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Review
In epidemiology, the identification of ‘who infected
whom’ allows us to quantify key characteristics such as
incubation periods, heterogeneity in transmission rates,
duration of infectiousness, and the existence of high-risk
groups. Although invaluable, the existence of many plau-
sible infection pathways makes this difficult, and epide-
miological contact tracing either uncertain, logistically
prohibitive, or both. The recent advent of next-generation
sequencing technology allows the identification of trace-
able differences in the pathogen genome that are trans-
forming our ability to understand high-resolution disease
transmission, sometimes even down to the host-to-host
scale. We review recent examples of the use of pathogen
whole-genome sequencing for the purpose of forensic
tracing of transmission pathways, focusing on the partic-
ular problems where evolutionary dynamics must be
supplemented by epidemiological information on the
most likely timing of events as well as possible transmis-
sion pathways. We also discuss potential pitfalls in the
over-interpretation of these data, and highlight the man-
ner in which a confluence of this technology with sophis-
ticated mathematical and statistical approaches has the
potential to produce a paradigm shift in our understand-
ing of infectious disease transmission and control.

Contact tracing of infectious pathogens and whole-
genome sequencing
Identifying pathways of infectious disease transmission
can reveal likely points of control and predict future direc-
tions of spread. In combination with mathematical models
(see Glossary) they can be used to predict the outcomes of
alternative control methods. Central to this is epidemio-
logical tracing to identify ‘who infected whom’, a crucial
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component of what is known as forensic epidemiology.
Unfortunately, tracing is often made difficult by the effort
required and the considerable uncertainties in the possible
sources of infection and timings of events. Contact patterns
can sometimes be inferred from spatiotemporal proximity,
particularly where the host populations are sessile and
with short-range contacts {e.g., foot-and-mouth disease
(FMD) on farms [1], citrus canker in fruit trees [2], rabies
in domestic dogs [3], and hospital infections [4]} or through
the identification of relevant risk factors (e.g., needle-shar-
ing or sexual contact for HIV transmission). However, even
in these cases the difficulty of identifying the most relevant
routes and means of contact limits our ability to charac-
terize the underlying transmission processes.

Antigenic or genetic characterization [e.g., serotyping or
multi-locus sequence typing (MLST)] of pathogens is an
alternative approach to identifying groups of individuals
with closely related infections [5]. Until recently these
approaches lacked the resolution for characterizing direct
contact. However, high-throughput sequencing (HTS)
technology, together with improved ability to extract ge-
netic material more cheaply and from smaller pathogen
samples [6,7], now allow mass-scale characterization of
virtually entire genomes of whole populations of pathogens
(generally referred to as whole-genome sequencing or
WGS). This technology typically offers orders of magnitude
better resolution compared to earlier typing methods [8].
In addition, the increased availability of dense data char-
acterizing the substrate population (e.g., identification of
individuals, social groupings, contacts between groups,
spatial organization, species compositions etc., and re-
ferred to here as denominator data) [9,10], and the devel-
opment of powerful computational and analytical tools to
organize and interpret large datasets, broadens the poten-
tial for application of such data to high-resolution epide-
miological problems. Although their usage on a large scale
is in its infancy, they share many properties with ‘big data’
problems in other systems: (i) although highly variable in
size, big datasets are typically an order of magnitude or
greater larger than what had previously been available, (ii)
the proportion and coverage of data on the susceptible
population of interest that is captured in the datasets
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Glossary

Clustering: informally, the existence of multiple pathways that can lead to a

single destination, and particularly when more than one of the pathways is

‘short’. In social network analysis there are several formal definitions, with the

most common being related to the simplest possible relationship that fulfils the

following concept: the number of triangles in a social network (individuals A, B,

and C mutually connected) divided by the number of triples in a social network (A

connected to B connected to C, but A need not be connected to C).

Competent host: a species that can be infected by a pathogen and also

transmit it.

Denominator data: data that describes the composition of a host population,

irrespective of the transmission of an infectious disease. This may include the

population number or density, the characteristics of individuals, and the

connections between them (e.g., friendship networks or movements of

individuals between subpopulations). By contrast, numerator data describe

the characteristics of the infected population.

Forensic epidemiology: the science of identifying the characteristics of particular

infectious disease outbreaks, in particular as they relate to control and eradication,

and for which tracing between individuals is an important component.

High-throughput sequencing: the technological revolution that followed the

Sanger sequencing technology that was used to generate the first complete

human genome, allowing for mass generation of sequences at increasingly

affordable costs. Currently broadly subdivided into next- or second-generation

sequencing (Illumina or 454) and now third generation (PacBio).

Horizontal genetic transfer: the transfer of genetic material between organisms

in a manner other than traditional reproduction (see also recombination and

reassortment).

Maintenance host: a host species in which a pathogen can persist – for

practical purposes – indefinitely, including if necessary through the mechan-

ism of a vector species (e.g., mosquitoes for malaria).

Mathematical models: a term for quantitative models of disease transmission

using mathematical formulae. Usually implying a mechanistic interpretation,

with often non-linear transmission dynamics. There are a wide range of usages

within this definition, ranging from the highly restrictive (deterministic models

with compact mathematical formulations and preferably analytical solutions)

to the catholic (that also incorporate purely individual-based simulations).

Monophyletic: a disease outbreak caused by a single external source. By

contrast, a polyphyletic outbreak arises from more than one external source.

Orthogonal processes: two or more processes where the variation in each is

statistically independent from the other. For example, beyond their most recent

common ancestor, two genealogies are orthogonal provided they do not swap

genetic material (e.g., through recombination).

Reassortment: the exchange of genetic information via the transfer of genomic

segments, as occurs in influenza. It is a special case of recombination with

fixed breakpoints.

Recombination: the exchange of genetic material between two pathogens,

resulting in the inclusion of material from one into the other and the

production of a ‘mosaic’ genome.

Relative mutation rate: the mean rate at which mutations accumulate divided

by the mean time between consecutive generations of infected individuals.

This is an indicator of the likelihood that there will be polymorphisms that are

informative for tracing between individuals, but also the likelihood that there

will be observable differences between the sampled genealogies and the

transmission genealogies.

Reservoir host: a species (usually assumed to be wildlife) that is a maintenance

host for a pathogen.

Social network: a form of denominator data, describing a population or

populations in terms of the individuals hosts (nodes or equivalently in graph

theory, vertices) and the associations between them (links, equivalently edges).

Social network analysis includes descriptions of clustering which can introduce

ambiguities into tracing.

Spillover host: a species that is neither a maintenance host nor is necessary to

maintain the pathogen in combination with other host species.

Synonymous mutation: the replacement of a nucleotide by another that does

not cause a change in the amino acid sequence after translation.

Transmission network: a form of numerator data, the complete tree of ‘who

infected whom’ in an outbreak.

Whole-genome sequencing (WGS): the process that uses high-throughput

sequencing to describe the entire genome of an organism. Because there are

always errors or unknown regions in any genome reconstruction, it is more

correctly ‘nearly-whole’ genome sequencing.
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are high, and (iii) the variety of data being captured is
extensive. The opportunities presented by big data based
on WGS are potentially paradigm-shifting, with existing
smaller-scale studies [11,12] hinting at what might be
possible with very large datasets. Crucial to this is the
integration of non-WGS data into analyses identifying
epidemiological pathways because this can lead to a con-
siderable refinement of our understanding of transmission.
Although this is often conducted descriptively, ‘epidemio-
logical’ frameworks are being developed that naturally
incorporate genetic data with both denominator data
and additional information on the transmission of the
pathogen across the affected population. In the remainder
of this review we shall consider the role that WGS can play
in enhancing our understanding of fine-scale epidemiologi-
cal contact. We shall highlight the pitfalls that arise if
there are multiple likely transmission routes for every true
transmission route, and where there are differences be-
tween observed phylogenies and transmission networks,
including the difficulties of inferring the epidemiological
dynamics of multi-host pathogens and emerging infections.

Using WGS for tracing
The majority of mutations for any pathogen will be subject
to strong purifying selection, with a small minority being
subject to positive selection (and potentially a problematic
source of homoplasy). This still leaves substantial numbers
of neutral or ‘nearly neutral’ mutations (i.e., sites subject to
only weak selection) [13]. Although such nearly neutral
variation may be selected out over longer time scales
[14,15], over shorter time scales such as a single epidemic
they can be useful markers of pathogen genealogy, provid-
ed that phenotypic effects [16] are minimal. These muta-
tions will not necessarily be synonymous because there
may be constraints imposed by genetic structure (e.g., RNA
secondary structure) and overlapping reading frames (i.e.,
a synonymous mutation on one frame can be nonsynon-
ymous and selected against in the other) [17]. Polymor-
phisms in sets of sequences can be compromised by
technical issues, including errors in sequencing and bioin-
formatics, resulting in missed or artefactually added muta-
tions), by reassortment in segmented genomes such as in
influenza viruses, and by recombination in non-segmented
genomes such as those of retroviruses or bacteria [18,19].

All amplification steps can introduce errors, and the
more amplification that is required the more likely that
errors will be introduced. The number and nature of the
artefacts introduced will therefore depend on the size of the
original genetic sample, the laboratory protocols used
(including the reagents used to process a given sample),
the sequencing technology, and also the analytical tools
used, with a lack of agreed quality-control protocols pro-
viding an additional layer of uncertainty. The nature of the
pathogen itself is also important, with RNA viruses requir-
ing error-prone reverse transcription [20]. Such errors
carry identifiable signatures; for example artefacts are
more likely to be random and appear at low frequency
across replicates, unlike the ‘true’ mutations because these
should almost always appear. Methods to identify and
minimize these errors are being identified [21,22].

In the absence of horizontal genetic transfer the genetic
distance between sequenced pathogens is usually positive-
ly correlated with the number of transmission links be-
tween individuals. For tracing contact there would ideally
be a unique sequence that is shared by the entire within-
host population but, immediately upon transmission,
would acquire at least one distinguishing mutation.
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Box 1. Phylogenies and transmission trees

At coarse spatial and temporal resolutions the evolutionary relation-

ships between pathogen genes will reflect their epidemiological

relationships. Pathogens that are closely related epidemiologically

will also be those most closely related to each other genetically.

However, it is well known [71] that at finer space–time resolution the

particular details of the epidemiological process can begin to

decouple the transmission tree from the genealogy. In Figure I, filled

circles represent genomes sampled from four particular host

individuals (hosts labeled A–D and colored red, blue, black, and

green respectively). Unfilled circles represent genomes that were not

sampled. Circles immediately adjacent to one another are one

mutation different to each other. The color of the line indicates which

host the different genomes were in. In (i), the pathogen genome

sampled is the genome that was transmitted. We can therefore

deduce that the most likely transmission scenario is that A infected B,

B infected C, and C infected D. However, if transmission occurred

sometime before the time of sampling, such that additional mutations

were subsequently incurred, either because the infectious period is

long, or the mutation rate very high, then we inevitably become less

certain which genome was in which host, and consequently several

different transmission trees become consistent with the genetic data.

It may be that A infected B, B infected C, and C infected D (ii), but the

genetic data are equally consistent with a scenario in which D infected

A, B, and C (iii), or indeed several alternative explanations (not

shown). It is in these situations that the integration of additional data

on the timing and the contact process becomes important for

inferring the most likely tree. There are other reasons why the

transmission tree and phylogeny may be different – for example there

may be insufficient genetic information to distinguish between

pathogen from different hosts, or recombination or homoplasy may

complicate the relationship between the two.

(i)
A

A

A

B

B

B

C

C

C

D

D

D

(ii)

(iii)
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Figure I. A single observed genealogy is consistent with multiple observed

transmission processes.
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Unfortunately, such a pathogen does not exist, resulting in
multiple complications (Box 1). Mutation rates will vary,
sometimes considerably [23], as will the times between
consecutive transmission events (referred to here as gen-
eration times). Further complications arise should epide-
miological processes influence evolutionary rates.
Examples include the potential role of duration of latency
in the mutation rates of Mycobacterium tuberculosis in
humans [24] and evidence that tropical and subtropical
climates accelerate the evolution of bat rabies virus [25].
When mutation rates compared to generation times are
low (which we shall call the relative mutation rate), WGS
data can provide insufficient genetic signal. For instance,
during explosive outbreaks of acute or hyperacute viral
infections (i.e., influenza and norovirus), the relative mu-
tation rate might be very low, and consensus sequences
among samples from different but closely-related infected
individuals may be identical. Such situations may be re-
solved by using within-host genetic variation to infer prop-
erties of between-host transmission [26], as could be
achieved by examining the presence of minor allele var-
iants shared by different hosts.

The consideration of within-host dynamics has been
shown to reconcile the differences between the sampled
phylogeny and transmission dynamics, improving the in-
ferred transmission tree [27,28]. When relative mutation
rates are high the differences between time of transmission
and sample time, and within-host location of sampling
compared to location at which transmission occurs, can
increase the observed genetic distances between mother–
daughter pairs and introduce ambiguities and biases in the
available data (Box 1). For chronic infections such as HIV,
hepatitis C, and tuberculosis, an individual could be diag-
nosed months or even years after transmission and thus
the first onward transmission event may pre-date the
284
consensus sequence [29]; this can also be a problem for
acute-acting viruses such as FMD virus (FMDV) [30]. The
problems are exacerbated where many intermediate cases
may be absent from the data, although these may be
alleviated by the development of temporal markers of
infection or reliable indicators of change in the microbial
community [31]. Further difficulties will be incurred if we
are interested in transmission processes at multiple scales
because the ‘ideal’ rate would be different at each scale.

The role of model-based inference
Mechanistic models of infectious disease transmission (of-
ten called mathematical models) can be used to generate
simulated transmission trees based on our understanding of
the underlying mechanisms that drive the transmission
process (Box 2). Because they are mechanistic, by altering
the mechanisms in the model they can be used to predict
future outcomes of ongoing epidemics ‘how big, and how
long?’. It can also be used to predict the outcome of inter-
ventions, such as ‘will mass vaccination be effective, and
what is the required coverage?’, ‘how many anti-viral drugs
will be needed during an influenza pandemic?’, or ‘is culling
or vaccination a better policy to control FMD?’. Such models
are designed to provide population-level insights and are
typically poor at predicting actual events at small scales
because the number of possible transmission trees that
result in a given observed epidemic can be very large. When
there are even low levels of error and uncertainty in the
available data, the accuracy of parameter estimates can be
severely degraded [32]. However, good denominator data
can substantially reduce the range of possible contacts that
result in observed patterns of transmission. Big denomina-
tor data are becoming more common; densely sampled
associations being recorded include daily, individual move-
ment records for livestock [9,10], and mobile phone network



Box 2. Bayesian model-based inference

Spatial, temporal, and pathogen genetic information have been used

in two broadly different ways to reconstruct the dynamics of

epidemics. In the first, coalescent models that assume a particular

population dynamic model are used to link the demography of the

pathogen to its evolution; in this approach a flexible diffusion-like

process can be used to estimate the rate of spatial spread of the

pathogen [72]. This enables estimation of several useful parameters,

including those describing the pathogen demography [73], the

diffusivity of the pathogen [74], and the molecular clock [73]. The

method is robust to the density of sampling but, because such models

are underpinned by fundamentally ecological (or demographic)

processes, the estimated parameters do not have straightforward

epidemiological interpretations and inferences about high-resolution

epidemiological processes are not easily made [75–77]. Indeed, the

more highly temporally resolved the data become the more important

it is that epidemiological processes are given explicit representation if

transmission is to be represented accurately, and the greater the

shortcomings that a fundamentally ecological approach has, as

opposed to an epidemiological one. Coalescent models can be

modified to include an explicit epidemiological focus [41], but they

do not as yet account for the high levels of clustering that

characterizes spatial spread, for example.

The second approach combines explicit models of transmission

with simple models of genetic drift to reconstruct transmission trees

reflecting ‘who infected whom’. This approach recognizes the host

population structure and the epidemiological processes that govern

the interaction of host and pathogen. An epidemiological model of

disease progression in individuals is used to estimate possible dates

of infection and the infectious period of the observed cases. Within

this framework the probability of any two cases being causally related

can be calculated based on: (i) the probability that the putative donor

was infectious and the putative recipient infected during the same

time period; (ii) the probability of transmission over the distance

separating the two cases; and (iii) the probability that the donor

pathogen sequence could have incurred the additional mutations

observed in the recipient sequence in the time between collection of

the two samples (although the more time that elapses between the

transmission of the pathogen and the time that it is sampled from the

donor host the more ambiguous inference becomes; see Box 1). This

approach allows inferences to be made about latent and infectious

periods [12], the transmission tree reflecting ‘who infected who’

[11,12,49], the rate of evolution ‘per transmission event’ [30], and the

proportion of cases not sampled in a partially observed outbreak

[50,77].

(B)

(C)

(D)

(A)
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Figure 1. Identifying ‘who infected whom’ often requires more detailed contact

information than is needed at the scales most amenable to phylogeographic

approaches (Great Britain scale map, left). At finer scales (right), there are two

types of information: genetic information from sampled pathogens (where

samples are indicated by red circles) provides direct insight into the

transmission network indicated by the red arrows, whereas the possibly

bidirectional purple arrows represent the social network (or denominator data).

Both help to reconstruct the true transmission tree (red arrows), but deviate from it

in different ways. The social network may contain many links that do not cause

transmission. By contrast, the transmitted genotypes (blue circles) are indicative of

the transmission tree but, especially when mutation rates are low compared to

generation times, may lack informative single-nucleotide polymorphisms (SNPs;

where the filled circles represent at least one additional mutation, but the open

blue circle in C indicates a type identical to what is found in B). A pooled sample

from D (broken oval encompassing samples from two lineages) could generate a

consensus sequence that is not representative of either transmitting lineage, but

these could be recovered by the existence of two divergent sequences that could

be identified via deep sequencing.
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[33] and airline traffic data [34,35] for humans. The incor-
poration of big denominator data into epidemiological mod-
els is greatly aided by Bayesian statistical inference
frameworks that formalize the relationships between prior
knowledge and model-derived likelihood functions. The
technical challenges of accomplishing this are not to be
underestimated [36], and identifying whether the best-fit
model is a good model, particularly where approximate
methods have been used, is challenging [37]. These pro-
blems are further complicated by the often uncertain rela-
tionship between what are often multiple putative routes of
transmission and their relative importance to the transmis-
sion tree. Although many of the methods used to analyze
WGS data are extensions of previous approaches, in one
way, WGS provides a unique insight; its unusually dense
information can change our understanding of the transmis-
sion process at the individual transmission event scale. Also
unlike other sources of data, the genealogical relationships
are fundamental to the transmission tree, even if the rela-
tionship between the transmission trees and the observed
genealogies is imperfect (Box 1 and Figure 1). However,
ambiguities and errors can be substantially reduced by
combining WGS with population-level inference, thereby
joining the epidemiological (individual-to-individual) and
ecological (demographic, population-level) perspectives
[11]. Particular problems are considered below.

The power of the statistical inference will depend on the
underlying available data and the robustness of the under-
lying population growth model [38].The ideal data (i.e., what
data points would you ideally have if you were only allowed
‘X’ samples?) will depend both on the relative mutation rate
(e.g., if low, dense sampling of epidemiological clusters may
be inefficient) and on the nature of the question being asked.
Different questions will require different optimal strategies.
For example, the identification of close-scale epidemiologi-
cal clustering will require extremely dense sampling, which
might occur at the expense of coverage of the entire epidem-
ic. This may also include within-host dynamics, for which
multiple samples for single individuals may be useful
[27,39]. Samples close to the origin of an outbreak will tend
to be valuable because they more robustly root the evolu-
tionary analysis. One approach to identifying future sam-
ples strategies is to use the inference models themselves to
estimate locations and time points where obtaining addi-
tional sequences would best improve the inference, or to
identify events that appear anomalous under the model and
that require further investigation.
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Clustering, networks, and heterogeneity of potential
contacts
Reconstruction of evolutionary pathways largely depends
on the identification of common ancestral traits. At a
sufficiently coarse geographical scale, infectious disease
processes are either spatially correlated or are well de-
scribed by recordable patterns of interactions such as
transportation networks [40]. Although such processes
may contain inconsistencies with sampled phylogenetic
trees, at these coarse scales they provide the considerable
advantage that there is no requirement for either high
sampling densities or information about the contact rela-
tionships to infer structural properties of the population.
Many questions of both scientific and practical interest can
be successfully approached this way, provided that there is
a sufficiently high density of mutations and possible trans-
mission pathways are largely orthogonal (i.e., few individ-
uals have tightly ‘clustered’ or shared mutual contacts). By
contrast, where transmission occurs over short distances,
multiple possible ‘non-orthogonal’ pathways exist
(Figure 1), and thus there can be considerable ambiguity
in determining who infected whom. Even at scales where
transmission processes are important, if clustering can be
discounted, simple compartmental models of disease trans-
mission have been integrated into evolutionary approaches
to show in HIV, for example, that phylogenetic clustering
(i.e., groups of sequences more closely related than would
be expected at random) can be explained by differing
phases of transmission intensity [29,41].

At more highly resolved scales, contact structure plays a
more important role and contact clustering is potentially
high. This clustering can be the result of spatial proximity
[42] or common social contacts [43,44]. It creates a broad
range of contact processes consistent with observed genetic
and temporal information, and can make it difficult to
estimate fundamental epidemiological parameters. Quali-
tative comparisons of patterns of contact identified
through questionnaires or detailed investigation with
the identified genetic sequences can reduce this uncertain-
ty [45], although the transmission network for two differ-
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Figure 2. Phylodynamic reconstruction of a foot-and-mouth disease (FMD) epidemic. (A

infected premises based on a space–time–genetic model. Circle size is proportional to th

dataset. Reproduced from [11], with permission of the corresponding author.
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ent specific diseases can be substantially different from the
social network that is common to both of them [9]. For
example, in the case of a highly infectious disease such as
the common cold or influenza, regular contact through
shared use of public transport may be important but, for
less-transmissible, longer-term illnesses such as tubercu-
losis, social networks (e.g., friendships) or migration pat-
terns may predominate.

FMD is an important exemplar of forensic epidemiology.
Outbreaks of disease in previously FMD-free countries are
financially very costly and identifying the origin of infection
can have important epidemiological, legal, and financial
consequences. Such outbreaks have the advantage that they
are usually monophyletic – in other words, all cases develop
from a single introduction with diagnosis resulting in con-
trols that prevent further introductions. Increasingly sophis-
ticated methodologies have been applied to reconstructing
transmission trees from the UK 2001 outbreak. Traditional
epidemiological tracing [46] was followed by reconstructed
trees using only spatial and temporal information [47].
Although next-generation sequencing was not available at
the time of the epidemic, collection of viral samples across
the epidemic has allowed retrospective analysis. Konig et al.
[48] used consensus WGS to test specific hypotheses regard-
ing the airborne spread of FMDV. Cottam et al. [30] used
genetic data as a filter to identify a subset of the trees that
were then ranked based on their likelihood given the associ-
ated space-time data. Further developments made possible
the reconstruction of transmission trees and infection dates
of susceptible premises, providing an example of a formal
integration of genetic and spatiotemporal data within a
single Bayesian inference scheme (Figure 2) [11]. Such joint
inference schemes are a powerful (although often computa-
tionally intensive) approach to combining often disparate
data (Box 2) and have been recently successfully applied to
other RNA viruses [49,50].

Compared to RNA viruses such as FMDV, for more
slowly replicating pathogens such as Mycobacteria spp.
the epidemiological link between events may also be poorly
resolved because the potentially infectious contacts are
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Figure 3. Biased sampling for multi-host systems causes problems for

interpretation of genetic data even where the density of samples in one host is

very high. The trees in the figure depict phylogenies of a pathogen in a two-host

system; circles represent sampled sequences from the red or blue species. (A) For

low mixing, random sampling reveals the relationship between the two host

species but has a high probability of missing rare crossover events (red star). By

contrast, dense sampling of one host (in red) will miss the existence of the second

host species unless the crossover event is sampled, in which case the long branch

length associated with it is instructive. By contrast, in (B) the distribution of branch

lengths under biased sampling reveals the presence of unsampled events,

although the nature of those events would not be determined by phylogenies

alone. In (C), where mixing is substantial, the absence of data from the hidden host

is likely unobserved or interpreted as greater variability in the mutation rate. It

would be quickly revealed by even moderate sampling, although the phylogeny

would remain difficult to distinguish from the case of a spillover host. The trees

were created and displayed using a custom R script; random trees were created

with the ape package, and a two-host discrete traits model was used with the

package phytools to generate the ancestral and tip states.
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less clearly defined than for sexually transmitted infec-
tions. For example, contacts may be relatively transient
over the duration of the infectious period of the disease,
although even in the case of HIV the impact of concurrency
of relationships can be a challenging problem [51]. The
utility of sequence information is further compromised
when the relative mutation rate is also low, highlighting
the importance of capturing as many mutations as possible
while maintaining a low error rate. However, WGS has
proven valuable in identifying, for example, evidence of the
role of an immunocompromised drug-user in a single
known transmission chain for M. tuberculosis [52] and in
showing the existence of diverse lineages causing Clostrid-
ium difficile infections in hospitals [53]. One example
where tracing is made difficult by prolonged incubation
periods is for hospital infections of Staphylococcus aureus
(SA). Although the underlying contact structure is well
defined, SA is virtually omnipresent in the environment,
and thus simple isolation of bacteria does not imply linkage
to an outbreak [4,24]. Despite these issues, WGS for slowly
evolving bacteria can be extremely valuable, especially
when combined with detailed contact data [45].

Reservoirs and emerging infections
Multi-host pathogens present additional difficulties com-
pared to pathogens that largely infect a single host species.
Control options that may work in a single host species may
not in another and, if the pathogen can persist in each host
on its own, could render control ineffective. The evolution-
ary history of a multi-host pathogen system can be inferred
by using discrete traits models in the same way as has been
developed to identify transitions between geographical
locations [54,55]). For example, these discrete traits meth-
ods can give estimates of when cross-species transmissions
occurred [56]. In addition, the factors that influence the
cross-species transmission rates can be inferred, such as
genetic relatedness between species and species-range
overlap [40].

These approaches are best applied where sampling is
relatively even across species and where mutation rates
in the different species are the same, or the differences in
those rates are known. When sampled data are biased or
unknown, or there are potentially significant differences
in mutation rates, inference regarding which of the two
species predominantly infects the other can be difficult.
For example, the recovery of rabies isolates from domestic
dogs is much more frequent than from wildlife,
compromising our ability to use WGS alone to infer which
is the source population [57]. Where mixing is limited, or
equivalently where mixing between species is substan-
tial, this will make inferring the role of the under-sampled
host even more difficult (Figure 3). Where mixing is
moderate, a much more distinctive signature can be
obtained [56]. By contrast, the epidemiological signature
of the hidden host is much clearer where mixing is high,
especially in the case of intervention studies, where for
example a reduction in the density of the under-sampled
host may have a dramatic effect on disease incidence [58].
Thus when phylogenetic information can be combined
with epidemiological data there is a potential to provide
much deeper insight.
The epidemic of bovine tuberculosis (bTB) in cattle in
Britain and Ireland provides one example of that illus-
trates this potential. Epidemiological and demographic
data from cattle are exceptionally well recorded, but with
a relatively under-observed wildlife reservoir host, the
Eurasian badger (Meles meles), whose role in maintaining
the epidemic is as yet only partially quantified [59,60]. Use
of WGS in a small recent study has shown the existence of a
meaningful correlation between spatial distance and ge-
netic distance at a kilometer scale, and this is poorly
explained by livestock movements [61]. This spatial signa-
ture, although insufficient to identify direction, suggests
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Box 3. WGS relevance to the pathogen emergence problems

Which is more important, multiple introductions or the presence of

long chains, and how can we tell which is occurring? Understanding

the latter question is both an important clue to answering the former

and a diagnostic for when a host population of interest is likely to be

vulnerable to an emergent infection. Possible reasons for case-

clustering include multiple introductions from the same reservoir

population, chains of emergent cases, and interactions between the

two. Several steps are required for the emergence process to occur,

such as exposure of the new host species to the emerging pathogen,

spillover, and finally, sustained onward transmission. Pathogens

introduced into new host populations can display variable values of

R0 (the average number of secondary infections that arise from one

infected individual in a completely susceptible population). However,

it is difficult to differentiate between clusters of cases caused by

multiple introductions from those due to long transmission chains,

particularly when host-switching pathogens circulate in species that

share the same habitat (Figure I). In such cases WGS constitutes a

valuable tool to complement epidemiological data because specific

nucleotide polymorphisms could be used as genetic markers

associated to the host.

(A)

(B)

(C)

TRENDS in Microbiology 

Figure I. Pathogen emergence or spillover? The figure represents the infection of horses by an avian pathogen. In (A), black arrows represent an avian virus that is

introduced multiple times (spillover) but cannot be transmitted among horses, whereas (B) represents a single introduction event followed by onward transmission. (C)

Represents the circulation of two distinct lineages in both species that share a closely related ancestor. If differences between the lineages are minimal (such as a single

nucleotide polymorphism), whole-genome sequencing (WGS) would be invaluable because otherwise there is likely to be no other detectable difference between the

viruses in the two hosts.
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Box 4. Outstanding questions

� Under what conditions does the inclusion of multiple sources of

introduction (polyphyletic outbreaks) change the inference made

in the reconstruction of transmission trees?

� Can robust, computationally tractable approaches be developed

to handle partially observed outbreaks in which there are ‘missing

epidemiological links’?

� Can we develop general methods to use sequence data to

estimate the proportion of cases that have been sampled from

partially observed outbreaks?

� Can heterogeneities in susceptibility, transmissibility, or mode of

transmission be robustly incorporated into phylodynamic mod-

els?

� How can these methods be adapted to take advantage of

knowledge of minority variants within an individual or group as

revealed by deep sequencing?

� Can we identify robust approaches that will allow us to choose

between alternative models of transmission?
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that larger scale studies would be able to characterize the
spatial–genetic relationship. This relationship is likely to
be driven by a combination of cattle and badger activity in
close spatial proximity, and its complexity suggest that
mechanistic models will be needed to maximize the insight
gained from the genetic data [61].

Emerging infections of humans and animals provide
additional challenges (Box 3), and constitute a public health
burden and a threat to food security and wildlife. Although
emerging pathogens include bacteria, viruses, parasites,
fungi, and even tumor cells [62,63], viruses are probably
the most common source of emerging diseases [64]. Recent
high-profile examples include the 2009 H1N1 influenza
pandemic, the Middle East respiratory syndrome coronavi-
rus (MERS-CoV) [65], and the H7N9 low-pathogenicity
zoonotic avian influenza virus [66]. The process of pathogen
emergence requires the introduction of the emerging path-
ogen into a susceptible population followed by onward
transmission and, although the underpinning mechanisms
of the entire process are as yet poorly understood, it is clear
that ecological and evolutionary factors play crucial roles in
it. The omics revolution, of which WGS is a one element,
provides new tools to tackle the burden of emerging infec-
tious diseases. For example, during outbreaks of disease the
application of WGS has streamlined both pathogen identifi-
cation as well as the likely source of infection, and even when
unknown pathogens were involved [67].

Influenza A viruses (IAVs) constitute a textbook exam-
ple of emerging viruses because they are well recognized
for their ability to cross species barriers and establish in
new host species. The genome of IAVs is segmented and
thus coinfection of a single individual with multiple IAVs
can lead to the generation of viruses that are different to
the parental lineage through reassortment. Such viruses
(reassortants) can have an expanded host range and/or
different antigenic properties to which the susceptible
population is naı̈ve. In the past 100 years we have experi-
enced four influenza pandemics: ‘Spanish flu’ in 1918 (an
H1N1 virus), ‘Asian flu’ in 1957 (H2N2), ‘Hong Kong flu’ in
1968 (H3N2), and most recently ‘swine flu’ in 2009 (H1N1
again). During the latest pandemic two independent stud-
ies [68,69] generated the complete genome sequence of the
pandemic virus and identified pigs as the source of infec-
tion nearly simultaneously with the World Health Organi-
zation (WHO) declaration of the pandemic in June 2009.
These studies also showed the importance of epidemiologi-
cal surveillance data to improve the accuracy of the recon-
struction of the emergence process.

Differentiating between spillover (with limited trans-
mission in the novel host) and emergence (where there are
prolonged transmission chains) can be a challenging task,
particularly when the donor and recipient species share
the same ecological setting thus allowing multiple inde-
pendent infections, or when the emerging pathogen has not
yet acquired full transmissibility and its circulation is
limited to short transmission chains (Box 3). For example
in February 2013, a novel IAV (an H7N9 virus, referred to
as LPAI H7N9) started infecting humans in Asia. The
incidence was lower than for H1N1 in 2009, but with a
much higher fatality rate, with 44 fatalities from 136
laboratory-confirmed cases diagnosed between February
and October 2013. Thus far, current data clearly show that
LPAI H7N9 has not acquired full transmissibility in
humans and that chickens at live poultry markets are
the most likely source of human infections [66]. However,
extensive surveillance using WGS will be crucial to deter-
mining how H7N9 viruses circulate in nature, if they have
(or will) become endemic in birds, and whether they will
acquire mutations that could increase their transmissibili-
ty among humans.

Another important source of genetic data that could
reveal the origins of emerging viruses is archived material
[70]. Sequencing viral genomes from frozen specimens has
provided invaluable information about the pathogens that
circulated in particular populations at a given time and in a
particular location. However, obtaining WGS from patho-
gens derived from other sample types is not so straightfor-
ward.

With sequencing costs constantly decreasing, the appli-
cation of WGS in routine epidemiological surveillance in
the near future is likely to become common practice, with
enormous knock-on benefits. Crucial to maximizing these
benefits is recording ancillary data about both the trans-
mission events and the underlying population.

Concluding remarks
Despite the already impressive list of achievements of WGS
in epidemiology, there are many outstanding challenges
remaining, particularly when considering endemic and
less-intensively sampled situations (Box 4). Generating
approaches to overcome these challenges will require the
development of protocols for data collection and analytic
tools that can only result from close interactions among
clinicians, diagnosticians, epidemiologists, and mathemati-
cal biologists, highlighting the importance of transdisciplin-
ary approaches to tackle the integration of all data sources.
Importantly, these data sources will need to become broadly
available across disciplines and for all legitimate research
needs, while acknowledging the need for careful consider-
ation of data protection and civil liberties issues.

Existing studies have demonstrated the resolution of
WGS compared to previous typing schemes, highlighted
the value of integrating diverse datasets, and demonstrat-
ed the insights gained from mathematical and statistical
models. Technological advances now allow sequencing of
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pathogen samples isolated from large numbers of infected
individuals, often in epidemic real-time. Individual level
denominator data from at-risk populations are now being
collected, often on a daily basis, and also increasingly in
real time. Advances in computing power now provide the
engine for mathematical and statistical techniques by
which disparate datasets can be analyzed. Although we
are only now arriving at this point, the combination of big
data and tractable analytical techniques provides the op-
portunity to transform our approach to controlling infec-
tious diseases in both epidemic and endemic contexts, with
WGS playing a leading role.
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