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Abstract
Background: Difficult problems in structural bioinformatics are often studied in simple exact
models to gain insights and to derive general principles. Protein folding, for example, has long been
studied in the lattice model. Recently, researchers have also begun to apply the lattice model to the
study of RNA folding.

Results: We present a novel method for predicting RNA secondary structures with pseudoknots:
first simulate the folding dynamics of the RNA sequence on the 3D triangular lattice, next extract
and select a set of disjoint base pairs from the best lattice conformation found by the folding
simulation. Experiments on sequences from PseudoBase show that our prediction method
outperforms the HotKnot algorithm of Ren, Rastegari, Condon and Hoos, a leading method for
RNA pseudoknot prediction. Our method for RNA secondary structure prediction can be adapted
into an efficient reconstruction method that, given an RNA sequence and an associated secondary
structure, finds a conformation of the sequence on the 3D triangular lattice that realizes the base
pairs in the secondary structure. We implemented a suite of computer programs for the simulation
and visualization of RNA folding on the 3D triangular lattice. These programs come with detailed
documentation and are accessible from the companion website of this paper at http://
www.cs.usu.edu/~mjiang/rna/DeltaIS/.

Conclusion: Folding simulation on the 3D triangular lattice is effective method for RNA secondary
structure prediction and lattice conformation reconstruction. The visualization software for the
lattice conformations of RNA structures is a valuable tool for the study of RNA folding and is a
great pedagogic device.

Background
Difficult problems in structural bioinformatics are often
studied in simple exact models to gain insights and to
derive general principles. Protein folding, for example,
has long been studied in the lattice model [1-4]. Recently,
researchers have also begun to apply the lattice model to
the study of RNA folding [5-10]. In the lattice model, the
folding of a biopolymer takes place on a lattice: each
monomer occupies a unique lattice point; consecutive

monomers in the sequence occupy adjacent lattice points.
The structure prediction problem then reduces to the sim-
plified problem of finding a lattice conformation of the
biopolymer to achieve certain desirable properties: for
protein folding, to maximize the number of contacts
between hydrophobic amino acids; for RNA folding, to
maximize the number of hydrogen bonds between com-
plementary bases. The simplified problem does not reflect
the full reality of underlying biological process, but at
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least gives a first-order approximation and is more tracta-
ble. Schuster [11] remarked that "RNA secondary struc-
tures, together with lattice protein models, are at present
the only biological objects for which conformational
landscapes and sequence-structure maps can be com-
puted and analyzed in sufficient detail."

In this paper, we present a method for predicting RNA sec-
ondary structures with pseudoknots by folding simulation
on the 3D triangular lattice. A drawback prevalent in the
existing models for RNA secondary structure prediction is
that they are static: the predicted secondary structures are
selected only because they have the lowest free energies.
But RNA folding is a dynamic process. RNA pseudoknots
that are too complex are difficult to realize naturally
because of the barriers in the energy landscapes due to the
steric constraints of excluded volume. To cope with this
problem, various restrictions may be imposed on the pre-
dicted secondary structures; for example, the hairpin con-
straint requires two bases forming a base pair be separated
by at least three other bases in the sequence. The steric
constraints of excluded volume, however, are inherently
geometric; it is impossible to capture them all with only a
few combinatorial restrictions. Our method overcomes
this difficulty by simulating the folding of RNA tertiary
structures on the 3D triangular lattice directly, as a
dynamic process; the secondary structures are then
extracted from the tertiary structures. Folding simulation
can be computationally intensive (that is, quite slow)
because of its exaustive-search nature, especially for com-
plex models that include considerable details. Thus the
simulation of RNA folding dynamics has only been used
in mapping and analyzing the energy landscapes of cer-
tain small RNAs [12,13]. Nevertheless we show that by
using a simple lattice model and an efficient move set, and
by careful algorithmic engineering, folding simulation
can be turned into an effective method for RNA secondary
structure prediction. Experiments on sequences from
PseudoBase [14] show that for short RNA sequences, our
method is even more accurate than the HotKnot algo-
rithm of Ren, Rastegari, Condon and Hoos [15], a leading
method for predicting RNA secondary structures with
pseudoknots. In the context of protein folding, the recov-
ery of protein tertiary structures from contact maps has
been studied by many researchers [16-20]. The analogous
problem of reconstructing RNA tertiary structures from
secondary structures, however, has not yet been seriously
considered. This is understandable because a polynucle-
otide chain is not as rigid as a polypeptide chain: the RNA
secondary structure alone does not contain enough spatial
information to decide the RNA tertiary structure. Never-
theless, a method for reconstructing a 3D conformation of
an RNA sequence from a given list of base pairs is still val-
uable, at least for validating predicted secondary struc-
tures, considering that some secondary structures are so

unnatural that they cannot be completely realized in 3D
due to the steric constraints. We will show that our
method for RNA secondary structure prediction can be
adapted to a very efficient method for RNA tertiary struc-
ture reconstruction in this limited sense.

RNA secondary structures can be visually represented in
many different ways. Besides the simple representations
of the dot-bracket notation, the Feynman diagram, and
the dot plot, most RNA software packages such as Mfold
[21,22] and Vienna [23,24] include programs that visual-
ize the RNA classical structures [25] using flat drawings in
the plane. Advanced visualization tools such as RnaViz
[26], PseudoViewer [27], and jViz.Rna [28,29] can even
generate flat drawings of RNA secondary structures with
pseudoknots. In such flat drawings, each RNA base is rep-
resented by a letter, consecutive bases in the sequence and
base pairs in the secondary structure are then connected
by edges between the letters. Ideally, the bases should be
placed such that the edges connecting them are straight
and of uniform length, to signify their geometric proxim-
ity. Also, crossing edges are undesirable and should be
avoided. But real RNA structures are not flat. For example,
the pseudoknot of regulatory region of alpha ribosomal
protein operon of E. coli (PKB00071 from PseudoBase
[14]) has the following secondary structure (in dot-
bracket notation) that includes three groups of inter-
crossing base pairs:

UGUGCGUUUCCAUUUGAGUAUCCUGAA

(((((((:(((((::::::::[[[[::

AACGGGCUUUUCAGCAUGGAACGUACA

::[[[[::::{{{{:))))))))))))

UAUUAAAUAGUAGGAGUGCAUAGUGGC

::::::::::::::::::::::::::]

CCGUAUAGCAGGCAUUAACAUUCCUGA

]]]:::::]]]]:::::::::::}}}}

Despite the best effort, flat drawings of such complicated
secondary structures will inevitably contain crossing edges
or edges of different lengths that distort the true geometric
structures. The simulation of RNA folding on the 3D tri-
angular lattice provides an alternative method for the vis-
ualization of RNA secondary structures. Given a
secondary structure of an RNA sequence, we can first
reconstruct a lattice conformation of the sequence that
realizes the base pairs in the secondary structure, then dis-
play the lattice conformation using a 3D visualization
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software. The lattice conformation of an RNA secondary
structure may not represent the true tertiary structure, but
at least it preserves geometric properties such as propor-
tion and distance and hence looks more realistic.

We implemented a suite of computer programs for the
simulation and visualization of RNA folding on the 3D
triangular lattice. These programs come with detailed doc-
umentation and are accessible from the companion web-
site of this paper: RNA folding on the 3D triangular
lattice http://www.cs.usu.edu/~mjiang/rna/DeltaIS/.

The 3D Triangular Lattice
In this section, we introduce the 3D triangular lattice and
explain our choice of this particular lattice over other
alternatives.

We first examine the 2D triangular lattice as a warm-up

exercise. Refer to Figures 1 and 2. Let  and  be the two

primary axes of the square lattice. Add an auxiliary axis

 along the xy diagonal, then skew the square lat-

tice until the angle between  and  becomes 120°, and

we obtain the 2D triangular lattice. On the 2D triangular
lattice, each lattice point can be specified by its coordi-

nates along the two primary axes  and . For example,

the lattice point  = (x, y) has six neighbors (x + 1, y), (x

- 1, y), (x, y + 1), (x, y - 1), (x + 1, y + 1), and (x - 1, y - 1).

Using the auxiliary axis  besides the two primary axes 

and , the six neighbors of  can be more succinctly rep-

resented as , , and . We now examine the

3D triangular lattice. There are two common types of 3D
triangular lattices: the CCP lattice, formed by a cubic clos-
est packing of spheres, consists of layers of 2D triangular
lattices repeating in an ABCABC pattern; the HCP lattice,
formed by a hexagonal closest packing of spheres, consists
of layers of 2D triangular lattices repeating in an ABAB
pattern. We use the CCP lattice.

Refer to Figure 3. Besides the two primary axes  and 

of the square lattice, the 3D triangular lattice has an addi-

tional primary axis  pointing outside the xy plane at an

angle of 120° from both  and . Refer also to Figure 4.

An interesting property of the (CCP) 3D triangular lattice
is that, from one perspective, it can be viewed as layers of
2D triangular lattices repeating in an ABCABC pattern, but
from another perspective, it can be viewed as layers of
square lattices repeating in an ABAB pattern. The distance
between two parallel planes supporting two consecutive

layers of square lattices is exactly  units of the

square lattice. On the 3D triangular lattice, each lattice
point can be specified by its coordinates along the three

primary axes , , and . For convenience, we also

define three auxiliary axes , , and

. Then each lattice point  has exactly 12

neighbors , , , , , and .

Using the three auxiliary axes besides the three primary
axes, the lattice conformation of an RNA sequence S of n
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square lattice.

wy

x

Skewing the square lattice into a 2D triangular latticeFigure 2
Skewing the square lattice into a 2D triangular lat-
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bases can be represented as a turn sequence T of n - 1 direc-

tions over the alphabet  that simu-

lates a self-avoiding walk on the lattice.

Many types of lattices have been proposed by researchers
in structural bioinformatics. Besides the 2D and 3D trian-
gular lattices [30,10] and the very common square and
cubic lattices [1,31,32], we also have the 2D hexagonal
lattice [33], the diamond lattice [34-37], the face-centered
cubic lattice [38], and the (2, 1, 0) lattice [39-41]. Our
choice of the 3D triangular lattice for RNA folding is based
on three considerations:

Regularity: On the 3D triangular lattice, all lattice
points have the same number of neighbors, and all
pairs of adjacent lattice points have the same distance.
This allows a uniform handling of geometric proxim-
ity in base pairing.

Density: The coordination number of a lattice is the
number of neighbors of each lattice point. The 3D tri-
angular lattice has a coordination number of 12; the
cubic lattice has a coordination number of only 6.
Thus the 3D triangular lattice is better than the cubic
lattice in approximating the 3D space. Indeed the 3D
triangular lattice is the densest regular lattice in 3D.
There exist, admittedly, alternative 3D lattices with
even higher coordination numbers. The (2, 1, 0) lat-
tice (which models chess moves of a knight in 3D) and
other extensions of the cubic lattice by Skolnick et al.
[39-41] are notable examples. Such lattices are irregu-
lar however. At the expense of regularity, the 3D trian-

gular lattice can be similarly extended to acquire
higher coordination numbers.

Parity: Each element of a sequence has a parity of
either odd or even depending on its position in the
sequence. When an RNA sequence folds on the cubic
lattice, complementary bases of the same parity can
never become adjacent to form base pairs. This unnat-
ural constraint is intrinsic to the cubic lattice and
renders it unsuitable for folding simulation. The 3D
triangular lattice is not susceptible to such parity prob-
lems.

These considerations has led us to believe that for folding
simulation the 3D triangular lattice is superior to the
other 3D lattices. Indeed the cubic lattice and its variants
are popular mainly because of the ease of programming
on such lattices. Our previous mathematical exposition
shows that, with the auxiliary axes, the 3D triangular lat-
tice is not much more difficult to implement than the
cubic lattice. We hope that our first use of the 3D triangu-
lar lattice will encourage its wider adoption by the other
researchers. For example, the recent work by Cao and
Chen on predicting RNA pseudoknot folding thermody-
namics [37] could benefit from a switch from the (irregu-
lar) diamond lattice to the 3D triangular lattice.

Methods
In this section, we present our method for RNA folding on
the 3D triangular lattice. The following discussion focuses

{ , , , , , }± ± ± ± ± ±x y z u v w

A projected view of the 3D triangular latticeFigure 4
A projected view of the 3D triangular lattice. Alternat-
ing layers of square lattices are depicted by solid and dotted 
lines.
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The 3D triangular latticeFigure 3
The 3D triangular lattice. Each lattice point has 12 neigh-
bors distributed among three consecutive layers of square 
lattices in parallel planes, four neighbors on each layer.
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on a novel method for predicting RNA secondary struc-
tures with pseudoknots, which works in two stages: first
simulate the folding dynamics of the RNA sequence on
the 3D triangular lattice, next extract and select a set of
base pairs from the best lattice conformation found by the
folding simulation. We then adapt this method for RNA
secondary structure prediction to a method for RNA terti-
ary structure reconstruction, and introduce our 3D visual-
ization program for RNA folding.

Simulating RNA Folding Dynamics on the 3D Triangular 
Lattice
We use the classical combinatorial optimization tech-
nique of simulated annealing [42,43] for the simulation
of RNA folding dynamics on the 3D triangular lattice. In
the following, we first introduce the basic annealing pro-
cedure, next describe the move set for transforming the
lattice conformations and the scoring function for each
lattice conformation, then discuss three techniques that
improve the efficiency and effectiveness of the folding
simulation.

Basic Annealing Procedure

A basic iteration of the annealing procedure goes as fol-
lows. In the beginning, the sequence is initialized to an
arbitrary lattice conformation v0. Then, in each step i, a

candidate move is selected at random to transform the old
conformation vi-1 into a new conformation vi. Each con-

formation v has a corresponding score s(v) ≥ 0. If s(vi) ≥
s(vi-1), then the move is accepted and the annealing proce-

dure continues to the next step. Otherwise, the move is
either accepted with a probability of pi or rejected with a

probability of 1 - pi. The acceptance probability

 depends on both the score difference

s(vi) - s(vi-1) and the system temperature Ti. Given a

number n of annealing steps, a cooling schedule of Ti = c/

log2(1 + i/n) is adopted because of its desirable statistical

properties [44]. When i = 0, T0 = ∞; when i = n, Tn = c. Thus

the system slowly cools down as the annealing procedure
progresses from step 1 to step n. The constant c is set to 1/

log2 10 so that, as the system temperature Ti drops from ∞
to c, the acceptance probability pi drops correspondingly

from 1 to about  for a score differ-
ence of -1. In particular, since all random moves are
accepted with probability close to 1 during the initial
stage of the annealing procedure, the starting conforma-
tion is quickly tranformed into some random configura-
tion (thus the choice of any special starting conformation
is irrelevant). The physical interpretation of the annealing

procedure is that the system starts in any conformation
with equal probability at high temperature, and tends
toward a good conformation at low temperature.

Note that the acceptance probability 

in our annealing procedure is adapted from the probabil-

ity  in the classical Metropolis criterion.
The sign in the exponent is reversed because we use posi-
tive scores instead of negative energies. For convenience,
we use 2 instead of e as the base of the exponent. Since

 the coefficient of log2e is absorbed in the

tunable constant c in the definition of Ti.

Move Set
To simulate the folding of biopolymers on a lattice, we
need to define a move set for structural manipulation.
Two types of moves are often used for self-avoiding walks
on lattices: flip moves (Figures 5 and 6) and pivot moves
(Figures 7 and 8). Flip moves are local and typically oper-
ate on a small number of consecutive elements in the
sequence (for example, on the square lattice, a corner
move relocates a single element, and a crankshaft move
relocates two consecutive elements [45]). Pivot moves
[46-48], on the other hand, are global and can affect on
average half of the sequence, thus incurring a high run-
ning time in folding simulation. We note that Kennedy
[48] has invented a faster implementation of pivot moves
that runs in O(Lα) time per move on the cubic lattice,
where α ≈ 0.9 and L is the sequence length. But even this
sub-linear running time is still too high, especially consid-
ering the large number of moves necessary for folding
simulation.

We use pull moves for structural manipulation. Pull
moves were used by Lesh, Mitzenmacher and Whitesides
[49] for protein folding on the square lattice, and were
later adapted by Jiang and Zhu [33] to the hexagonal lat-
tice. We here adapt pull moves to the 3D triangular lattice.
Refer to Figures 9 and 10 for an example. As we pull an
element e1 to an adjacent lattice point, a gap may appear
between e1 and a consecutive element e2. To fill this gap,
we may shift e2 to the former location of e1, but then a new
gap may appear between e2 and, say, e3. Repeat the shift
step until an element ek, after being shifted to the former
location of ek-1, remains adjacent to ek+1 and no more gaps
appear. This whole sequence of movements is called a pull
move.

Pull moves are reversible: each pull move that transforms a
conformation A to another conformation B has a corre-
sponding pull move that transforms B back to A. Pull
moves are also complete: any conformation can be trans-
formed to any other conformation by a sequence of pull

pi
s v s v Ti i i= − −2 1( ( ) ( )) /

2 2 101 1− −= =/ / %T cn

pi
s v s v Ti i i= − −2 1( ( ) ( )) /

e E v E v Ti i i− − −( ( ) ( )) /1

e x e x= 2 2(log )
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A flip move (after)Figure 6
A flip move (after).

A pivot move (before)Figure 7
A pivot move (before).

A pivot move (after)Figure 8
A pivot move (after).

A flip move (before)Figure 5
A flip move (before).
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moves. The complete property essentially follows from
the reversible property: observe that any conformation
can be easily transformed into a simple conformation in
which all elements are in a straight line.

Pull moves are clearly more powerful than flip moves: on
the 3D triangular lattice, flip moves are only a special case
of pull moves. Moreover, pull moves have a semi-local
property that makes them very efficient in folding simula-
tion: although each pull move may relocate a large
number of elements in the worst case (as a pivot move),
the average number of relocated elements is only a small
constant (as a flip move). This semi-local property, first
observed by Lesh, Mitzenmacher and Whitesides [49] for
pull moves on the square lattice, was confirmed by our
experiments [10] for pull moves on the 3D triangular lat-
tice. Refer to Table 1. For various sequence lengths ranging
from 32 to 512, which are typical of biopolymers such as
RNAs and proteins, the average numbers of elements relo-
cated by random pull moves on the 3D triangular lattice
are small constants.

Another important feature of pull moves is their biologi-
cal relevance. In certain aspects, pull moves are very simi-
lar to the shift moves proposed by Flamm, Fontana,
Hofacker and Schuster [12] in their study of RNA folding
kinetics by direct manipulation of base pairings (note
however that shift moves are defined only for secondary

structures consisting of non-crossing base pairs, while pull
moves can generate secondary structures with pseudo-
knots). Flamm, Fontana, Hofacker and Schuster showed
that shift moves (by the same token, pull moves too)
allow a fast chain sliding process that closely models an
important mechanism in RNA folding dynamics called
defect diffusion.

Scoring Function
According to the Tinoco model [50], an RNA structure can
be recursively decomposed into loops with independent
free energy. The free energy of each loop is an affne func-
tion in the number of unpaired bases and the number of
interior base pairs. Stacking pairs are the only type of
loops without unpaired bases; they have negative free
energy and stabilize the RNA structure. Our scoring func-
tion is designed to approximate the magnitude of total
free energy contributed by the stacking pairs in a lattice
conformation. This energy model is not the most accurate

A pull move (before)Figure 9
A pull move (before).

A pull move (after)Figure 10
A pull move (after).

Table 1: Numbers of relocated elements (average ± standard 
deviation) for various sequence lengths.

Sequence length Number of relocated elements

32 2.4 ± 1.3
64 3.8 ± 2.7
128 4.1 ± 3.2
256 3.4 ± 2.0
512 3.5 ± 2.4
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to date, but it captures the predominant factor and allows
a fast implementation.

On the 3D triangular lattice, each lattice point has 12
neighbors. Thus in certain lattice conformations some
bases may be adjacent to two or more complementary
bases, although biologically each base of an RNA
sequence can participate in at most one base pair. To
avoid the expensive computation of a maximum-weight
matching [51] for the actual base pairings in a lattice con-
formation, our scoring function simply computes a sum Σi
score (i) over all bases i in the sequence, where each
score(i) is computed by examining the local neighbor-
hood of the base i on the lattice. More precisely, we set
score(i) = minj score(i, j), where j ranges over all comple-
mentary bases adjacent to i, and each score(i,j) depends
on possible stackings of the three pairs (i - 1, j + 1), (i, j),
and (i + 1, j - 1):

1. If (i, j) and (i - 1, j + 1) are both Watson-Crick pairs,
then score(i, j) includes the absolute value of their
stacking energy (using the nearest-neighbor free
energy parameters from Mfold [21,22]). Similarly, If
(i, j) and (i + 1, j - 1) are both Watson-Crick pairs, then
score(i, j) includes the absolute value of their stacking
energy.

2. If (i, j) is a wobble pair and the two pairs (i - 1, j +
1) and (i + 1, j - 1) are both Watson-Crick pairs, then
score(i, j) includes the doubled absolute value of the
stacking energy of (i, j) and (i - 1, j + 1) and the stack-
ing energy of (i, j) and (i + 1, j - 1).

The unequal treatments of wobble pairs and Watson-
Crick pairs here are motivated by the biological fact that
wobble pairs are rather weak and thus have little contribu-
tion to the stability of a secondary structure unless stacked
with the stronger Watson-Crick pairs. In the calculation of
score(i), we deliberately use minj score(i, j) instead of maxj
score(i, j) or Σj score(i, j) to discourage clusters of base
pairings that are unrealistically tight.

By using the stacking energy of consecutive base pairs, the
scoring function implicitly encourages longer helices
(stems). For example, the four consecutive base pairs (i, j),
(i + 1, j - 1), (i + 2, j - 2), (i + 3, j - 3) in a long helix of
length four have three stackings, while the same number
of base pairs (i, j), (i + 1, j - 1), (i + 3, j - 3), (i + 4, j - 4) in
two shorter helices of length two have only two stackings.

Optimizing Annealing Steps
The lattice conformation of an RNA sequence of n bases
can be represented compactly as a turn sequence of n - 1
directions along the lattice axes. This representation is
ideal for storing lattice conformations externally as files,

but is not suitable for computing the scores of lattice con-
formations, a repeated task in simulated annealing. In our
implementation, the lattice conformation is stored as an
array of lattice coordinates organized into a hashtable,
which is updated after every pull move. Using the hashta-
ble, collision detection and neighborhood exploration
can be performed very efficiently. Recall that the average
number of bases relocated by a random pull move is a
small constant. Also observe that the score difference of a
conformation change due to a pull move depends on only
the relocated bases and their neighbors. Thus we optimize
the computation of the score difference so that each
annealing step takes on average only constant time. With-
out this optimization, the running time of each annealing
step would be linear in the length of the RNA sequence,
and the folding simulation would take much longer time
on longer sequences.

Mixing Two Cooling Schedules
The basic cooling schedule of our annealing procedure is
a slowly decreasing function Ti = c/log2(1 + i/n), where n is
the total number of annealing steps. Schmitz and Steger
[43] observed that certain annealing procedures can be
improved by sampling the system temperatures from the
basic cooling schedule at random, instead of following
the decreasing function faithfully from start to finish.
More precisely, in each annealing step i, the randomized
cooling schedule chooses a random number i' between 1
and n, then uses Ti' instead of Ti in the calculation of the
acceptance probability.

In our experimentation with both cooling schedules, we
indeed observed that, given the same running time, the
randomized cooling schedule is slightly more effective
than the basic cooling schedule. Moreover, we observed
that even better performance can be achieved by mixing
the two cooling schedules together. We eventually settled
on a mixed cooling schedule that, in each annealing step i,
chooses either Ti or Ti' at random, with equal probability,
as the system temperature.

Multiple Iterations with Doubling Steps
Because of the random nature of the simulated annealing
approach, the best conformation found by the annealing
procedure may vary from one iteration to another. To pre-
dict the secondary structure of an RNA sequence reliably,
we repeat five iterations of the annealing procedure, then
take the best among the best conformations of the five
iterations. For an RNA sequence of length L, the number
of annealing steps in each iteration is set to 100·L2 ini-
tially. This number may be sufficient for some sequences
but not for others, depending the complexity of the
underlying folding landscape. We use a doubling strategy
to estimate the ideal number of annealing steps. After the
initial round of five iterations, we execute a second round
Page 8 of 17
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of five iterations with the number of annealing steps dou-
bled. This doubling process continues round after round
until the improvement (in the best score) of the current
round over the previous round drops below 2%. Note that
1 + 2 + 4 + � + 2k = 2k+1 - 1 < 2·2k. Thus the total running
time of the multiple rounds in this doubling process is at
most two times the running time of the last round. We are
not aware of any previous usage of this doubling tech-
nique in bioinformatics. But in theoretical computer sci-
ence, this technique is folklore. For example, this
technique has been used to estimate the number of points
on the convex hull in Chan's output-sensitive convex hull
algorithm [52].

Selecting Disjoint Base Pairs for Secondary Structure 
Prediction
Given the best lattice conformation of an RNA sequence
found by repeated annealing procedures, we need to
determine a set of base pairs as the predicted secondary
structure. We accomplish this in three steps: (i) extract
base pairs from the lattice conformation, (ii) group the
extracted base pairs into helices and extend each helix
until maximal, (iii) select a disjoint set of base pairs from
the maximal helices.

To extract base pairs from the lattice conformation, we use
a simple criterion: Two bases are complementary if they are
either a Watson-Crick pair CG or AU, or a wobble pair
GU. Two complementary bases form a base pair if they are
adjacent in the lattice conformation, and are separated by
at least three other bases in the RNA sequence (the hairpin
constraint). If two stacking base pairs (i, j) and (i + 1, j - 1)
are both Watson-Crick pairs, then both base pairs are
extracted. If a base pair (i, j) is a wobble pair and is stacked
with two other base pairs (i - 1, j + 1) and (i + 1, j - 1) that
are both Watson-Crick pairs, then all three base pairs are
extracted.

Given the initial set of base pairs extracted from the lattice
conformation, we group consecutive base pairs into heli-
ces. We do not allow bulges or internal loops in the heli-
ces. Then each helix can be specified by three numbers (i,
j, �), where (i, j) the outer-most base pair in the helix, and
� is the helix length, i.e., the number of base pairs in the
helix. For example, the helix (4, 12, 3) consists of three
stacking base pairs (4, 12), (5, 11), and (6, 10). We then
extend each helix into a maximal helix: first extend (i, j, �)
inward to (i, j, � + k) incrementally, for k = 1, 2,..., while
the inner-most base pair satisfies the hairpin constraint (j
- � - k + 1) - (i + � + k - 1) > 3 and the helix energy becomes
lower; next extend the helix outward, from (i, j, �') to (i -
k, j + k, �' + k), in a similar manner. Here the energy of a
helix of length � is the sum of the � - 1 (negative) stacking
energies of consecutive base pairs.

Recall that each base may be adjacent to two or more com-
plementary bases on the 3D triangular lattice since each
lattice point has 12 neighbors. Thus the initial set of base
pairs extracted from the lattice conformation may not be
disjoint. It follows that the maximal helices obtained
from these base pairs may not be disjoint either. We use a
greedy algorithm to select a disjoint set of base pairs from
these maximal helices. The greedy algorithm is based on a
classical concept in graph theory called the page number
[53]. Define the page number of a secondary structure as
the smallest positive integer k such that the base pairs in
the structure can be partitioned into k pseudoknot-free
sub-structures. Then a pseudoknot-free secondary struc-
ture has page number one, and a simple H-pseudoknot
has page number two. RNA secondary structures with
page number two have been studied previously as the bi-
secondary structures [54,55]. Recent research on the clas-
sification of RNA pseudoknots [56,57] has shown that
most known RNA secondary structures have page number
two, and that almost all known RNA secondary structures
have page number at most three. Considering these facts,
our greedy algorithm repeats the following selection
round until every helix is either assigned to a page or
deleted:

1. Among the helices not yet assigned to any page, find
one helix H with the lowest energy.

2. If H does not cross any helices on page 1, assign H
to page 1; else if H does not cross any helices on page
2, assign H to page 2; else delete H.

3. If H is assigned to either page 1 or page 2, trim each
unassigned helix to remove its base pairs that overlap
with H. Delete any unassigned helix that contains less
than three base pairs after the trimming.

After the greedy algorithm, the base pairs assigned to
either page 1 or page 2 are then output as the predicted
secondary structure.

Reconstructing Tertiary Structure from Predicted 
Secondary Structure
Our method for tertiary structure reconstruction is based
on the same folding simulation approach that we use for
secondary structure prediction. In fact all aspects of the
annealing procedure remain the same except the scoring
function. The new scoring function for reconstruction has
two components: the match bonus and the sharp turn
penalty. Given a set of base pairs as input, the match
bonus includes a constant positive score for each base pair
in the input that is realized by two adjacent bases in the
lattice conformation. For aesthetic purpose, the sharp turn
penalty includes some negative score for each base i at
which the turn angle of the three consecutive bases (i - 1,
Page 9 of 17
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i, i + 1) is either 60° or 90° (120° and 180° are the two
other possible angles). Since finding a conformation that
realizes all base pairs in the input is more important than
minimizing the number of sharp turns in the conforma-
tion, we choose the magnitude of penalty for each sharp
turn to be a constant (4 for 60° and 1 for 90°) times 1/L
of the match bonus for a single base pair, where L is the
length of the RNA sequence. This sharp turn penalty,
although very low in magnitude, is still effective in dis-
criminating alternative structures. We observed that the
tertiary structures reconstructed by the folding simulation
indeed became noticeably smoother with the sharp turn
penalty in the scoring function.

Visualizing Lattice Conformation of RNA Secondary 
Structure
We implemented a 3D visualization program that, given a
sequence of RNA bases and a turn sequence of lattice
directions, decodes a lattice conformation of the RNA
sequence from the turn sequence, and displays the RNA
structure in the ball-and-stick model: each base is repre-
sented as a ball; two consecutive bases in the sequences
are connected by a stick. Optionally, two complementary
bases adjacent in the lattice conformation (thus forming a
base pair) are connected by a line segment. All figures of
RNA structures included in this paper are actual screen-
shots of our visualization program.

As we would expect from a typical 3D visualization pro-
gram, the user is able to rotate, zoom, and adjust the 3D
view using mouse and keyboard. Moreover, the user can
manipulate the RNA structure interactively, by executing
pull moves, and save the modified structure in a file. The
most attractive feature of our visualization program is per-
haps its ability to play RNA folding movies [58,59]. Each
frame of animation corresponds to an incremental change
to the lattice conformation due to a single pull move. The
whole sequence of pull moves for the movie can be read
either from a file, in which each line contains two num-
bers for the base index and the lattice direction of a pull
move, or directly from the output of a running annealing
procedure, in real time. As we observed in bioinformatics
classrooms, the visualization program is a great pedagogic
device.

Software
We implemented a suite of computer programs for RNA
folding on the 3D triangular lattice. Our software package
consists of the following components:

1. The Delta library delta.c and delta.h, which
includes basic data structures and functions for the 3D
triangular lattice, pull moves, file input/output, and
RNA-specific information such as stacking pair ener-
gies. (The name "delta" stands for "a triangular tract of
sediment deposited at the mouth of a river" as in the
3D triangular lattice, and for "a finite increment of a
variable" as in the score difference of an annealing
step.)

2. The folding simulation program fold.c for the
prediction of RNA secondary structures and the recon-
struction of RNA tertiary structures.

3. The 3D visualization program show.c for display-
ing the lattice conformations of RNA secondary struc-
tures and for playing RNA folding movies.

4. The selection program is.c for selecting disjoint
base pairs from the output of folding simulation.

5. Data conversion tools such as db2bp.c (dot brack-
ets to base pairs), bp2hx.c (base pairs to helices),
hx2bp.c (helices to base pairs), etc.

6. Traditional UNIX Makefiles for automating pro-
gram compilation and experiments, and helper pro-
grams such as ssa.c (sensitivity, selectivity, and
accuracy) for the analysis of experimental results.

We refer to Figure 11 for a typical use of the programs in
our software package. Given an RNA sequence, the folding
simulation program fold (in prediction mode) finds a
good lattice conformation and extract the base pairs, the
conversion tool bp2hx converts the base pairs to helices,
the selection program is selects a disjoint set of helices,
the conversion tool hx2bp converts the helices back to
base pairs, the folding simulation program fold (in
reconstruction mode) reconstructs a lattice conformation
of the RNA sequence as a turn sequence of lattice direc-
tions, and finally the 3D visualization program show dis-
plays the reconstructed lattice conformation of the
predicted structure.

A typical pipeline of simulation, selection, reconstruction, and visualizationFigure 11
A typical pipeline of simulation, selection, reconstruction, and visualization.

seq delta.bp delta.is.hx delta.is.bp seq2delta.hx
is fold showfold
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The whole pipeline is encapsulated by the Makefiles in
two simple commands. Given an RNA sequence in the file
PKB00001.seq, the command make
PKB00001.result automatically goes through the
pipeline and saves the output to the three files
PKB00001.delta.hx, PKB00001.delta.is.hx,
and PKB00001.seq2. Then the command make
PKB00001.show prints a textual representation of the
predicted secondary structures PKB00001.delta.hx
(before selection) and PKB00001.delta.is.hx (after
selection) to the console, and displays the reconstructed
lattice conformation PKB00001.seq2 using the visuali-
zation program. We refer to Figure 12 for an example out-
put of the visualization problem. An example output to
the console is the following:

AGGGGGGACUUAGCGCCCCCCAAACCGUA

______ ______

__ __

__ __

__ __

__ __

>

______ ______

___ ___

To watch the folding simulation of the sequence
PKB00001.seq in real time as a movie, run the com-
mand make PKB00001.movie.

Results
To evaluate our RNA folding programs, we use the RNA
sequences with known secondary structures from Pseudo-
Base [14]. As of May 25, 2008, the PseudoBase contained
279 partial RNA sequences, of which 252 are consecutive
sequences without gaps. We collected these 252 sequences
and their known secondary structures (in dot-bracket for-
mat) in a FASTA file pseudobase.fasta as the data set
for our experiments. The sequences in the data set have
maximum length 131 and minimum length 20; the aver-
age length is about 43 with a standard deviation of 24.

Three low-end desktop computers were used in our exper-
iments: for pseudoknot prediction, two Dell OptiPlex
GX620 with 2.8-3.0 GHz Pentium D Processor and 2 GB
RAM running Microsoft Windows XP Professional Service
Pack 3 and Cygwin 1.5.25; for reconstruction and visuali-
zation, an Apple iMac with 2 GHz PowerPC G5 Processor
and 2 GB RAM running Mac OS X 10.4.11.

We compare our RNA pseudoknot prediction method,
code named DeltaIS, with the HotKnot algorithm of Ren,
Rastegari, Condon and Hoos [15]. HotKnot is an effective
heuristics that has been shown [15] to outperform the
well-known Pseudoknots algorithm of Rivas and Eddy
[60], the NUPACK algorithm of Dirks and Pierce [61], and
the Iterated Loop Matching algorithm of Ruan, Stormo
and Zhang [62], and to give better results in many cases
than the genetic algorithm from the STAR package of van
Batenburg, Gultyaev, and Pleij [63] and the pknotsRG-
mfe algorithm of Reeder and Giegerich [64].

We refer to Figure 13 for a flow chart of our experiment on
pseudoknot prediction. For each sequence in the data set,
the top branch (DeltaIS) computes a secondary structure
following the simulation and selection steps of our pipe-
line in Figure 11. The middle branch (PseudoBase)
extracts the known secondary structure of each sequence,
and converts it from dot-brackets to base pairs and then to
helices. The bottom branch (HotKnot) also computes a
secondary structure for each sequence, using HotKnot,
and converts it from the bpseq format to our helix format.
The secondary structures predicted by DeltaIS and Hot-
Knot are then compared with the known secondary struc-
tures from PseudoBase using the analysis program ssa.

Example output for PKB00001 (29 bases, 9 base pairs)Figure 12
Example output for PKB00001 (29 bases, 9 base 
pairs).
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Since DeltaIS is randomized, we computed 66 different
runs of the DeltaIS branch for the analysis, where each run
took 20-30 hours to complete. A single run of the (deter-
ministic) HotKnot branch, on the other hand, takes only
a few minutes to complete. Thus DeltaIS is not advanta-
geous over HotKnot in terms of speed. Note however that
the running time of DeltaIS depends on the tunable
parameters of the program. By default, the initial number
of annealing steps in each iteration is set to 100·�2 for a
sequence of length �. With multiple rounds of doubling
steps and with five iterations in each round, the runnning
time of DeltaIS on individual sequences ranges from less
than a minute (for the shortest sequences of 20 bases) to
more than an hour (for some longer sequences of more
than 100 bases). This running time can of course be
reduced by using fewer annealing steps, but when the
number the annealing steps is reduced to a certain point,
the prediction accuracy will also be affected.

To compare a predicted secondary structure with a known
secondary structure, we count the true positives TP as the
base pairs that are known and are predicted, the false neg-
atives FN as the base pairs that are known but are not pre-
dicted, and the false positives FP as the base pairs that are
not known but are predicted. Then we define three quality
measures:

Both sensitivity and selectivity are standard quality meas-
ures that are widely used. We introduce the measure of
accuracy here as a combination of sensitivity and selectiv-
ity. Intuitively, consider the predicted secondary structure
and the known secondary structure as two sets of base
pairs, then the measure of accuracy is the intersection of
the two sets over the union of the two sets.

We first compare the overall performances of DeltaIS and
HotKnot. For this we calculate the three quality measures
(sensitivity, selectivity, and accuracy) using the equations
above with the three numbers (true positives, false nega-
tives, and false positives) summed over all 252 sequences
in the data set. Since Delta is randomized, we first com-
pute the three measures using the best prediction of 66
runs for each sequence, then compute the averages and
standard deviations of the measures over the 66 runs. The
results are shown in Table 2. From the results we can see

Sensitivity
TP

TP FN

Selectivity
TP

TP FP

Accuracy
TP

TP FN FP

=
+

=
+

=
+ +

A flow chart for the pseudoknot prediction experimentFigure 13
A flow chart for the pseudoknot prediction experiment.

delta.hx delta.is.hxdelta.bpseq

pkb.bpdb

seq hotknot.bp hotknot.hxbpseq

pkb.hx

is

ssa

fold

stats and plot

ssa

HotKnot

pseudobase.fasta

Table 2: DeltaIS versus HotKnot on sensitivity, selectivity, and accuracy.

Sensitivity Selectivity Accuracy

DeltaIS (best of 66 runs) 80.20% 78.37% 65.67%
DeltaIS (average ± stdev) 79.11 ± 0.82% 77.39 ± 0.83% 64.26 ± 1.09%
HotKnot 71.69% 78.47% 59.90%
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that DeltaIS is comparable to HotKnot in selectivity and
outperforms HotKnot in both sensitivity and accuracy.
Also note that the best and the average are very close for
DeltaIS. This shows that the performance of DeltaIS is
consistent over different runs.

We next compare the performances of DeltaIS and Hot-
Knot on individual sequences. Refer to Figure 14 for a
scatter plot in which each of the 252 sequences corre-
sponds to a point  for DeltaIS and a point × for HotKnot,
with the sequence length (in log scale) as the x-coordinate
and with the prediction accuracy (DeltaIS accuracy aver-
aged over the 66 runs) as the y-coordinate. There are no
clear patterns on the distribution of these data points, but
linear regressions of the two point sets produce an almost
horizontal line for HotKnot and a slightly decreasing line
for DeltaIS. The intersection point of the two lines corre-
sponds to the sequence length of about 70. This implies
that the improvement of DeltaIS over HotKnot in overall
prediction accuracy is especially pronounced on the
shorter sequences.

After analyzing the scatter plot of prediction accuracies for
individual sequences, we count the number of sequences
whose secondary structures were predicted perfectly, with
all three measures sensitivity, selectivity, and accuracy
equal to 100%. Out of the 252 sequences in the data set,
HotKnot predicted the secondary structures of 36

sequences perfectly. In contrast, DeltaIS predicted the sec-
ondary structures of 47 sequences perfectly in all 66 runs
(that is, the secondary structure of each of the 47
sequences was predicted perfectly in each of the 66 runs).
Moreover, DeltaIS predicted the secondary structures of
82 sequences perfectly in at least one of the 66 runs (note
that these 82 sequences account for almost one third of
the 252 sequences in the data set). Among the 36
sequences whose secondary structures are predicted per-
fectly by HotKnot, 21 sequences are included in the 47
sequences whose secondary structures are predicted per-
fectly by HotKnot in all 66 runs, and 30 sequences are
included in the 82 sequences whose secondary structures
are predicted perfectly by HotKnot in at least one of the 66
runs. The overlaps do not seem big enough to signify any
strong correlation between the prediction accuracies of
DeltaIS and HotKnot on individual sequences.

In addition to the experiment on pseudoknot prediction,
we also performed an experiment on reconstruction. Our
reconstruction method, based on the same folding simu-
lation approach as our prediction method, can success-
fully reconstruct the lattice conformations of all 252
sequences from their known secondary structures in less
than 15 minutes. Moreover, most of the sequences need
only one iteration of the annealing procedure for a suc-
cessful reconstruction. We refer to Figures 15 and 16 for
the reconstructed lattice conformations of two sequences.

A scatter plot of the prediction accuracies of DeltaIS () and HotKnot (×) on individual sequencesFigure 14
A scatter plot of the prediction accuracies of DeltaIS ( ) and HotKnot (×) on individual sequences.
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Discussion
Reconstruction Versus Prediction
Our methods for RNA tertiary structure reconstruction
and RNA secondary structure prediction are based on the
same folding simulation approach. The experimental
results, however, show that reconstruction is much easier
than prediction: for reconstruction, 100% success rate in
less than 15 minutes; for prediction, 79.11% sensitivity
77.39% selectivity 64.26% accuracy in 20-30 hours. We
give two explanations for this disparity:

1. The 3D triangular lattice is a dense regular lattice
that approximates the 3D space very well. By a com-
parison of the sequence space and the shape space
[11], one can show that for any given RNA sequence,
the number of all possible conformations on the 3D
triangular lattice far exceeds the number of all possible
secondary structures as sets of disjoint base pairs. Thus
each distinct secondary structure has many corre-
sponding lattice conformations. The abundance of
"witnesses" for each secondary structure makes it easy
for a random search to find a corresponding lattice
conformation.

2. The annealing procedure is a biased search. As
remarked by Zwanzig, Szabo and Bagchi [65] on Lev-
inthal's paradox, it is difficult for an uneducated mon-
key to type a verse of Shakespeare accidentally, but if

the letters typed correctly are forever locked in place
while incorrect letters can still be changed, then the
chance of such a feat becomes significantly higher. The
same logic explains why our reconstruction method
based on folding simulation is so effective. Indeed a
similar argument also explains the effectiveness of
Hofacker et al.'s heuristic for the RNA design problem
[23].

An interesting aspect of our approach is that it can be used
to complement the existing methods. Given a secondary
structure predicted by any other method, we can first
reconstruct a lattice conformation of the structure, then
obtain an improved structure by folding simulation using
the old structure as the starting point.

Multiple Predictions
The random nature of our folding simulation approach
may cause different iterations of the annealing procedure
to find different best structures, although our experiment
showed that the predictions are typically consistent (recall
that DeltaIS predicted the secondary structures of 47
sequences perfectly in each of 66 different runs). This may
seem like a disadvantage, if our goal is simply to predict a
unique structure. The biological reality, however, is not so
simple. The disadvantage may turn out to be a desirable
feature in certain scenarios. Some RNA sequences are
"switches" in the sense that they can assume several very

Reconstructed lattice conformation of PKB00071 (108 bases, 24 base pairs)Figure 15
Reconstructed lattice conformation of PKB00071 
(108 bases, 24 base pairs).

Reconstructed lattice conformation of PKB00134 (133 bases, 44 base pairs)Figure 16
Reconstructed lattice conformation of PKB00134 
(133 bases, 44 base pairs).
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different meta-stable structures. The conformation spaces
and folding trajectories of such RNA sequences cannot be
studied adequately with the thermodynamic approach
alone, which aims at a supposedly unique best structure
with the minimum free energy. Flamm, Fontana,
Hofacker and Schuster [12] showed an effective kinetic
approach based on elementary-step simulation. One of
their examples for illustrating the kinetic approach is an
RNA switch with two highly stable secondary structures:

GGCCCCUUUGGGGGCCAGACCCCUAAAGGGGUC

((((((((((((((:::::))))))))))))))

((((((::::)))))):((((((::::))))))

Using our folding simulation program on this sequence,
we were able to predict both structures within five itera-
tions of the annealing procedure. The lattice conforma-
tions are shown in Figures 17 and 18. Note that the first
structure is a stem-loop and the second structure is indeed
a kissing-hairpin:

GGCCCCUUUGGGGGCCAGACCCCUAAAGGGGUC

((((((((((((((:::::))))))))))))))

(((((([[[:)))))):((((((:]]]))))))

Although the two structures are very different, they have
roughly the same number of base pair stackings and hence
very close scores in the folding simulation. We recom-
mend that the users of our program always run the predic-
tion program multiple times on each sequence and
consider each predicted structure as a possible candidate.

Longer Sequences
As we observed from the scatter plot in Figure 14, the pre-
diction accuracy of DeltaIS tends to deteriorate as the
sequence length increases. We believe the reason is the fol-
lowing. Each pull move relocates on average only a con-
stant number of bases. While this semi-local property is
desirable for making individual annealing steps efficient,
it also means that the average impact of a single pull move
on the lattice conformation becomes less significant for
longer sequences. As a result, the annealing procedure
becomes less capable of escaping local optima. Moreover,
longer sequences typically have a much larger number of
local optima than shorter sequences. Possible ways to
improve the prediction accuracy for long sequences are (i)
to design a more effective move than the pull move, (ii) to
combine several pull moves into an atomic unit as a
combo move, and (iii) to use alternative Monte Carlo
schemes such as simulated tempering [66] instead of sim-
ulated annealing. We will try these ideas in our future
work.

The 1st secondary structure of an RNA switchFigure 17
The 1st secondary structure of an RNA switch.

The 2nd secondary structure of an RNA switchFigure 18
The 2nd secondary structure of an RNA switch.
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Conclusion
Folding simulation on the 3D triangular lattice is effective
method for RNA secondary structure prediction and terti-
ary structure reconstruction. The visualization software for
the lattice conformations of RNA structures is a valuable
tool for the study of RNA folding and is a great pedagogic
device.

Availability
Our RNA folding programs have been tested on three
major platforms: Microsoft Windows (Cygwin), Linux,
and Mac OS X. The complete source code, documenta-
tion, data set, and experimental results can be down-
loaded from the companion website of this paper: RNA
folding on the 3D triangular lattice http://
www.cs.usu.edu/~mjiang/rna/DeltaIS/.
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