories or binary 
using indicator variables.

Imputation method was used as described by Jerez et al.20 
We removed 10 each of control, SCH, and SRH cases for test 
sets (N = 30), leaving a training set of N = 1,266 from the phe-
notype file of 1,296 complete entries. Imputation set depends 
on missing variables (from 1 to 334) and is not present in the 
training or test sets. We start with missingness = 1 and set 
up a neural network with one output neuron correspond-
ing to the missing variable. We then started training on the 
training set while monitoring performance error with the test 
set every 100 epochs. When SSE leveled, we stopped train-
ing. This was repeated eight times, and the best-performing 
ANN was given the imputation set for predicted values. We 
then added the imputed set into the training set, repeated the 
training with greater missingness imputation sets, and added 
more output neurons (equal to missingness). Participants with 
imputed values were not used in subsequent test sets. Training 
errors increased with greater missingness, so we stopped the 
imputation process at missingness = 4.

Table 1. mh-grid critical clinical variables for participants across all cohorts.

vaRIaBLE DaTa TYPE MEaN STD DEv RaNgE UNITS DESCRIPTIoN

Critical variable summary statistics

age continuous 46.2 6.6 26 years at study visit

sBP continuous 115.5 13.6 118 mmhg systolic blood pressure 

dBP continuous 74.8 9.4 78 mmhg diastolic blood pressure 

gfr continuous 102.6 20 169.6 ml/min Glomerular filtration rate 

hr continuous 68.5 10.5 74 bpm heart rate 

tot_chol continuous 190.8 38.5 268 mg/dl total cholesterol 

hdl continuous 54.5 16 121 mg/dl high- density lipoproteins 

ldl continuous 117 35.7 254 mg/dl low- density lipoproteins 

tri_glyc continuous 95.3 52.5 787 mg/dl triglycerides

Weight continuous 89.7 23.2 189.5 kg measured

height continuous 169.1 9.3 55.4 cm measured

Bmi continuous 31.4 7.9 56 unitless Body mass index 

glucose continuous 90.8 16.4 305.5 mg/dl fasting blood glucose

gender Binary 0.65 na 1 unitless male = 0, female = 1

marital stat category na na 1 unitless marital status

cigsmoke category 0.31 0.46 1 unitless cigarette smoking status 

case/control Binary 1 unitless control, sch, and srh

Note: std dev is standard deviation of mean for n − 1.
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During the ANN training process, the use of k-fold 
 cross-validation makes the results of the testing process more 
reliable because it guarantees that all data are used for train-
ing and testing.21 In k-fold cross-validation, the data are ran-
domly divided into parts called folds, where each fold is equal 
to another. Among the folds, one fold is selected for testing and 
the other folds are used for training. This process is repeated k 
times. Finally, all testing results are averaged to produce a single 
estimation result. In this study, eightfold cross- validation is used 
(k = 8). Scoring prediction accuracy from the eight runs of test 
sets used thresholds for assessing the squared errors in the out-
put. Participants in the test set with a square of the difference 
between the prediction and true value for one output neuron 
of ,0.001 were scored correct, while errors ,0.01 were scored 
close. Due to the data normalization used (range or softmax), 
these thresholds correspond to significance levels when the 
output values are close to 0.5, the mean of the data variable.

Data mining software used was the Weka suite22 for clas-
sification and rule generation. Setting for models used M5 
pruned model rules (using smoothed linear models), Weka clas-
sifier Ridor -F 3 -S 1 -N 2.0, classifier OneR -B 6, and classi-
fier PART -M 2 -C 0.25 -Q 1. MODLEM -RT 1 -CM 1 -CS 
8 –AS produces a minimal set of rules from numeric data 
without discretization.23

results
Our goal was to link phenotypic data from the MH-GRID 
hypertension study to hypertension disease progression by 
implementing the concept of endophenotype using the larg-
est possible data set for pattern analysis. Since MH-GRID 
is a multicohort study, not all data variables are consistent 
across the entire data set. Raw MH-GRID phenotypic data 
contain a significant amount of missing data, which precludes 
the use of all variables for all participants. The MH-GRID 
phenotype file of critical variables includes 21 data types for 
1,692 participants. We apply ANN approaches to remedy the 
missing data issue and then use data mining techniques to 
identify the patterns of hypertension status understandable by 
biomedical researchers.

The MH-GRID phenotype file of critical variables con-
tains, in addition to the variables listed in Table 1, ACR and 
BUN. If we exclude ACR and BUN variables due to systematic 
absence from several of the cohorts, the remaining data con-
tain 1,296 complete entries for 17 relevant phenotype variables. 
Of the others with missing data, 396 entries have 1–9 miss-
ing variables: 23 entries are missing 1 variable (heart rate × 8, 
marital status × 6, LDL × 4, glucose × 2, CigSmoke × 2, and 
height × 1), 7 are missing 2 (HDL and LDL × 2, weight 
and BMI × 2, marital status and CigSmoke × 2, and weight 
and height × 1), 24 are missing 4 (combinations of HDL, LDL, 
Tot_Chol, Tri_Glyc, and glucose), while 334 are missing 5 or 
7 variables (lipids and others above), and 8 missing 9 variables. 
Our goal was to impute up to four missing variables, allowing 
us to include 54 more MH-GRID entries for study.

complete case analysis of case/control status. We 
trained a neural network on control/SCH/SRH status with 
ten hidden and three output neurons on the 1,296 com-
plete entries by splitting the set into a 1,266 training set 
and eight (k = 8 on SRH) different 30 sample test sets. 
The test sets were composed of 10 participants each of 
control, SCH, and SRH cases randomly selected without 
replacement. The limiting indicator variable was SRH with 
88 participants, while control and SCH had 711 and 497 
participants, respectively.

We compared range and softmax data normalization 
methods with the MH-GRID data using the complete case 
analysis of control/SCH/SRH. Softmax in this study was 
observed to have slight increases in ANN prediction accuracy. 
Discrimination between control and SCH is harder since both 
have normal BP and the phenotype data did not contain medi-
cations, necessary for case/control discrimination. Softmax per-
formed better between control and SCH, but surprisingly poorer 
for SCH vs SRH in this preliminary test. We then used softmax 
normalized data for training networks to impute missing vari-
ables for the incomplete entries owing to the wide ranges com-
pared to standard deviations of many of the variables in Table 1.

Control, SCH, and SRH were study classification-derived 
variables that were clinically judged by study criteria and certi-
fied by MH-GRID physicians. Hence, these variables were not 
missing but were the phenotype classes used for hypertension 
association studies. The complete data set comprised of control 
(N = 716), SCH (N = 504), and SRH (N = 90). k-Fold sam-
pling used a test set composed of 10 randomly selected partici-
pants from each class, using binary coding that required three 
output neurons. Training to 14K epochs yielded minimal over-
training effects. Since the case/SCH/SRH data are binary, and 
the ANN output is continuous, rounding (winner takes all) is 
used to score the accuracy of prediction. We scored correct if 
the SSE was ,0.5 combined for the three outputs. This yielded 
an accuracy of 89.2% for control, 74.6% for SCH, and 78.3% 
for SRH. The difficulty in discriminating SCH from control 
stems from the absence of medications in the phenotype data. 
We will determine if increasing the data set size by imputing 
phenotype values will enhance the performance of case/control 
discrimination from the above baseline.

Missing 1 variable. Phenotype data imputation on vari-
ables with missingness of 1 was performed using k-fold cross-
validation shown in Table 2. Initial runs were monitored for 
overtraining and epoch limits, labeled final epoch, set for maxi-
mal accuracy in the validation test sets. Initial average SSE 
for continuous variables in untrained ANNs was 0.023–0.043 
(LDL, height, glucose, and HR), while nominal variables 
(CigSmoke and marital status) had higher starting SSE since 
the mean distributions are not normal. A correct prediction 
in the validation set was scored if the SSE of the output was 
below a threshold value corresponding to a significance level. 
With softmax normalization, two significance levels were 
used to evaluate accuracy prediction (more stringent 0.05% 
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and relaxed at 0.10%). Accuracy was measured as the average 
 correct prediction percentage of the k = 8 test sets of 30 or 160 
complete entries. The case/control run was for baseline mea-
surement and comparison and not for data imputation. These 
runs had much higher starting SSE from three outputs that 
were also nominal data types.

Missing LdL. Mean LDL in the training set was 
117 mg/dL with a range of 17–271 mg/dL (Table 1). Training 
the ANN for missing LDL had very quick convergence, 
requiring only 80 epochs for 100% accuracy in the test sets 
at 0.05 significance level. This effect is due to the inclusion of 
total cholesterol (Tot_Chol), HDL, and triglycerides (Tri_
Glyc) in the training set with LDL being a derived variable. 
There exists a known relationship between the follow-
ing four variables: LDL = Tot_Chol – HDL – Tri_Glyc/5 
from Friedewald et al.24, and hence the ANN training con-
verges on a simple pattern discovered with those variables. 
The Friedewald relationship is considered valid only for 
Tri_Glyc ,400, and it is based on a population of European 
descent, not AA. There are four missing values of LDL in 
the MH-GRID data set, presumably due to Tri_Glyc .500 
for those four participants. An Iranian population formula25 
has been recently described: LDL = Tot_Chol/1.19 + Tri_
Glyc/1.9–HDL/1.1, but it is based on a smaller number 
of non-AA samples. Recently, the Chen modified formula 
has been described: LDL = 0.9 * (Tot_Chol–HDL)–0.1 * 
Tri_Glyc, which was validated in 2,180 cases from a Chi-
nese population.26 They found that LDL calculated using 
both Friedewald’s formula and Chen modified formula cor-
related well with directly measured LDL when Tri_Glyc 
was ,400 mg/dL, but when Tri_Glyc was .400 mg/dL, the 
modified formula correlated better with directly measured 
LDL. Different modified formulas have been individually 
validated in different populations, and each formula was 
suitable for a particular population,27 but none have been 
validated for AA, especially with high Tri_Glyc. A recent 
work suggests that the Chen formula is of utility in AA for 
Tri_Glyc .400.28 Table 3 lists the results of estimates based 
on the three formulas and the resultant ANN predictions 
for the MH-GRID participants with missing LDL values. 

Calculated values vary greatly between estimator equations 
and trend inconsistently (Table 3). ANN prediction of LDL 
is consistently higher than the Chen formula by 7%–35% 
for these extreme Tri_Glyc .300 participants. There is also 
consistency with the Friedewald’s formula, but further away 
than the Chen formula. The ANN does not base predictions 
on statistically expected values, because the mean LDL val-
ues in the training and test sets are 0.494 and 0.559 softmax 
normalized, respectively, while the mean of the four imputed 
values is 0.672, which is significantly higher.

Discovering the relationships acquired by training 
ANNs is a difficult endeavor, and no method is generally 
applicable.29 There are two types of approaches to extract 
rules from multi layer ANNs: local and global. In the 
global methods,30 the neural network is treated as a black 
box, in which sets of global rules characterize the output 
classes directly in terms of inputs. Decompositional or local 
approaches go into the details of neural network structure, 
describing each neuron separately in terms of rules, followed 
by a concatenation algorithm.31,32 For a first look, we used 
data mining techniques to suggest the structure of the ANN 
knowledge training.

Here, we reformatted the ANN training file for input 
into the Weka data mining suite. Using M5 pruned model 
rules (using smoothed linear models) produced the following 
two rules with a correlation coefficient of 0.99:

Table 2. Phenotype data imputation for missingness = 1.

MISSINg 
vaRIaBLE

INITIaL  
avg.SSE

fINaL 
avg. SSE

fINaL 
EPoCH

aCCRCY 
@ 10%

STD 
DEv

aCCRCY 
@ 5%

STD 
DEv

aCCRCY 
@ 1%

ldl 0.039 0.0014 80 100 0 100 0 96.7

height 0.043 0.0003 5800 100 0 100 0 100

cigsmoke 0.056 0.022 17K 75 10.5 61.3 6.2 39.6

glucose 0.023 0.015 20K 89.5 4.5 78.1 7.7 43.3

heart rate 0.043 0.018 33K 81.7 8.7 66.7 11 34

martial status 0.059 0.046 150K 73.3 14.1 62.8 12 23.3

Notes: initial is at epoch = 0. Test set accuracy (Accrcy) at three different significance levels, within 10%, 5%, and 1% of softmax true value. std dev is n − 1 
standard deviation over the k-fold validation test sets (k = 8).

Table 3. ldl data imputation for 4 mh-grid missing values with 
high triglycerides (tri_glyc).

TRI_gLYC LDL CaLCULaToRS aNN
PREDICTIoNfE I Cf

543 86 408 121 143

525 86 396 119 148

502 140 426 166 179

800 9 524 72 110

Notes: friedewald equation (fE): ldl = tot_chol – hdl – tri_glyc/5, iranian 
(i): ldl = tot_chol/1.19 + tri_glyc/1.9–hdl/1.1, and chen formula (cf): 
ldl = 0.9(tot_chol–hdl)–0.1tri_glyc. mh-grid participant’s tri_glyc with 
missing ldl value. all units in mg/dl.
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Rule 1:  IF Tot_Chol , = 0.49 THEN LDL = 1.11 * Tot_
Chol–0.43 * HDL–0.31 * Tri_Glyc

Rule 2:  LDL = 1.08 * Tot_Chol–0.46 * HDL–0.32 * 
Tri_Glyc

The variables in the data mining rules are softmax 
normalized, so direct comparison to the formulas in Table 3 
is not direct but is approximate for values near the 0.5 mean. 
These missing LDL data are classed as Missing Not at Ran-
dom (MNAR) since the values were not calculated for the 
phenotype file if Tri_Glyc .400 in the MH-GRID data 
recording operation. Therefore, the imputation is biased, but 
the bias may be small if the model is well behaved for large 
values of triglycerides.

Missing height. Mean height in the training set was 
168.8 cm with a range of 142–200 cm (Table 1). Train-
ing the ANN for height also had very quick convergence, 
requiring only 40 epochs for a typical plateau-shaped learn-
ing curve (Fig. 1A). This rapidity is due to inclusion of 
weight and BMI in the training set variables. Since BMI 
is also a derived variable, there exists a defined relationship 
between the three variables: Height = [Weight/BMI]1/2 and 
hence the ANN training converges on a simple mathemati-
cal relationship discovered within those variables. But upon 
further learning, a secondary plateau forms at 2,000 epochs 
(Fig. 1B), again for 100% accuracy in the test sets at .1% 
significance. There was only one missing value for height 
in the data set. The BMI formula estimates that height as 
190.2 cm, while the 2,000 epoch-trained ANN predicts 
192 cm, or just 0.9% too high. An analogous study used 
ANNs to predict body weights of rabbits from body mea-
surements33 and concluded that the ANN model is better 
than multivariate linear regression.

The later convergence in Figure 1B may be due to 
discovery of patterns with outlier or spurious values within 
the dependent variables. To examine this, we loaded the 
ANN training file into the Weka data mining suite. Using 
M5 pruned model rules produced 16 rules with a correlation 
coefficient of 0.98, the most significant rule, in softmax 
values, being:

Rule 1: Height = –1.55 * BMI + 1.54 * Weight–0.13 * Gender

Again, the variables in the data mining rules are softmax 
normalized, so direct comparison to the correct formula is 
not direct but is approximate for values near the 0.5 mean. 
This suggests that ANN training discovers the known gender 
differences in BMI, along with other factors present in the 
phenotype data giving rise to the two-phase learning curves 
in Figure 1.

In a recent study,34 BMI showed significant correla-
tions with SBP, DBP, and HR after controlling for age and 
physical activity status in both genders, and SBP indicated 
the strongest association with BMI. Again, the ANN 
does not base predictions on statistically expected values, 
because the mean height values in the training and test sets 
are 0.501 and 0.531 in softmax, respectively, while the mean 
of the imputed value is 0.917 (corresponding to 192 cm), 
which is significantly higher than the training set mean. 
This missing value for height was probably due to a ran-
dom data processing omission, and therefore the data class 
is Missing Completely at Random. This implies that the 
ANN prediction is unbiased since the probability that the 
observation (height) is missing is unrelated to the value of 
height or to the value of any other phenotype variables in 
the training set.
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figure 1. ann learning curve on height. 
Notes: Upper curves are the number of training set instances that are predicted incorrectly above a program set point, while the lower curves show 
learning by a decrease in ssE of the output neuron layer.
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Missing cigarette smoking. Cigarette smoking has 
well-known impacts on cardiovascular function and health, 
but conversely, the variables in the phenotype file may not be 
predictive.35 This variable among the MH-GRID cohorts was 
inconsistently defined and scored, some with a simple binary 
yes/no, while others with gradations and time frame qualifiers, 
and some that differentiated the tobacco product. Cigarette 
smoking status was initially coded 0.5 for nonsmoker and 1.0 
for self-reported smoker, with 0.0 reserved for missing. We 
chose a nonbinary coding scheme to allow for more catego-
ries that were present in some of the cohort phenotype data 
and later compared to binary indicator variable coding. For the 
“0.5/1.0” coding, the learning curve plateaus ∼8,000 epochs, 
and good test accuracy occurs at 17,000 epochs (Fig. 2). Dur-
ing learning, the fraction of correct predictions in the training 
set goes from 5% at 0 epochs to 65% at 17,000 epochs. The 
stringency is set at 1% on the SSE during learning in the ANN. 
Again, the ANN does not base predictions on statistically 
expected values, because the mean values in the training and 
test sets are 0.657 and 0.600 softmax normalized, respectively 
(medians are both 0.500), while the mean of the two imputed 
values is 0.833, which is significantly higher. The two imputed 
values correspond to smokers by rounding. So the missing data 
class is most likely Missing At Random (MAR) and at worst 
MNAR if smokers tend not to self-report on questionnaires. 
Some clinical studies suggest high veracity and accuracy on 
self-reports,36 while other studies in minority populations have 
reported substantial refusal of confirmation and disconfirma-
tion rates in both intervention and control groups37,38

Data mining with Weka produced sets of many rules, 
which did not have ready interpretations to physiologi-
cal models. The previous imputed variables discussed were 
continuous, while cigarette smoking is binary. In this case, 
rounding for the final ANN prediction would be appropriate, 
making the relaxed accuracy measure in Table 2 appropriate. 
We examined whether the values of the data coding  influenced 

learning or pattern detection. Setting nonsmoker status from 
0.5 to 0.0 increases the distance between training and test set 
values and the coding becomes properly binary. This alter-
nate coding scheme did not significantly change the perfor-
mance of the learning. The test accuracy values for 1% and 
0.1%  significance levels were 10.7% (±6.6) and 39.6% (±7.0), 
correct for 0.5/1.0 coding, and 37.6% (±7.9) and 40.5% (±8.7) 
for “0.0/1.0” coding, respectively. Therefore, at the most strin-
gent level, test accuracy was nearly identical, while at 1% level, 
the greater numeric distance between the coded values yields 
 better accuracy (37.6% vs 10.7%).

Missing glucose. Mean glucose in the training set was 
90.9 mg/dL, with a range of 54–360 mg/dL (Table 1). Fasting 
glucose levels in blood have a well-known connection to health, 
but again, the variables in the phenotype file may not be pre-
dictive.39 The learning curve plateaus ∼10,000 epochs (Fig. 3), 
and good test set accuracy occurs at 20,000 epochs (Table 2). 
The long learning curve past 10K epochs provides only minor 
increases in accuracy. At 5K epochs and 10% significance 
level, the accuracy is 89.3%, while at 20K, it is 89.5%, which 
is not significantly different. As a function of testing signifi-
cance level, the accuracy values at 20K epochs are 78.1% (±7.7 
at 5% significance level), 43.3% (±8.2 at 1% significance level), 
and 15.7% at 0.1% significance level. As for smoking status, 
data mining with Weka produced sets of many rules, which 
did not have ready interpretations to physiological models.

The ANN does not base predictions on statistically 
expected values, because the mean glucose values in the train-
ing and test sets are 0.487 and 0.529 in softmax, respectively, 
while the imputed value is 0.393.

Missing Hr. Mean HR in the training set was 68.5 bpm, 
with a range of 38–112 bpm (Table 1). There are two differ-
ent factors involved in HR management: intrinsic and extrinsic 
controls. Intrinsic regulation of HR is the result of the unique 
nature of cardiac tissue – it is self-regulating and maintains 
a rhythm. Extrinsic controls are those that come from both 
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hormonal responses and commands from the central nervous 
system and autonomic nervous system. Extrinsic regulation can 
cause the HR to change rapidly because of chemicals that cir-
culate in the blood or by direct action of nerves that go to the 
heart. Due to the complex nature of the system, the relationship 
of HR to other phenotype file variables would be tenuous.

Typically, HR is 60–80 bpm, with influences from 
gender and age; men aged 36–45 years average 71–75 bpm 
and those aged 46–55 years average 72–76 bpm and women 
aged 36–45 years average 74–78 bpm and those aged 46–55 
years average 74–77 bpm. Figure 4 after 33K epochs shows a 
gradual decline in SSE error and an accuracy of about 63%, 
correct in the test set at 5% stringency and close to 82% for 
10% stringency (Table 2).

Again, the ANN does not base predictions on statisti-
cally expected values, because the mean HR values in the 
training and test sets are 0.494 and 0.435 softmax normal-
ized, respectively, while the mean of the eight imputed 
values is 0.370, which is significantly lower and within a 
0.03–0.78 range.

Missing marital status. Marital status variable is 
categorical, with six possibilities; so we examined different 
coding schemes. Initially, marital status was coded 0.0 for 
never married, 0.2 for single, 0.4 for married, 0.6 for separated, 
0.8 for divorced, and 1.0 for widowed. The data set contains 
19% never married, 27% single, 33% married, 3% separated, 
15% divorced, and 3% widowed. Here, the ANN has a pre-
diction close to statistically expected values, because the mean 
values in the training and test sets are 0.435 and 0.507, respec-
tively, while the mean of the imputed value is 0.383, which 
would be rounded to 0.4 as a prediction. Married is coded 0.4, 
the nearest round value for the prediction, which is the most 
frequent class in the data set (33% married). Throughout the 
training, the learning curve had a gradual downward slope, 
and hence training was followed out to 150K epochs (Fig. 5). 
The accuracy was unexpectedly good at 73% (within 10% of 
true values) across the eight test runs, considering only indi-
rect linkage to any of the other phenotype variables.

Sorting the assignment of categorical values to different 
marital status examines sensitivity and is done to allow infor-
mation content comparison with the ordinal variables using 
the same SSE measure. Changing the order of assignment for 
categories and using odd values evenly spaced between 0 and 1 
had minor effect on the test set performance. Compared to the 
accuracy values shown in Table 2, the rearranged order yielded 
46.1% accuracy at 10% significance level, 32.2% at 5%, and 
18.3% at 1% significance level, all with similar standard devia-
tions. These differences with the prior assignment order are not 
significant. We then converted marital status into six indica-
tor binary variables. Using indicator variables for each marital 
status category requires six output neurons instead of one for 
nominal continuous variables and alters SSE comparison with 
the ordinal variables. Binary variables allow a winner-take-all 
outcome for predictions, which lead to increases in prediction 
accuracy to 53.4% for indicator variable marital status.

Missing 2 variables. The abovementioned results can be 
expanded into examining greater missingness in the MH-GRID 
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phenotype data set. With imputation of one missing data variable 
cases, the resulting training set grew from 1,296 to 1,319, and 
imputation of missingness = 2 variable cases adds seven more 
participants. For missingness = 2 cases, a test set of equal propor-
tion of control, SCH, and SRH was used to assess a two-neuron 
output model of learning HDL and LDL. Learning was sampled 
at 3K epochs to 33K epochs (Table 4). The ANN predicted 73% 
of the time too high for HDL and 27% too low for LDL, for an 
overall 10% error at 15K epochs. The minimum prediction error 
for HDL was at 15K epochs, while for LDL, it was at 33K epochs 
in the same training session. The lowest absolute average predic-
tion errors were +10% for HDL and −2.5% for LDL, implying 
that LDL is better predicted among the two missing variables. 
This performance difference is perhaps caused because LDL is a 
derived variable and its expression is simpler to model, whereas 
HDL is an actual measurement. Half of the HDL predictions 
and 80% of LDL predictions are within 10% of actual values.

An additional set of missingness = 2 variables involves 
the relationship among height, weight, and BMI (Table 4). 
We examined weight and height in the same manner as HDL 
and LDL mentioned earlier. The best performance for pre-
dicting weight occurs at 30,600 epochs with an overpredicted 
average of +0.34%. Height minimal prediction error occurred 
at 8,800 epochs at +1.6%. Surprisingly, the only direct infor-
mation content in the phenotype data is from BMI. Similar to 
the HDL and LDL case, the accuracy of prediction for weight 
and height is different, with weight being more than twice 
as accurate. This suggests that weight has greater connec-
tion to the other phenotype variables than height, especially 
given the BMI. Next, we examined weight and BMI. The best 
indivi dual performance was at 43,500 epochs, with  overall 

error  continuing to drop at that termination point. From the 
first case (weight and height), height was easier to learn but 
had greater error than weight, and in the second (Weight and 
BMI), both are difficult to predict (.43K epochs). Surpris-
ingly, the error in weight prediction increases with loss of 
BMI more than that in height (10% vs 46.7%). Predicting 
marital status and cigarette smoking status also yielded low 
SSE in the test set at 32,200 epochs. Comparing the three 
example cases, HDL and LDL had the lowest SSE due to the 
inclusion of related variables of Tri_Glyc and Tot_Chol in the 
phenotype file, while weight and height showed asymmetry 
in ANN impact. Future experiments will incorporate other 
anthropometric variables, such as waist circumference and 
stress markers,40 to study this effect further.

The abovementioned data imputation efforts yielded seven 
new additional participants for downstream analysis. We then 
trained on control/SCH/SRH status and found 98% correct 
prediction of control status, 81% correct prediction of SRH sta-
tus, but only 70% of SCH status. The latter performance is due to 
the lack of medications in the phenotype data file, necessary for 
clinical classification into the three endophenotype variables.

Missing 4 variables. The abovementioned data imputation 
effort yielded seven new additional participants for downstream 
analysis from missingness = 2 MH-GRID parti cipants. These 
were added into the training set for imputation of the 24 MH-
GRID participants who are missing four variables, combinations 
of HDL, LDL, Tot_Chol, Tri_Glyc, and glucose, allowing us 
to include 54 more entries for study. The 24 entries grouped 
into four classes of common missing variables, with HDL and 
Tri_Glyc occurring across all four classes as summarized in 
Table 4. Comparison among these variables allowed assessment 

Table 4. summary of imputation accuracy averages.

IMPUTED 
vaRIaBLE

MISSINg 1 MISSINg 2 MISSINg 4

CoRRECT CLoSE EPoCH MISSINg CoRRECT CLoSE EPoCH MISSINg MISSINg CoRRECT CLoSE EPoCH

marital 8.6 23.3 152219 cigsmoke 6.7 26.7 32200 – – – – –

cigsmoke 37.6 40.5 16636 marital 10 33.3 32200 – – – – –

height 93.3 96.7 5804 Weight 20 50 30600 – – – – –

Weight – – – height 46.7 80 30600 – – – – –

Weight – – – Bmi 10 40 43500 – – – – –

Bmi – – – Weight 6.7 40 43500 – – – – –

ldl 86.7 100.0 80 hdl 23.3 80 33100 tri_glyc tot_chol 10 43.3 538

hdl – – – ldl 3.3 40 33100 tri_glyc glucose 13.3 36.7 538

hdl – – – ldl 3.3 40 33100 tri_glyc tot_chol 6.7 40 507

hdl – – – glucose – – – tri_glyc tot_chol 6.7 20 501

glucose 15.7 43.3 20135 hdl – – – tri_glyc ldl 10 23.3 538

glucose 15.7 43.3 20135 hdl – – – tri_glyc tot_chol 6.7 50 501

hr 12.0 34.0 33074 – – – – – – – – –

tot_chol – – – hdl – – – tri_glyc glucose 40 83.3 501

Notes: Average accuracy values of eight test set runs for the variable in first column. Additional missing variables are listed for missing 2 and 4. Accuracy drops with 
greater missingness, and more learning epochs are needed.
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of the loss of ANN predictive accuracy with loss of more data 
variables. The variable LDL is the only instance that occurs in all 
three missingness cases (1, 2, and 4), allowing for a better under-
standing of its information contribution to the other variables. 
Missing Tri_Glyc and Tot_Chol on top of missing HDL drops 
the accuracy by half, but still results in 43.3% correct prediction 
within 1% of true value. The same drop in accuracy is seen in the 
missing HDL variable at 40% correct. Although the accuracies 
listed in Table 4 for missingness = 4 are low, the majority of test 
values were within 10% of true values, perhaps a more clinically 
appropriate significance level. Therefore, we again used the 
trained ANNs to impute missingness = 4 variables.

Our goal was to extend the imputation with missing-
ness = 5 and 7 to achieve a 31% increase in training set size 
to 1,692, but the NNs performed poorly with imputing 7 out 
of 21 data variables. In these extreme imputation cases, the 
NN did not converge even out to 500K epochs and the test 
set accuracy decreased (data not shown) even for the reduced 
10% significance level. Extended the training out to hundreds 
and thousands of epochs can be necessary for complex bio-
informatics pattern detection,41,42 or other machine learning 
techniques are required. For missingness up to four variables, 
only 0.6% of the data values are missing, facilitating rapid and 
accurate imputation. But for missingness = 5–7, 8.6% of data 
values become missing, a significant jump for this data set.

Available case analysis on case/control status. With 54 
additional MH-GRID participant entries from the pheno-
type data imputation, we can assess the impact on downstream 
analysis by redoing the case/control ANN. As before with the 
complete case analysis, we trained a neural network on control/
SCH/SRH status with ten hidden and three output neurons on 
1,350 available entries by splitting the set into a 1,320 training 
set and eight (k = 8 on SRH as the limiting indicator variable) 
different 30 sample test sets balanced between control, SCH, and 
SRH. Again, the test sets were composed of 10 participants each 
of control, SCH, and SRH randomly selected without replace-
ment. Training out to 4K epochs yielded minimal overtraining 
effects as judged by SSE in the test sets evaluated periodically. 
Predictive accuracy was higher at 85.8% with 2K epochs than 
the complete smaller set at 79.6%. A two-tailed paired t-test 
of test results from 500 to 4K epochs gave 0.020, demonstrat-
ing a significant performance increase using the imputed values. 
Selectivity between the cases for eight replicates yielded accu-
racy values of 91.3% for control, 77.5% for SCH, and 86.7% for 
SRH. The difficulty in discriminating SCH from control stems 
from the absence of medications in the phenotype data.

We changed the design of the test set to determine if the 
small observed ANN performance increase with the imputed 
data described above is sensitive to construction and size. The 
prior test set was balanced between control and the two cases, 
SCH and SRH, but could only be 30 instances in size due to the 
limited SRH cases. The test set was increased to 160 as 1/8 of the 
size of the overall data set, randomly selected without replace-
ment, so the control/cases were not evenly balanced in numbers. 

Ten test sets were evaluated using t-test, but no signifi cant 
 difference was found between the training with or without the 
imputed values. Majority of the SRH test set instances num-
bered less than the balanced test set protocol described earlier.

Complete and imputed clinical variables from phenotype 
file were formatted for Weka input to predict the study status 
with machine learning classifiers. Java Repeated Incremental 
Pruning (JRIP) rules correctly classified 89% of the participants 
into the following seven rules:

(DBP . 0.84) = . class = SRH
(SBP . 0.85) = . class = SRH
(SBP . 0.58) = . class = SCH
(GFR , 0.35) = . class = SCH
(DBP . 0.67) = . class = SCH
(BMI . 0.55) and (Age . 0.55) and (Height . 0.57) and 

(SBP , 0.36) = . class = SCH= . class = Control

These rules show the classification of SRH by the elevated 
blood pressures (rules 1 and 2), while SCH separates from con-
trol by additional variables of GFR, BMI, age, and height.

discussion
This study evaluated the use of ANNs for data imputation 
and pattern detection in clinical phenotype data, involving 
hypertension status across six different data sources. Com-
parison among the cohorts was not possible due to limited 
and unequal distribution of missing values in the data set. We 
can compare data class type and ANN error since the miss-
ing variables were continuous, binary, and categorical. The 
error for the continuous measured value of height is 0.043, 
and for the continuous derived variable LDL, it is lower at 
0.0005. Thus, when HDL becomes missing with LDL, the 
error jumps to 1.03. While height has a 0.043 SSE, it jumps 
more with the loss of derived variable BMI (2.71) than with 
the loss of the measured value height (1.19). So in this case, 
the loss of a derived variable is more severe than the loss of a 
measurement. Moreover, if the lost variable has a content of a 
measured value, and two such variables become missing, then 
the SSE is even greater as shown by marital and cigarette sta-
tus at more than twice the magnitude (3.42 SSE), although 
the latter effect could be due to involvement of a binary and 
categorical variable.

It is likely that the performance increase observed in 
control/SCH/SRH prediction is mainly due to an increase in 
the training set size when adding the available imputed values, 
rather than the incorporation of valuable patterns absent in the 
missing data. Thus, it would be unclear if just using mean values 
would make a difference in the case/control ANN outcome. 
Certainly, such an imputation method would skew the statisti-
cal distribution, which may alter outcomes.  However, examining 
the accuracy as in Table 4 provides insight into the commonal-
ity or interaction of information content within the data set, 
which would not be uncovered by using statistical  imputation 

http://www.la-press.com
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39


Hypertension and machine learning

53Bioinformatics and Biology insights 2015:9(s3)

methods. Sensitivity to the loss of any variable  indicates 
 significant information content from that data element.

conclusion
These results are presented as a use case of data imputation 
using ANNs to help merge the variables in a multicohort clini-
cal study. We have shown that a neural network can predict 
one, two, and four missing variables from a data set containing 
17 variables (for a 23% loss of variables and with only 0.6% 
total information missing). ANN predictive accuracy ranged 
from 100% to 23% for one missing value, and with four missing 
variables together, it was 87%, while it was 7% in some cases. 
We were not able to extend the range of missingness to 5–7 in 
order to capture a much larger data set for available analysis.
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