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Bone marrow transplant (BMT) is an effective surgical treatment for bone marrow-related disorders. However, several associated
risk factors can impair long-term survival after BMT. Machine learning (ML) technologies have been proven useful in survival
prediction of BMT receivers along with the influences that limit their resilience. In this study, an efficient classification model
predicting the survival of children undergoing BMT is presented using a public dataset. Several supervised ML methods were
investigated in this regard with an 80-20 train-test split ratio. To ensure prediction with minimal time and resources, only the
top 11 out of the 59 dataset features were considered using Chi-square feature selection method. Furthermore, hyperparameter
optimization (HPO) using the grid search cross-validation (GSCV) technique was adopted to increase the accuracy of
prediction. Four experiments were conducted utilizing a combination of default and optimized hyperparameters on the original
and reduced datasets. Our investigation revealed that the top 11 features of HPO had the same prediction accuracy (94.73%) as
the entire dataset with default parameters, however, requiring minimal time and resources. Hence, the proposed approach may
aid in the development of a computer-aided diagnostic system with satisfactory accuracy and minimal computation time by
utilizing medical data records.

1. Introduction

Cancer kills millions of people, even in its most curable
forms. According to the statistics of 2020, the estimated
death tolls in the USA from colon, pancreatic, lung, breast,
and prostate cancers are 53200, 47050, 135720, 42690, and
33330, respectively [1]. When there is no cure, physicians
endeavor to extend the lifespan of a cancer patient through
surgery, radiation therapy, or chemotherapy as alternative
methods of cancer treatment [2]. For various reasons, the
high dose of medication during chemotherapy or radiation

therapy causes bone marrow damage in patients [2]. Bone
marrow (BM), a delicate, elastic adipose tissue located inside
most skeleton structures, is responsible for creating the red
blood cells of human blood [3, 4]. It also contains hemato-
poietic stem cells (HSC) that are merely immature blood-
forming stem cells endowed with idiosyncratic properties
like self-renewal, and they form populations of progenitor
cells through cell division and differentiation [4–6]. How-
ever, the concept of BMT, otherwise known as hematopoie-
tic stem cell transplant (HSCT), gleans from the postulation
of eliminating dysfunctional body parts and replacing them
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with healthy ones [7]. Although it is a life-saving treatment,
it has potential life-threatening risks [8]. Clinical HSCT
commenced in 1957, at a time when the health domain
was inadequately fathomed about HSCs, immunological
reactions to transplants, and even about the specification of
antigens steering the course of action [9]. HSCT is not a sur-
gery, rather a specialized treatment for people afflicted by

specific cancers or certain medical conditions [10, 11]. The
target of such a therapy is transfusing functional BM into a
patient, subsequent to their own diseased BM being medi-
cated for exterminating the aberrant cells [11]. The three
prime objectives of HSCT are (a) replacement of deceased
stem cells affected by chemotherapy, (b) replacement of dis-
eased marrow that is impotent to synthesize its endemic
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progenitor cells, and (c) infusion of allografts to assist in
locating and destroying malignant cells [12].

Healthy BM can be either extracted from the patient
(autologous transplant) or conferred on by a volunteer
donor (allogeneic transplant). In the case of autologous
transplant, stem cells come from any other healthy organ
of the patient [3]. And for an allogeneic transplant, a donor
with closely matched human leukocyte antigens (HLAs) is
needed [10]. Most of the times, siblings, having the same
parents, make for the closest matches, although other close
relatives or perhaps an unrelated patron can also be a suc-
cessful match. There are two ways of collecting donor stem
cells for transplant: (a) BM collection and (b) leukapheresis
[13]. When a patient receives highly matched proteins from
a donor, the odds of developing a severe adverse reaction,
known as graft-versus-host disease (GVHD), are minimized
[3]. Given that a donor cannot be found, cord blood trans-
plants (stem cells collected from the umbilical cord), par-
ent-child, and HLA haplotype mismatched transplants
(stem cells collected from a parent, child, or sibling) can be
performed [3]. HSCT is broadly adopted for hematopoietic
system-acquired and congenital illnesses. According to the
Health Resources and Services Administration, almost 23
million people have registered with the donor registry.
Besides, the donor registry currently contains approximately
305,000 units of cord blood. The National Cord Blood
Inventory (NCBI) provides around 112,000 units, which is
reflected in this number, with an additional 4,000 units pro-
jected to be available in 2020. The Center for International
Blood and Marrow Transplant Research (CIBMTR) regis-
tered a total of 9,267 related and unrelated BMTs conducted
in the United States in 2018 [14]. According to a survey
undertaken by UPMC Children’s Hospital of Pittsburgh,
the percentages of patients who survived 100 or more days
after the transplant procedure, the percentage of patients
who died of causes other than the underlying disease, and
the percentage of patients who survived one or more years
after the transplant procedure are 100%, 3%, and 94%,
respectively [15].

To summarize, BMT is a treatment that saves and risks
life at the same time. The success rate of BMT is mostly
dependent on earlier examination, data collecting, and anal-
ysis. Hence, a lot of clinical data collection and generation
are required before therapy. In this regard, a machine
learning-based support system can help healthcare profes-
sionals in a variety of situations. It has significant predictive
ability for this type of problem and has been extensively used
in recent years in a variety of sophisticated healthcare sys-
tems [16–20]. Moreover, it has lately been shown to be
incredibly effective in the healthcare arena [21–26]. In the
case of BMT, an ML-based support system can play an
important role by predicting the patient’s survival after treat-
ment and assisting in the necessary preparations prior to
therapy. Many previous studies in this domain have been
undertaken, but the majority of them have not included
the survival prognosis for children undergoing bone marrow
transplants utilizing the ML approach. In this type of
healthcare scenario, machine learning can be quite useful
for prediction. However, the major causes of death in chil-

dren undergoing HSCT remain unclear. The current BMT
method does not allow healthcare providers to determine
survivability in advance. It will be very useful for them if a
prior prognosis can be established, and they may take neces-
sary actions to provide treatment based on this. The goal of
this research is to develop a trustworthy ML-based clinical
support system for healthcare professionals involved in the
treatment of BMT. In this study, the survival prediction of
children who received BMT was thoroughly investigated
using seven supervised ML classifiers, such as decision tree
(DT), random forest (RF), logistic regression (LR), K-near-
est neighbors (KNN), gradient boosting classifier (GBC),
AdaBoost (AdB), XG Boost (XGB), and a dataset obtained
from the UCI ML repository [27]. The Chi-squared feature
ranking technique was deployed after preprocessing the
dataset to discover the important factors of survivability
[28]. The entire study consists of four experiments, such as
that (A) with a full set of features and default hyperpara-
meters, (B) with a full set of features and HPO, (C) with a
reduced feature dataset (based on the Chi-squared test)
and default hyperparameters, and (d) with a reduced feature
dataset (based on the Chi-squared test) and HPO followed
by a rigorous quantitative and qualitative analysis. An over-
all workflow diagram of this work is depicted in Figure 1.

The contributions of this study may be summarized as
follows: (1) development of a suitable predictive model from
raw data, (2) determination of critical factors influencing
post-BMT survival, and (3) improvement of the prediction
accuracy by reducing dimensionality problems. To the best
of our knowledge, this dataset has never been exploited
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and analyzed in this way before, and it may appear as a sig-
nificant contribution in helping the healthcare industry to
develop a more trustworthy e-healthcare system and create
a new horizon in the medical sector.

2. Literature Review

In recent times, ML techniques have been extensively
exploited for diagnosis, prognosis, and therapeutics in the
healthcare sector. Its applications are not limited to treat-
ment procedures; rather, they are expeditiously gaining trac-
tion in a variety of research fields. In a narrative review,
Nathan et al. highlighted essential ML concepts for novice
readers, discussed the applicability of ML in hematology-
related malignancies, and indicated key points for practi-
tioners to consider before evaluating ML studies [29]. Vib-
huti et al. also conducted a comparative evaluation of ML
methods utilized in the discipline of HSCT, examining the

categories of data flows incorporated, designated ML algo-
rithms used, and therapeutic consequences monitored [30].
On the other hand, patients with acute leukemia (AL)
undergoing HSCT from unrelated donors exhibit a plethora
of variations, even after rigorous genetic matching. To
address this, Ljubomir et al. sought to develop an algorithm
to predict the five-year survival of patients’ postallogeneic
transplant [31]. Similarly, Brent et al. trained a Bayesian
ML model to predict acute GVHD, including mortality by
day 180 [32]. However, with better donor data collection, it
is possible to generate a more precise approximation of indi-
vidual donor availability, as estimating group averages for
the distinct donors is an untrustworthy proposition. As a
solution to this problem, Adarsh et al. suggested an ML-
based technique for estimating the availability of each listed
donor and validation of forecasting accuracy [33]. Addition-
ally, Li et al. focused on creating and verifying an ML tech-
nique for estimating donor availability, implementing and
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Figure 3: Correlation heatmap (full-feature dataset).
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comparing three ML algorithms [34]. As a result of orga-
nized registry establishment and biological data incorpora-
tion, data procured from HSCT institutions is becoming
highly proliferated and labyrinthine. Consequently, conven-
tional statistical methods are confirmed to be obsolescent. In
its provision, Shouval et al. aimed to advocate the implemen-
tation of ML and data mining (DM) schemes in the study of
HSCT, covering transplant performance prognosis as well as
donor selection [35]. Similarly, Jan-Niklas et al. explored
current ML breakthroughs in the acute myeloid leukemia
(AML) diagnosis as a prototype condition encompassing
hematologic neoplasms [36]. Furthermore, the goal of the
research by Liyan et al. was to shape an ALL- (acute lympho-
cytic leukemia-) relapse detection scheme relying on ML
methods [37]. In addition, using alternating data tree
(ADTree), Kyoko et al. endeavored to design a model for
predicting leukemia recidivism within a year following
transplantation [38]. For contemplative and prospective
analysis, ADTree was also employed by Yasuyuki et al. to

scan databases containing information about adult patients
with HSCT in Japan [39]. Daniela et al. also examined the
organic phenomena associated with self-regeneration and
augmentation of hormone-sensitive prostate cancer (known
as CD34+ cells) in stable conditions and subsequent trans-
plantation [40]. Moreover, a DM analysis involving 28,236
registered adult HSCT receiving patients from the European
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Figure 4: Correlation heatmap (reduced feature dataset).

Table 1: Performance metrics of ML algorithm for experiment A.

Algorithm Accuracy Precision Recall F1 ROC_AUC

DT 0.9473 0.9047 1.000 0.9500 0.9523

RF 0.9210 0.9047 0.9500 0.9268 0.9229

LR 0.9473 0.9523 0.9523 0.9523 0.9467

KNN 0.6052 0.8571 0.6000 0.7058 0.5756

GBC 0.9473 0.9523 0.9523 0.9523 0.9467

AdB 0.9473 0.9523 0.9523 0.9523 0.9467

XGB 0.8947 0.8571 0.9473 0.9000 0.8991
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Group for Blood and Marrow Transplantation’s registry was
done by Shouval et al. to predict 100-day overall and nonre-
lapse mortality, free of leukemia, and 2-year overall survival.
The ADTree algorithm was employed to create models using
70% of the data set, and the remaining 30% of the data was
utilized to validate them [41]. Moreover, Arabyarmoham-
madi et al. used the Cox regression model to estimate the
probability of patient relapse after acute myeloid leukemia
posthematopoietic cell transplantation [42]. Similarly, Iwa-
saki et al. created a stacked ensemble of the Cox propor-
tional hazard (Cox-PH) regression and 7 machine learning
algorithms and discovered prediction accuracy with a C
-index of 0.670 utilizing the ensemble model [43]. On the
other hand, Morvant et al. used machine learning (support
vector machine (SVC) and Ridge logistic regression (LR
Ridge)) with leave-one-out cross-validation to compare sev-
eral combinations for predicting bone marrow minimal
residual disease (MRD) before autologous stem cell trans-
plant consolidation (ASCT) and discovered AUCs of up to
0.63 and 0.82 for negative vs. positive MRD in the lesion
with the highest uptake [44]. Inspired by prior studies pro-
posed earlier and mentioned above, this research attempts
to construct a trustworthy clinical support system using
supervised ML algorithms and the Chi-square test. To the
best of our knowledge, no earlier research has been under-
taken to predict children undergoing BMT survivability uti-
lizing the Chi-squared algorithm in conjunction with
supervised ML algorithms and HPO. Furthermore, most
past research has not focused on establishing a clinical sup-
port system that can predict with greater accuracy and
includes feature ranking.

In this study, an ML stratagem was adopted for eliciting a
prediction of the survival rate of patients who had BMT or
HSCT. All previous works augmented the prediction study
and related investigation through distinctive strategies; how-
ever, all have limitations that need to be overcome. The sole
purpose of this research is to investigate whether HPO along
with a reduced feature set can provide a reliable outcome using
an investigative ML approach and to distinguish the most
impactful factors on children’s survival who have received
BMTs. A preprint has previously been published in [42].

3. Methodology

3.1. Dataset Description. The dataset used in this study was
retrieved from the ML repository at the University of
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Figure 5: ROC curve for the ML models of experiment A.

Table 2: Performance metrics of ML algorithm for experiment B.

Algorithm Accuracy Precision Recall F1 ROC_AUC

DT 0.9473 1.0000 0.9130 0.9545 0.9411

RF 0.9210 0.9047 0.9500 0.9268 0.9229

LR 0.9473 0.9523 0.9523 0.9523 0.9467

KNN 0.6842 0.8571 0.6666 0.7500 0.6638

GBC 0.9473 0.9523 0.9523 0.9523 0.9467

AdB 0.9473 0.9523 0.9523 0.9523 0.9467

XGB 0.9210 0.9047 0.9500 0.9268 0.9229
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Figure 6: ROC curve for the ML models of experiment B.

Table 3: Performance metrics of ML algorithm for experiment C.

Algorithm Accuracy Precision Recall F1 ROC_AUC

DT 0.8157 0.8095 0.8500 0.8292 0.8165

RF 0.8157 0.9047 0.7916 0.8444 0.8053

LR 0.8684 0.9047 0.8636 0.8837 0.8641

KNN 0.9210 0.9047 0.9500 0.9268 0.9229

GBC 0.8157 0.9047 0.7916 0.8444 0.8053

AdB 0.7894 0.8571 0.7826 0.8181 0.7815

XGB 0.8157 0.9047 0.7916 0.8444 0.8053
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California, Irvine, and the version utilized in this study was
extracted from [27]. It covers medical information for chil-
dren who have been diagnosed with a variety of hematologic
diseases and who underwent unmodified allogeneic unre-
lated donor HSCT [43]. Hence, this dataset comprises 187
occurrences and 37 attributes that contain information
about individuals who have been diagnosed with a range of
hematologic, malignant, or benign diseases. Most of the
attributes contain categorical data, while others contain
Boolean and numerical values. The dataset’s attributes are
listed in Supplementary Materials (Appendix I). Following
data extraction, it was subjected to exploratory data analysis
using Jupiter Notebook and Python to determine the data-
set’s properties.

3.2. Chi-Square Test. As a type of statistical procedure, Chi-
square tests are used to determine the level of independence
between categorical variables. It is also a widely used non-
parametric method for parametric and normal distribution
testing of nominal data [44]. This technique is intended for
feature tests that are independent of one another. This pro-
duces the Chi-square score, which is used to identify the
most highly correlated feature for ML models to predict
desired outcomes [45]. The Chi-square score indicates the
degree to which the attributes of a dataset are related. An
attribute with a low score indicates that it has a very low pre-
dictive ability for the dataset’s desired outcome column.
Therefore, by utilizing this information, the most critical fea-
tures may be identified, and more efficient models may be
deployed on large datasets. The Chi-squared statistical test
formula can be written as follows:

χ2 =〠 O − Eð Þ2
E

, where
O denotes the observed frequencies
E denotes the expected frequencies:

(

ð1Þ

After preprocessing the data, which includes filling in
missing values, encoding categorical variables, and normali-
zation, the Chi-squared statistical test is used to determine
the attributes’ independence. The top attribute in this list is
“PLT recovery,” followed by “ANC recovery,” “time_to_
acute_GvHD_III_IV,” “survival_time,” and so on. The sum-
mary of the test on this preprocessed dataset is shown in
Supplementary Materials (Appendix II).

3.3. Hyper Parameter Optimization (HPO). The parameters
that define the architecture of ML models are known as
hyperparameters. Hence, the optimization of hyperpara-
meters has a substantial impact on the formation of ideal
models for certain tasks. While training the model, hyper-
parameters are optimized using validation data from a data-
set. Typically, grid search cross-validation (GSCV) and
random search cross-validation (RSCV) are two HPO pro-
cesses that work well for a variety of ML tasks [46]. HPO
is critical for determining the optimal performance of any
ML model because it establishes the model’s core architecture
[47]. Moreover, the importance of HPO was discovered by
several researchers and is now widely employed in ML-based
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Figure 7: ROC curve for the ML models of experiment C.

Table 4: Performance metrics of ML algorithm for experiment D.

Algorithm Accuracy Precision Recall F1 ROC_AUC

DT 0.9473 0.9523 0.9523 0.9523 0.9467

RF 0.8421 0.9047 0.8260 0.8636 0.8347

LR 0.8684 0.9047 0.8636 0.8837 0.8641

KNN 0.8947 0.9523 0.8695 0.9090 0.8879

GBC 0.8157 0.9047 0.7916 0.8444 0.8053

AdB 0.8157 0.9047 0.7916 0.8444 0.8053

XGB 0.8157 0.9047 0.7916 0.8444 0.8053
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Figure 8: ROC curve for the ML models of experiment D.
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prediction [48]. The GSCV evaluates all possible combinations
from a given set of hyperparameters, whereas the random
search algorithm just attempts some random possible combi-
nations [49]. As a result, even though it takes a bit longer than
a random search, the grid search technique yields better results
when tuning the hyperparameters of any ML algorithm.
Hence, the grid search technique is employed in this study to
fine-tune the hyperparameters and achieve better results.
Figure 2 illustrates the workflow of GSCV.

3.4. Workflow. Following early data analysis, the dataset
underwent multiple preprocessing stages before being used

in the machine learning models. First, the dataset underwent
multiple preprocessing stages before being used in ML
models. The missing values of the dataset were filled with
mean values for numerical ones and the most frequent
values for categorical ones. Since categorical data cannot be
handled by ML models, the categorical variables were
encoded into a numerical form. The dummy variable encod-
ing technique was employed for this purpose, and the attri-
butes were turned into Boolean attributes that could
readily fit into any ML model [50]. Second, the attributes
were then normalized using the standard scaling method
to avoid bias from the ML models [51], leaving the dataset
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Figure 9: Comparative analysis of the performance metrics for experiment A.
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Figure 10: Comparative analysis of the performance metrics for experiment B.
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with 59 columns after preprocessing. To discover the corre-
lation between attributes, the correlation heatmap is gener-
ated using the processed dataset, as depicted in Figure 3.
Third, the dataset was split into train and test sets in propor-
tions of 80% and 20%, respectively. Seven ML algorithms,
DT, RF, LR, KNN, GBC, AdB, and XGB, were fed and
trained on this dataset, and performance metrics were
obtained. Moreover, the Chi-squared statistical test is used
to determine the most important features, and the test score
is represented in Supplementary Materials (Appendix II).
Once the Chi-squared score is calculated, a minimum num-
ber of features are determined that can still predict survival

reliably, using fewer electronic health records and computa-
tional resources. As a result, the top 11 features were chosen
empirically from Supplementary Materials (Appendix II)
and were analyzed for the prediction of the models. The cor-
relation heatmap using these 11 features is shown in
Figure 4.

As mentioned earlier, a total of four distinct experi-
ments, A, B, C, and D, were carried out in this study. In
experiments A and C, no HPO was performed. However,
in experiments B and D, the train dataset was cross-
validated using GSCV to determine the optimum hyperpara-
meters of the ML model. After training the ML models, the
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Figure 11: Comparative analysis of the performance metrics for experiment C.
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test dataset was fed to evaluate the performance of various
models. Finally, all performance metrics were calculated,
and various comparisons and analyses were performed to
determine the impact of hyperparameter tuning and the
use of the full-feature dataset and the reduced dataset, in
which attributes were chosen based on the results of the
Chi-squared test. This research was entirely carried out on
an Intel Core i5-8300H CPU operating at 2.30GHz, 8GB
of RAM, and an NVIDIA GTX 1050 Ti graphics unit with
4GB of GPU memory using Jupyter Notebook v6.1.4
(Python 3 v3.8.5) and Anaconda-v4.10.3.

4. Results

4.1. Experiment A: With a Full Set of Features and Default
Hyperparameters. This experiment was conducted using
the processed full-feature dataset with no optimization of
model hyperparameters. The dataset for this experiment
has 58 attributes and 1 objective attribute. Figure 3 shows
the correlation heatmap for the whole feature dataset. The
performance metrics (accuracy, precision, recall, F1, and
ROC_AUC values) of the ML models are summarized in
Table 1. The receiver operating characteristics (ROC) curve
for this experiment, as shown in Figure 5, can be used to dis-
cover the ideal ML model, thus removing suboptimal
models. It can be observed from Table 1 that the models
DT, LR, GBC, and AdB have the best accuracy, precision,
and F1 score, and DT has the highest recall and ROC_AUC.

4.2. Experiment B: With a Full Set of Features and
Hyperparameter Optimization (HPO). In this experiment,
the full set of features of the dataset was utilized along with
HPO. The training dataset was cross-validated 10-folds
using GSCV to determine the optimal hyperparameters
and using which all other performance metrics were
assessed. The performance metrics of the ML models are
summarized in Table 2, and the corresponding ROC curve
is depicted in Figure 6. As seen from this table, the algo-
rithms, DT, LR, GBC, and AdB perform reasonably well in
this experiment. Moreover, DT outperforms the other algo-
rithms in terms of precision and F1 score, whereas LR, GBC,
and AdB have the highest recall and ROC_AUC.

4.3. Experiment C: A Reduced Dataset Based on Chi-Square
Test and Default Hyperparameters. This experiment was
conducted considering the top 11 features of the dataset,
obtained from the Chi-square test. The ML models were ini-
tially trained on the selected training set and subsequently
verified on the test set using the default hyperparameters
without any sort of optimization. The performance metrics
are reported in Table 3, and the corresponding ROC curve
is presented in Figure 7. It is apparent from Table 3 that
KNN surpasses the rest of the classifiers in terms of accu-
racy, F1 score, recall, and the ROC_AUC value. However,
in regard to precision, RF, LR, KNN, GNB, and XGB all per-
form the same.

4.4. Experiment D: A Reduced Dataset Based on Chi-Squared
Test and Hyperparameter Optimization (HPO). Similar to
experiment C, experiment D is conducted using the reduced

feature dataset with HPO. As before, HPO was performed
using GSCV with 10-fold cross-validation to determine the
optimal hyperparameters. The reduced dataset comprised
of 11 attributes, and the performances were evaluated based
on them. The performance metrics are reported in Table 4,
and the corresponding ROC curve is presented in Figure 8.
From Table 4, it is evident that DT outperforms all other
algorithms in every performance metric. However, in terms
of precision, DT and KNN perform the best altogether.

5. Discussion

As can be seen, the overall study included four experiments
with four different approaches. The whole feature dataset
was employed in the experiment A without HPO, and the
maximum accuracy was found to be 94.73%, as were the pre-
cision (0.9523), recall (1), F1 score (0.9523), and ROC_AUC
(0.953). In terms of accuracy, the best algorithms are DT,
LR, GBC, and AdB. However, in experiment B, the maxi-
mum accuracy was 94.73%, and the precision, recall, F1
score, and ROC_AUC were 1, 0.9523, 0.9545, and 0.9467,

Table 5: Comparison of computational time.

Algorithm
Computation time for

full-feature data
(seconds)

Computation time for
reduced feature data

(seconds)

DT 17.17 19.26

RF 118.00 161.35

LR 35.56 26.74

KNN 7.17 5.92

GBC 52.19 39.00

AdB 14.46 17.00

XGB 586.00 550.00
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Figure 13: Comparison of computational time (between
experiments B and D).
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respectively. The well-performing algorithms were the same
as in the experiment A, but the overall performance was
improved in this experiment since HPO was performed with
the 10-fold GSCV method. On the other hand, the experi-
ments C and D are carried out based on the Chi-square test
results. The top 11 features from the dataset were extracted,
and this reduced dataset was employed in these tests. In
experiment C, the maximum accuracy of 92.1% was
obtained for KNN, with precision (0.9047), recall (0.95), F
1 score (0.9268), and ROC_AUC (0.9229). In experiment
D, HPO was performed on the same reduced dataset as in
experiment C. This time, the performance of all ML algo-
rithms improved significantly, DT having the best perfor-
mance measures. The performance measures for DT in
experiment D are as follows: accuracy (0.9473), precision
(0.9523), recall (0.9523), F1 score (0.9523), and ROC_AUC
(0.9467). The graphical presentation of the comparative
analysis of experiments A, B, C, and D is illustrated in
Figures 9–12, respectively.

Based on the above four experiments, it is evident that
HPO is critical to enhancing the performance of the ML
algorithm, and the Chi-square test plays a significant role
in determining the most important feature. The computa-
tion time of GSCV using complete and reduced feature data-
sets is shown in Table 5 and is visualized using a bar plot in
Figure 13. Most of the ML classifiers required less time in the
reduced feature dataset without significantly affecting per-
formance, which is an encouraging result of our study. The
comparison between the four experiments is shown in
Figure 14 in terms of accuracy, precision, recall, F1, and
ROC_AUC. The top five critical attributes established in this
study are “PLT recovery,” “ANC recovery,” “duration of
acute GvHD III IV,” “survival time,” and “recipient body
mass.”

Previously, researchers employed a prediction method to
predict the survivability of patients receiving BMTs. For
instance, Gudys et al. employed a rule-based predictive

model in this dataset and produced a tool named RuleKit
for predicting BMT survival rates in children [52]. Likewise,
Sikora et al. established a framework that is based on deci-
sion rules and the rule induction approach [53]. In a similar
study, Karami et al. combined ML and feature selection
methods to identify the most appropriate factors for predict-
ing AML patient survival [54]. They used six ML algorithms,
like DT, RF, LR, naive Bayes, W-Bayes net, and gradient
boosted tree (GBT). With an AUC value of 0.930, the GBT
was found to have 86.17% accuracy, making it the most
accurate predictor of AML patient survival using the relief
algorithm for feature selection. Moreover, Leclerc et al.
employed a tree-augmented naive Bayesian network to
develop a certified decision support tool for selecting the
most suitable initial dose of intravenous cyclosporine A
(CsA) in pediatric patients undergoing HSCT [55]. A ten-
year monocentric dataset was used after discretization using
Shannon entropy and equal width intervals. The AUC-ROC
of the TAN Bayesian model is 0.804 on average, with a
32.8% misclassification rate and true-positive and false-
positive rates of 0.672 and 0.285, respectively. Additionally,
Bortnick et al. investigated the outcomes of 65 patients with
myelodysplastic syndrome (MDS) in infancy who had
received HSCT and had a germline GATA2 mutation
(GATA2mut) [56]. Overall survival was found to be 75%
after five years, while disease-free survival (DFS) was 70%.
On the other hand, Hazar et al. evaluated the results of 62
pediatric patients who received HSCT for relapsed non-
Hodgkin lymphoma (rr-NHL). The overall survival (OS)
rate was determined to be 65%, whereas the event-free sur-
vival (EFS) rate was found to be 48% [57]. However, Qi
et al. used the Cox proportional hazard to assess bleeding’s
independent prognostic value and fine-gray competing risk
models for survival analyses, lasso regression to select a
training set to derive the bleeding score, and logistic regres-
sion to derive the value-added score. There was an increased
cumulative incidence of overall mortality (HR = 10:90),
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Figure 14: Comparison of performance metrics (experiments A, B, C, and D).
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nonrelapse mortality (HR = 14:84), and combined endpoints
(HR = 9:30), but not the cumulative incidence of relapse in
higher bleeding class HSCT patients [58]. The performance
comparison of our methodology with some of these state-
of-the-art ones is provided in Table 6.

6. Conclusion AND Future Works

The bone marrow transplant is a crucial life-saving treat-
ment for a certain type of malignancy. For this reason, early
detection of survivability after BMT can play a vital role in
the patient’s treatment process. Moreover, if healthcare pro-
viders have a prior prediction, they can make more informed
decisions about treatment options. In this regard, technolo-
gies like ML can be useful, since they can be used in situa-
tions requiring prediction and can uncover hidden patterns
in previous data to create an accurate prediction. Nowadays,
it is increasingly being employed in every situation that
requires prediction. In this study, we developed a Chi-
square feature selection method and an HPO-based efficient
model for predicting the survival of children who received
BMT and identified the most significant parameters for sur-
vival after BMT. All four experiments that were conducted
yielded satisfactory predictions. The models operate well
on a synthetic dataset that has been constructed from the
raw dataset via a series of preprocessing phases that reduce
the dataset’s dimensionality. On the entire feature synthetic
dataset, the experiment A achieves an accuracy of 94.73%.
However, as experiment B optimizes the hyperparameters
using the same dataset as experiment A, it achieves the high-
est overall performance of all models. On the other hand,
experiments C and D use the 11 most correlated feature
dataset based on the Chi-squared test, and experiment D
outperforms all performance measures when combined with
HPO, achieving high accuracy (94.73%) with less time, data,
and resource consumption. In this study, we obtained the
maximum accuracy (0.9473), precision (1), recall (1), F1
(0.9545), AUC (0.9523), and the top five attributes that
influence the survivability rate are “PLT recovery,” “ANC
recovery,” “duration of acute GvHD III IV,” “survival time,”
and “recipient body mass.” Historically, this dataset has not
been evaluated in such a manner before, and it could provide
the health sector with a unique perspective. Therefore, this
study can make a noteworthy contribution to the develop-
ment of ML-based healthcare prediction systems in environ-

ments where resources are scarce and healthcare
practitioners lack more data. The current algorithm per-
forms admirably with our tested dataset and appears to be
effective in the clinical phase. This model might be deployed
in the clinical phase in the future, and a clinical trial could be
done to evaluate and improve the model to make it more
robust and trustworthy. To take full advantage of this type
of support system, healthcare professionals and patients
need be trained on how to use the technology.

Data Availability

Bone marrow transplant: children dataset from UCI
machine learning repository was used in order to support
this study and is available at “Bone Marrow Transplant:
Children Dataset https://archive.ics.uci.edu/ml/datasets/
Bone+marrow+transplant:+children.” This prior study and
dataset are cited at relevant places within the text as Ref [27].
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