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Horizontal gene transfer (HGT) drives microbial adaptation but is often
under the control of mobile genetic elements (MGEs) whose interests are
not necessarily aligned with those of their hosts. In general, transfer is
costly to the donor cell while potentially beneficial to the recipients. The
diversity and plasticity of cell–MGEs interactions, and those among MGEs,
result in complex evolutionary processes where the source, or even the exist-
ence of selection for maintaining a function in the genome, is often unclear.
For example, MGE-driven HGT depends on cell envelope structures and
defense systems, but many of these are transferred by MGEs themselves.
MGEs can spur periods of intense gene transfer by increasing their own
rates of horizontal transmission upon communicating, eavesdropping, or
sensing the environment and the host physiology. This may result in high-
frequency transfer of host genes unrelated to the MGE. Here, we review
how MGEs drive HGT and how their transfer mechanisms, selective press-
ures and genomic traits affect gene flow, and therefore adaptation, in
microbial populations. The encoding of many adaptive niche-defining
microbial traits in MGEs means that intragenomic conflicts and alliances
between cells and their MGEs are key to microbial functional diversification.

This article is part of a discussion meeting issue ‘Genomic population
structures of microbial pathogens’.
1. Introduction
The gene repertoires of microbial species change very fast and their pangenomes
are often orders of magnitude larger than the average genome [1,2]. Most such
genes are acquired by horizontal gene transfer (HGT) driven by mobile genetic
elements (MGEs). Yet MGEs are autonomous genetic agents that may proliferate
even when they have a negative impact on host fitness. Gene flow is thus a rich
provider of novel functions to microbial genomes but is largely out of the control
of the recipient cells. On the one hand, this means that microbial adaptation
depends heavily on the trade-off between gaining advantageous functions by
MGE-driven HGT and the costs associated with these elements. On the other
hand, as genomes contain many MGEs and these often interact antagonistically,
gene flow is shaped by a complex interplay between the host and its many
MGEs, as well as between the MGEs themselves. These interactions depend on
the characteristics of the MGEs and on the host genetic background, notably its
ability to control infections of deleteriousMGEs and to integrate the novel genetic
information. Ultimately, many rare genes in microbial populations may be effec-
tively under selection because they are adaptive for the MGEs carrying them.
Whether this affects cell fitness, and in which sense, it is most often unclear.
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Here, we review howMGEs drive, but also constrain microbial
evolution by HGT. While our text focuses on bacteria, where
mechanisms are better known and examples more abundant,
it is often also applicable to the interactions between Archaea
and their MGEs. We start by a short summary of the mechan-
isms of transfer of MGEs, highlighting recent findings on
their interactions.
ing.org/journal/rstb
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2. Genomes as playgrounds of mobile genetic
elements

MGEs drive DNA transfer between bacteria either by transfer-
ring themselves between cells or by mediating the transfer of
chromosomal DNA (figure 1). Some mechanisms of HGT do
not depend on MGEs [3], most notably natural transformation
[4], but their relevance across bacteria in the acquisition of
novel genes remains to be understood (e.g. [5]). In this
review, we focus on the role of MGEs as drivers of HGT and
will not expand on these other processes. MGEs can be classi-
fied in terms of their mechanisms of autonomous horizontal
(conjugation or viral particles) or vertical transmission (extra-
chromosomal or integrative). There is extensive genetic
diversity within each type of MGE, which can complicate
their identification and characterization. Furthermore, some
MGEs are parasites or competitors of otherMGEs, establishing
complex ecological dynamics within populations.

The most frequent mechanism of conjugation involves a
relaxase that nicks and attaches to a single strand of DNA.
The nucleoprotein filament is then transferred between phys-
ically close cells by a type IV secretion system, resulting in
the replication of the element [6]. Conjugation can transfer
vast amounts of DNA, up to entire chromosomes. Conjugative
elements are called plasmids when extrachromosomal, and
integrative conjugative elements (ICEs) when they integrate
the chromosome. Despite a clear distinction made between
these two types of elements in the literature, they encode simi-
lar conjugativemachineries for horizontal transmission and are
present acrossmost bacterial clades [7].Moreover, ICEs capable
of autonomous replication and plasmids integrated in chromo-
somes have been described [8,9], suggesting the existence of
few differences between the two types of elements.

The ability of conjugative elements to transfer between cells
can be exploited by mobilizable elements that are present in
the same host. Interactions betweenmobilizable and conjugative
elements have been studiedmore in detail in plasmids. Mobiliz-
able plasmids are typically smaller than conjugative plasmids
and do not encode the conjugative pilus required for auton-
omous HGT. Some encode a relaxase that interacts with pili
encoded by conjugative elements present in the cell. Suchmobi-
lizable plasmids are at least as abundant as conjugative plasmids
and tend to encode similar types of traits [10]. Many other plas-
mids lack even a relaxase and their mechanisms of transfer, as
well as their interactions with other MGEs, are poorly under-
stood. Despite the exploitative interaction between these two
types of MGEs, it is not known whether this systematically
imparts a significant cost for the conjugative plasmid.

The contribution of temperate bacteriophages (phages)
for HGT is complicated by their role as bacterial predators.
Upon cell entry, temperate phages can opt between active repro-
duction and cell lysis (lytic cycle), or lysogeny, where they
replicate synchronously with the host either integrated in the
chromosome or as phage-plasmids. Half of the available
bacterial genomes are recognizably lysogens [11], and some
prophages encode traits adaptive to the host, like virulence fac-
tors and bacteriocins [12], but can also kill their hosts by
induction of the lytic cycle [13]. The effect of temperate
phages in bacterial fitness may thus depend on physiological
and environmental conditions (see below). Phages can also
transfer bacterial genes by generalized, specialized or lateral
transduction [14,15]. Each mechanism differentially impacts
the scope and efficiency of transfer of bacterial traits.
For example, specialized transduction transfers only a few chro-
mosomal genes in the neighbourhood of the prophage,whereas
generalized transduction transfers genes from across the
chromosome. Lateral transduction occurs when phage replica-
tion starts while the prophage is still integrated in the
chromosome, and can result in the transfer of extensive neigh-
bouring chromosomal regions [16]. Of note, the amount of
DNA packaged by phages is limited by the virion size, which
in temperate phages tends to accommodate around 50 kb
(with large variations across phages). As a result, a bacterial
chromosome can only be transferred by transduction when
fragmented across multiple virions. But since cells can liberate
many phages, the extent of bacterial DNA transferred by trans-
duction can be huge. A back-of-the-envelope calculation has
estimated that a single lysate of phages that infect Staphylococcus
aureus has the potential to encode up to 20 000 copies of an
entire bacterial chromosome in transduction particles [17].

Despite being parasites of bacteria, phages have their
own parasites. Phage satellites are small mobile elements
(ca 7–18 kb) lacking components of the viral particle for
autonomous transfer. Instead, they encode sophisticated
mechanisms to hijack the particles of ‘helper’ phages to trans-
fer between cells [18]. Three main types of phage satellites
have been described: P4 in Enterobacterales [19], phage-indu-
cible chromosomal islands in Enterobacterales and Firmicutes
[20], and phage-inducible chromosomal island-like elements
(PLEs) in Vibrio spp. [21]. Many other types of satellites
may still be uncovered, and those that are known seem
very abundant and diverse. For example, almost half of
Escherichia coli genomes have between one and three P4-like
satellites [19]. Phage satellites can impact their bacterial hosts
at different levels: by transducing chromosomal DNA [15],
by encoding virulence factors [22], or by encoding anti-MGE
defense systems [23]. Satellites are costly to phages because
they hijack their particles, thereby decreasing phage burst
size. However, there is significant variation in this cost,
depending on the satellite-helper pair. Some PLEs completely
abolish phage reproduction [24], whereas P4 has, under
certain conditions, amuch lower impact onphage reproductive
fitness [25].

As satellites are mobilized by phages and mobilizable plas-
mids by conjugative elements, there are otherMGEs that can be
mobilized by these parasites of parasites [26,27]. This makes
them parasites of parasites of parasites of bacteria (which may
themselves be parasites of Eukaryotes). While the full scope
of ecological interactions between all these MGEs is not very
well known, it is clearly a multi-layered complex network that
opens paths for both conflicts and alliances in the cell. As an
example of such complex interactions, prophages interact not
only with other prophages and satellites, e.g. by repressing or
actively targeting them [28] (figure 2a), but also with other
MGEs, particularly with conjugative or mobilizable elements,
which can encode anti-phage defenses [29] or be mobilized
by phages [30]. Further, and despite their potential costs for
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bacterial reproduction, there are also synergies between MGEs
and host cells: phage satellites encode defense systems against
phages that they cannot parasitize, which favours the other
MGEs in the genome, including prophages, and the host cell
[23]. Finally, MGEs can exchange genetic material between
them, and with their host, through transposable elements [31]
or different recombination mechanisms [32]. For example, a
chromosomal gene conferring resistance to carbapenem
antibiotics inPseudomonas aeruginosa originated from a conjuga-
tive plasmid, with the transfer from plasmid to bacterial
chromosome likely being mediated by transposases [33].

The abundance and diversity of MGEs, and the myriad of
their possible interactions, establish a scenario where bacteria
are a playground for MGEs and their genomes are shaped by
the associated eco-evolutionary conflicts. The following sec-
tions of this review will thus address the different ways in
which these interactions affect the networks of gene transfer
that shape microbial evolution.
3. Interplay between ecology and mobile genetic
elements shapes horizontal gene transfer

The transfer of a MGE requires either that cells meet for conju-
gation, or that viral particles diffuse far enough to find
susceptible hosts. Therefore, the size and the diversity of
the gene pool for a species depend on the composition of
microbial communities. Metagenomics data have shown that
transfers occur more frequently between isolates from similar
environments [34,35]. Similar conclusions were obtained by
searching for highly similar genes across different genomes
[36,37]. These results have spurred proposals that the dynamic
interplay among hosts, MGEs and environments shapes net-
works of genetic exchanges within communities [38].
Accordingly, the lineages that are most prevalent across differ-
ent habitats within Listeria spp. have higher rates of HGT [39].
The frequency of genetic exchanges mediated by MGEs is
expected to depend on the density of cell hosts in the commu-
nity, whichmay explainwhy the densely populated human gut
is a hotspot of genetic exchanges [34,40]. It also depends on the
physical distances that can be covered by MGEs outside of the
cell. These distances are extremely small for conjugative
elements because they require direct cell–cell contact for trans-
fer. Phages can survive for long periods of time in the
environment [41], which allows their dispersion across large
geographical distances, e.g. in aquatic environments. Hence,
phage-driven HGT is more likely to result in direct transfers
across segregated microbial communities than conjugation.

Structured environments, like biofilms, are thought to be
the most frequent types of microbial environments on the
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planet [42]. The structure of the environment is important
because it shapes the physiological response of individual
cells, the networks of interactions between microbes and
the transmission dynamics of their MGEs [43]. Conjugative
systems mate more efficiently on solid surfaces [44,45] and
conjugation can thus take place at very high rates on the
outer layers of biofilms [46,47]. Plasmids that lack adaptive
genes for their hosts and are only maintained through high
transfer frequencies are thus more likely to persist on biofilms
[48]. Interestingly, conjugation itself spurs the formation of
biofilms [49], thus driving conditions that effectively favour
the transfer of conjugative elements. In contrast, limited diffu-
sion of phage particles hinders phage amplification in
structured environments, thereby decreasing the generation
of phage genetic diversity and making phage–host antagon-
istic coevolution less predictable [50–52]. Habitat structure
and composition are therefore key determinants of the rate
and type of MGE-driven HGT.
4. Mobile genetic element manipulation of the
timing of gene transfer

Several mechanisms increase the rates of genetic exchanges
under conditions of maladaptation, i.e. when the acquisition
of novel functions is more likely to have a positive impact on
fitness. Expression of competence for natural transformation
is usually under the control of conserved regulatory circuits
of the recipient cell, even if several plasmids have been
described to repress transformation [53,54]. In most other
cases, the decision for transfer is under the control of
MGEs, not of the host or recipient cells. In theory, investments
in horizontal and vertical transmission are equally important
for the success of the MGE at the evolutionary time scale [55].
Hence, very costly MGEs are expected to have lower rates of
vertical transmission but can still prosper if their rates of
HGT are high. The investment in the different types of trans-
mission may vary. When the host’s viability is at risk, the
investment in horizontal transmission is much more reward-
ing that the investment in vertical transmission. This results
in an intense exodus of MGEs from the cell to increase their
chances of survival, corresponding to a shift in investment
from vertical to horizontal transmission in the search for
better hosts. The consequence for microbial populations is
an increase in the rates of HGT.

MGEs can sense cues that indicate the cell is no longer a
promising host for vertical transmission, and thus shift their
investment from vertical towards horizontal transmission.
For example, certain DNA lesions lead to the activation of
the SOS response, which favours the induction of prophages
[56,57] and conjugative elements [58]. Because of their effect
on cell physiology, including induction of SOS in some bac-
teria, antibiotics can spur the transfer of phages [59] and
conjugative plasmids [60]. Inflammatory responses in the
gut also increase conjugative transfer and prophage induction,
fostering the spread of functions such as those associated with
virulence and antibiotic resistance [61,62]. These processes are
under the control of the MGEs and can be costly, and some-
times lethal, to the donor cells. Occasionally, they result in
the acquisition of adaptive genes by a recipient cell.

The timing and source of gene flow in populations may
also be conditioned by social processes. Quorum-sensing
allows bacteria to assess the abundance of closely related
cells in a population. Similarly, MGEs have evolved to
sense bacterial quorum-sensing signals to eavesdrop on
bacterial communication and decide when to invest in hori-
zontal transmission [63]. MGEs also encode their own
quorum-sensing systems that further inform them about the
presence of similar elements in neighbouring bacteria. Conju-
gative plasmids use it to transfer between cells when the
environment is crowded with closely related bacteria that
lack the plasmid [64,65] (figure 2d). Temperate phages use
it to favour lysogeny when the density of similar phages in
the environment is high [66] and to induce the lytic cycle
when the concentration of susceptible hosts is high [67,68].
Although systems of molecular communication have only



roya

5
recently been uncovered in MGEs, it is possible that several
other strategies of communication underlie their interactions
with other MGEs and with their potential hosts [69].
 lsocietypublishing.org/journal/rstb
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5. Scope of horizontal gene transfer as the result
of mobile genetic element–host interactions

Since much of HGT relies on the ability of MGEs to transfer
horizontally between hosts, their host range will determine
the rate at which adaptive traits can be transferred across
different species. In general terms, the efficiency of HGT
decreases with the phylogenetic distance between donor
and recipient cells [70]. The magnitude of this effect depends
on the mechanism of transfer of MGEs. Conjugative elements,
which do not require specific cell receptors, often have large
host ranges and can transfer elements across genera or even
phyla [71]. Phage host ranges are usually narrower and can
be limited to a small number of strains having a specific
cell receptor or serotype [72] (see below). The host range of
the many MGEs that exploit other MGEs to transfer across
cells is poorly known. Some mobilizable plasmids might
have a very broad host range because they can hijack conju-
gative systems from different conjugative plasmids [27].
Similarly, the host range of phage satellites depends on
their ability to hijack multiple phages.

Once anMGEhas successfully passed the envelope and the
cell defense barriers, it still endures functional constraints
because the molecular mechanisms used by the MGE for hori-
zontal transmission (e.g. production of viral particles or
conjugative pili) may not work in the novel genetic back-
ground, thereby restricting the MGE’s effective host range.
For example, conjugative pili are specialized to specific mem-
brane structures and those functioning in cells with an outer
membrane usually do not work in cells lacking it [73]. How
functions related to vertical transmission work (or do not
work) in the novel genetic background of recipient cells also
contributes to explaining differences in host range. Site-specific
recombinases allow MGEs to integrate at highly conserved
regions of the chromosome, like tRNA genes, without inacti-
vating them [74]. These integrases function in very different
genetic backgrounds, facilitating transfer of MGEs across dis-
tantly related taxa with little fitness impact for the host. The
higher sensitivity of plasmid replicases to the genetic back-
ground relative to ICE integrases contributes to explaining
why the latter have even broader host ranges than the former
[75]. The broad host range of conjugative elements and their
high genetic plasticity may explain why these elements are
the major vectors of the ongoing large-scale transfer of anti-
biotic resistance from soil bacteria to human pathogens [76].

DNA integrating into the genome by homologous recom-
bination must have high sequence identity with the
chromosome (figure 2c) [77]. This mechanism is important
for allelic exchanges in core genes, which in many species
result in rates of introduction of nucleotide changes higher
than those caused by mutation rates [78]. In bacteria that
are not naturally transformable, these allelic exchanges
require MGE-driven HGT. Yet core genes are systematically
absent from MGEs. Conjugation or transduction are the
most likely candidates to provide the chromosomal DNA
required for allelic exchanges. Recent studies show that lat-
eral transduction can drive the transfer of vast amounts of
chromosomal DNA within species [79]. However, we
still lack quantitative measures of the relative importance of
these different processes in shaping patterns of recombination
in natural populations. While recombination might allow the
integration of exogenous DNA, it may also favour the del-
etion of MGEs from the chromosome [80]. Unfortunately,
most of these recombination processes leave very few, if
any, traces of the vehicle of transfer of the exogenous DNA
into the cell, which is also why the real-world impact of
some types of HGT are still so difficult to quantify (e.g. gen-
eralized transduction). As a result, the mechanisms of
acquisition of exogenous DNA allowing allelic exchanges in
core genes by homologous recombination remain largely
hypothetical and based on extrapolation from data of
laboratory experiments.
6. Mobile genetic elements–cell envelope
interactions are key to successful transfer

MGE-driven HGT requires an initial interaction between the
recipient cell envelope and the structural component of the
MGE that interfaces with it, be it the tip of the conjugative
pilus or the tail of the phage. Viral particles interact with
cells via phage-encoded receptor-binding proteins (RBPs),
which enable their adsorption and stabilization at the cell sur-
face before DNA is injected into the cell [81]. RBPs are very
specific to their corresponding bacterial receptors and shape
the host range of the phage and the sensitivity of the bacter-
ium. By contrast, conjugation is much less reliant on a specific
receptor at the cell envelope [82]. These mechanistic differ-
ences contribute to explaining why phages tend to have
narrower host ranges than conjugative elements.

Structures located at the cell envelope, like the bacterial
capsule, provide additional control over the access of MGEs
to the cell. Capsules are composed of membrane-bound poly-
saccharide chains and constitute the first point of contact of
MGEs with the cell [83]. They can be very large, creating
exclusion zones thicker than the cell diameter, and protect
bacteria from agents like macrophages or antimicrobial pep-
tides [84]. They can also protect from phages, because
capsules can hide phage receptors [85]. Capsules were thus
thought to decrease gene flow [86]. However, phages that
infect bacteria that constitutively express their capsule, like
Klebsiella pneumoniae and Acinetobacter baumannii, have
evolved to use the capsule to adsorb to the cell [87]. The
RBPs of these types of phages are endowed with capsule
depolymerases, specific to one or a few capsular serotypes,
granting them access to the outer membrane after adsorption
at the capsule (figure 3a). But this adaptation comes at a cost:
such phages may become dependent on a specific capsule to
adsorb efficiently to the cell envelope, and are unable to infect
non-capsulated cells, or even cells with a different capsular
serotype. This is not a rare occurrence since the temperate
phage infection networks of K. pneumoniae show clear
serotype-specific clusters [88], resulting in more frequent
phage-driven gene flow between strains with similar sero-
types [89] (figure 3b). The requirement for a capsule for
phage adsorption implies that phage pressure may lead to
selection for capsule inactivation, because non-capsulated
bacteria are resistant to these phages [88]. Interestingly,
such non-capsulated cells are not sexually isolated because
even if phage-driven transfer may be diminished, they are
much more receptive to conjugative elements [89]. Hence,
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variations in the capsule composition or expression change
both phage and conjugation-driven gene flow. The conse-
quences of these changes are very different and somewhat
complementary (figure 3c): phage-driven transfer is particu-
larly high between strains of the same serotype and
conjugation is more frequent towards non-capsulated strains.

Manyother components of the cell envelope are involved in
complex interplayswithMGEs and affect their rates of transfer.
The O-antigen of lipopolysaccharide (LPS) is often targeted by
phages, and it displays high genetic and chemical variability
within and across species [90]. Switching from smooth to
rough LPS type is usually associated with phage resistance
and altered LPS structures. Since LPS-related rough pheno-
types are also associated with modified virulence in
pathogens [91], phage predation also impacts the evolution
of virulence in these strains. The dependence of MGE transfer
on the physiological traits of cells means that changes in envel-
ope composition can reshape networks of gene flow and this
will eventually also affect the HGTof components of the envel-
ope. In conclusion, bacterial physiology, and the different
selective pressures impacting it, are a strong determinant of
both the frequency and type of MGE-driven HGT.
7. Cell and mobile genetic element defenses and
counter-defenses constrain gene flow

Once the DNA enters the recipient cell cytoplasm, defense
systems can still block its expression. Microbes and their
MGEs have evolved numerous specialized defense and coun-
ter-defense systems that are frequently gained and lost. Their
genetic diversification is caused by the antagonistic coevolu-
tion between microbial cells and MGEs. These defense
systems are currently being uncovered at a fast pace and
have recently been reviewed [92–94]. Interestingly, recent
data suggest that most such ‘cellular’ defense systems are
actually encoded in MGEs and not in conserved sections of
the host chromosome [95]. The available evidence is thus
that MGE-encoded defense systems are protecting their host
cell as a side-effect of their action to protect the MGE from
other MGEs [96]. Antagonistic coevolution between MGEs
could thus be at least as important as that between MGEs
and the host.

Onemight think that there is a trade-off betweenmaintain-
ing many defense systems and allowing the genome to acquire
adaptive genes by HGT. Since defense systems block some
MGEs from certain lineages, they carve preferential pathways
of gene flow in microbial populations. Notably, there is more
HGT and homologous (allelic) recombination between pairs
of strains with compatible restriction modification (R-M) sys-
tems, by far the most abundant specialized defense systems,
than between other strains. This is because MGEs transferred
between strains with compatible R-M systems carry the same
methylation patterns and thus are able to escape restriction
that would otherwise prevent their DNA from establishing in
the cell [97] (figure 2b). While defense systems tend to limit
the income of new DNA, in certain circumstances they may
even facilitate HGT [98]. Many defense systems, like viperins
or retrons [99,100], target very specific functions and may not
impact the transfer of most MGEs. Hence, defense systems
shape but do not abolish gene flow in microbial populations.
MGEs, being both targets and producers of defense systems,
are both vectors of and barriers to HGT.
8. Mobile genetic elements turnover
MGEs represent a large fraction of the accessory genome of
many species, but they are rarely maintained in a lineage
for a long period of time [95,101]. These rapid dynamics of
gene gain and loss contribute to the U-shaped distribution
of the frequency of gene families in pangenomes, typically
resulting in a large majority of gene families being either
very frequent (persistent genome) or quite rare (usually
acquired in MGEs) [102]. The high turnover of MGEs
means that closely related strains can have very different
MGE contents. This is the case in E. coli and K. pneumoniae,
where epidemiologically indistinguishable strains (from the
same sequence types) differ in the many different MGEs
they carry [103,104]. A high MGE turnover also means that
while MGEs are a sizeable part of bacterial genomes (ca
10% in E. coli for phages plus plasmids) they account for
most of its variation in size [103]. This rapid flux of MGEs



0.05 0.10
patristic distance (subst/nt) genome size (Mb)

ge
ne

 r
ep

er
to

ir
e 

re
la

te
dn

es
s 

(%
)

fr
ac

tio
n 

of
 a

cc
es

so
ry

 g
en

es
 (

%
)

0.150

70

80

90

100
ST

10

5

0

20

30

40
B. longum

E. faecium

E. coli

B. cenocepacia

K. pneumoniae

C. trachomatis B. pertussis

15

25

35

1 2 3 4 5 6 7 8

(a) (b)

Figure 4. Impact of the high turn-over of MGEs on gene repertoire (left) and genome size of the host. (a) Gene repertoire relatedness decreases quickly with the
patristic distance in E. coli (red spline fit line) at short evolutionary distances, i.e. between genomes of the same sequence types (ST). The subsequent changes are
more moderated and approximately linear with time (black linear fit line) [103]. Of note, the variance around these average trends is very large. This figure was
simplified and redrawn from the data in [103]. (b) The horizontal line is the linear regression of the fraction of accessory genes per genome as a function of the
average species genome size (for the 90 most-represented species in GenBank). Figure redrawn and simplified from the results presented in [105]. B. cenocepacia,
Burkholderia cenocepacia; B. longum, Bifidobacterium longum; C. trachomatis, Chlamydia trachomatis; E. coli, Escherichia coli; E. faecium, Enterococcus faecium; K.
pneumoniae, Klebsiella pneumoniae; B. pertussis, Bordetella pertussis.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20210234

7

explains why relatedness between gene repertoires decreases
very quickly with phylogenetic distance for closely related
genomes (figure 4a).

Many forces drive the rapid turnover of MGEs and their
genes in bacterial genomes [37,106]. Foremost, MGEs can be
very costly and their hosts counter-selected [107]. Induction of
temperate phages kills the host, and evenplasmids and transpo-
sons may involve lower, but not necessarily negligible, costs
[108,109]. The rapid loss of MGEs could thus be interpreted as
the result of their negative contribution to the host fitness.
In this view, the ubiquitous presence of MGEs in microbial
populations could be explained by their selfish spread.

However, extensive data suggest a more nuanced view of
the costs and benefits of HGT driven by MGEs [110]. The
costs of MGEs can decrease rapidly after their acquisition by
a host, as frequently observed in plasmids. The acquisition of
novel plasmids is usually associated with an elevated physio-
logical burden, but purifying selection does not necessarily
lead to plasmid loss or chromosomal integration of beneficial
genes [106], especially when the element carries adaptive
traits under positive selection [111]. In such cases, there is
rapid emergence of compensatory mutations, either in the
chromosome or in the plasmid themselves, that alleviate the
cost of the element [112], e.g. by resolving specific genetic con-
flicts [113]. Amelioration contributes to lower the cost of MGEs
as parasites and increases their stability in microbial lineages.

Many MGEs carry genes that are adaptive under specific
and potentially transient conditions [2]. The linkage between
these adaptive genes and the MGE may provide the ensemble
with positive net fitness advantage to the host for some time.
The MGE would be selectively maintained as long as these
genes provide a sufficient fitness advantage, but could be
quickly lost when its positive impact on fitness ceases.
Many accessory genes in MGEs may be adaptive for only
short periods. For example, antibiotic resistance genes tend
to be costly and are typically lost when individuals are no
longer subject to antibiotics [114]. Genes under negative
frequency-dependent selection, e.g. toxins encoded by MGEs
associated with inter or intra-specific competition [115], are
also expected to be rapidly replaced. The presence of genes
adaptive only in particular contexts means that the associated
MGEs may endure fluctuating types of selection, i.e. they are
adaptive in certain contexts and parasites in others.

Finally, neutral processes may accelerate the loss of MGEs.
Adaptive genes may escape costly MGEs by translocating into
the chromosome [116], thereby turning an adaptiveMGE into a
costly one that becomes counter-selected even if the host fitness
has not changed. MGEs may also be affected by the pervasive
bias toward deletions in bacteria [117] that may be more pro-
nounced in MGEs because they have many transposable
elements [118] and repeated DNA [119]. Therefore, the high
turnover of MGEs is probably the result of multiple selective
pressures and mutational biases that operate at different
scales: the gene, the MGE and the host genome.
9. Impact of mobile genetic element turnover
on pangenome evolution

The rapid turnover of MGEs implies that high rates of HGT do
not necessarily result in larger microbial genomes. Except for
very small genomes that sometimes show little or no evidence
of MGEs and HGT, there is extensive variation in the frequency
of accessory genes per microbial genome. This frequency varies
from a few percent to close to 40% [105], with many species
showing values between 10 and 25% (figure 4b). Species with
large genomes tend to have higher effective population sizes
[120], but they do not necessarily have very high rates of HGT
[121], nor of homologous recombination [120]. The fraction of
the genome that corresponds to the accessory genome is also
not correlated with the average species genome size [105].
Hence, the fraction of accessory genes, most of which are
acquiredbyHGT,doesnot seem to result from the same selection
processes that result in larger genomes. Instead, itmay reflect the
rates andcosts of genegainand loss. SincemostHGTseems to be
driven by MGEs, the persistence of novel genes in bacterial
lineages will be dependent on deletion biases, on the fitness
effect of the gene and on its direct genetic environment (the
MGE). If the MGEs have high horizontal transmission rates,
they are also more likely to be costly. Hence, genomes with
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high rates of HGTmight only have an average amount of acces-
sory genes because most acquired genes are in costly MGEs that
are rapidly lost from the genome (or the genome is purged from
populations by purifying selection).

Extreme reductions in genome size have been observed in
endo-mutualists that are sexually isolated, endure population
bottlenecks, and live in constant environments [122]. But similar
processes of genome reduction have been found in free-living
bacteria that are able to exchange DNA, presumably due to
selection for genome streamlining [123]. Surprisingly, bacterial
genomes can shrink despite being under the influence of high
rates of HGT. The phylogroups of E. coliwith the smallest gen-
omes have the highest rates of gene repertoire diversification
and fewer but more diverse MGEs [103]. Many of these small
E. coli genomes are from freshwater isolates, lack antibiotic
resistance genes and virulence factors, and have a large pangen-
ome. They seem to be locally adapted to their nutrient-poor
environment. This example illustrates how ecological opportu-
nities can shape the number, the type and the distribution of
MGEs in a population. In this case, while high gene flow may
have facilitated parallel adaptation to an environment that is
very different from the mammalian gut, selection for streamlin-
ing in such nutrient-poor environments [123] has likely resulted
in genome reduction.
10. Outlook and unsolved mysteries
The identification of the pertinent levels of selection—genes,
MGEs or/and genomes—can be extremely complicated
when populations have many MGEs that are prone to genetic
conflicts. Because a lot of HGT is driven by MGEs, many of
the most recent genes in the genomemay be neutral or deleter-
ious to the host cell, while being selected due to the benefits
they confer to the MGE itself. Still, genes in MGEs can some-
times be adaptive to the host as a by-product of their
selection by the MGE, typically because higher host fitness
increases the fitness of the MGE encoding the trait. This is the
case for many traits in plasmids and phages, like antibiotic
resistance, toxins and defense systems that are adaptive both
to the MGE and to its host. Many such genes may be adaptive
under certain situations and not in others. For example, phage
satellites can block phage infections and thus favour the bac-
terial host, but may be costly when the specific helper phages
are absent. Likewise, prophages without genes that are adap-
tive to the host might still provide resistance to other similar
phages.While the qualitative understanding of these processes
has much progressed, there is a paucity of quantitative data to
understand how much of the HGT is potentially of adaptive
value for the recipient cell.

MGEs can be costly and reproduce selfishly across popu-
lations but may also occasionally provide adaptive genomic
changes by increasing genome evolvability [124].Many studies
revealed the roles of transposable elements in shuttling adap-
tive genes between replicons, thereby favouring their transfer
in plasmids or their stabilization in the chromosome [118].
But transposition of these elements also results in frequent
pseudogenization of useful genes. How frequently the gains
in evolvability provided by MGEs compensate the costs of
these elements is poorly known. These indirect selective
effects (i.e. higher-order selection) are hard to measure in the
laboratory because they depend on the genetic diversity of
communities and the frequencies and types of ecological chal-
lenges faced by Bacteria and Archaea. Further work will be
needed to disentangle how and when such elements contrib-
ute, or not, to host adaptation. Such studies should account
for the fact that recipient cells have little control over the rates
of HGT and that MGEs have their own evolutionary interests,
meaning that it is difficult to interpret changes in the rates of
HGT in the light of selection for microbial evolvability.

The availability of low-cost sequencing and the current
focus on the worrisome spread of antibiotic resistance genes
by MGEs may provide crucial data to quantify how rates of
HGT depend on the type of MGE and its mechanisms of hori-
zontal transmission. For example, phages encode many
toxins, but few antibiotic resistance genes [125]. The latter
are much more frequent in conjugative elements, especially
in plasmids [75]. The genetic plasticity, range of interactions
and mode of transfer of MGEs might explain why certain
MGEs are preferentially associated with certain traits.

Finally, it is important to stress that many MGEs might still
be unknown andmanyof the known ones have as yet unknown
mechanisms of transfer. For example, over 50% of known plas-
mids do not encode either a conjugative apparatus or a known
relaxase [10]. Theymay be transferred byone ofmanyprocesses:
conjugation using a relaxase from another plasmid [126], gener-
alized transduction [30,127], natural transformation [128] or
vesicles [129]. The current lack of information on the mechan-
isms of transfer of many MGEs raises questions about their
origins, mechanisms of dissemination and impact on microbial
evolution. Rough estimates suggest that most large contiguous
stretches of non-homologous sequences integrated in genomes
by integrases, presumably MGEs, remain to be characterized
[130]. The identification of these elements and their interactions
with hosts and other MGEs will certainly contribute to a better
understanding of gene flow in microbial populations.
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