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Abstract

Resting-state functional connectivity in the human brain is heritable, and previous

studies have investigated the genetic basis underlying functional connectivity. How-

ever, at present, the molecular mechanisms associated with functional network cen-

trality are still largely unknown. In this study, functional networks were constructed,

and the graph-theory method was employed to calculate network centrality in

100 healthy young adults from the Human Connectome Project. Specifically, func-

tional connectivity strength (FCS), also known as the “degree centrality” of weighted

networks, is calculated to measure functional network centrality. A multivariate tech-

nique of partial least squares regression (PLSR) was then conducted to identify genes

whose spatial expression profiles best predicted the FCS distribution. We found that

FCS spatial distribution was significantly positively correlated with the expression of

genes defined by the first PLSR component. The FCS-related genes we identified

were significantly enriched for ion channels, axon guidance, and synaptic transmis-

sion. Moreover, FCS-related genes were preferentially expressed in cortical neurons

and young adulthood and were enriched in numerous neurodegenerative and neuro-

psychiatric disorders. Furthermore, a series of validation and robustness analyses

demonstrated the reliability of the results. Overall, our results suggest that the spatial

distribution of FCS is modulated by the expression of a set of genes associated with

ion channels, axon guidance, and synaptic transmission.
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1 | INTRODUCTION

Resting-state refers to a state where people are in a calm and peaceful

situation without external stimuli or explicit tasks (Sheline &

Raichle, 2013). Although there is low physical energy expenditure

when people are at rest, the brain at rest consumes ~80% of its

energy supply, indicating a nontrivial role of the resting brain in cogni-

tive functions (Raichle & Mintun, 2006). In recent decades, resting-

state functional magnetic resonance imaging (rs-fMRI) has been

widely used to explore blood oxygenation level-dependent (BOLD)

spontaneous fluctuations, partly due to its distinct advantages such as

no potential performance confounding from a specific task, requiring
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the least amount of effort from the participants, and being relatively

easy to implement in clinical populations (Greicius, 2008; Smith

et al., 2013; Smith et al., 2013). Despite some concerns about the

presence of uncontrolled brain signals from independent thoughts

when subjects are in a resting state (Morcom & Fletcher, 2007) and

that fMRI yields indirect measures of neuronal activity, fluctuations in

BOLD signals appear to be a fundamental or intrinsic property of the

brain that is found during sleep (Larson-Prior et al., 2009) and general

anesthesia (Vincent et al., 2007). As an important rs-fMRI metric,

resting-state functional connectivity (rsFC) measures the temporal

correlation of BOLD signals between spatially distinct brain regions

and shows highly consistent patterns across human individuals (Yeo

et al., 2011) and species (Laperchia et al., 2013), suggestive of a con-

served genetic substrate.

Twin studies (Fornito et al., 2011; Glahn et al., 2010; van den

Heuvel et al., 2013) and a genome-wide association study (GWAS)

(Elliott et al., 2018) have shown that rsFC in the human brain is mod-

erate to highly heritable. Recent advances in comprehensive brain-

wide gene expression atlases such as the Allen Human Brain Atlas

(AHBA) (Hawrylycz et al., 2012), have provided the possibility of

linking spatial variations in gene expression to macroscopic neuroim-

aging phenotypes (Fornito, Arnatkeviciute, & Fulcher, 2019). Consid-

ering the highly conserved transcriptional architecture of the cerebral

cortex across individuals (Hawrylycz et al., 2015), several transcription-

neuroimaging association studies have explored the molecular mecha-

nisms underlying rsFC in healthy subjects (Anderson et al., 2018;

Krienen, Yeo, Ge, Buckner, & Sherwood, 2016; Richiardi et al., 2015;

Vertes et al., 2016) by correlating rsFC derived from living human

brains to gene expression data derived from postmortem human

brains. For example, a seminal study (Richiardi et al., 2015) applied

independent component analysis (ICA) to build rsFC networks and

focused on four rsFC networks, including the dorsal default-mode

network (DMN), salience network, sensorimotor network, and visuo-

spatial network. They found that the transcriptome profile similarity

with-network was higher than that between different networks. In

addition, Krienen et al. used a parcellation of 17 rsFC networks and

found that laminar expression patterns of human supragranular

enriched genes were associated with corticocortical network architec-

ture (Krienen et al., 2016). Anderson and colleagues first identified

genes with differential cortical network expression based on a

parcellation of 7 rsFC networks and found strong correspondence

with limbic and somato/motor cortico-striatal functional networks

(Anderson et al., 2018). Vertes et al. divided the brain into eight mod-

ules and examined the associations between transcription profiles

associated with intra-modular degree as well as inter-modular degree

and connection distance (Vertes et al., 2016). However, the

abovementioned studies mainly assumed that the human brain con-

sists of several independent networks/modules, and thus, such

methods cannot fully delineate functional brain networks from a

global perspective.

In contrast, network centrality measures show great promise for

characterizing the complexity of the whole functional network (Zuo

et al., 2012). Among the various centrality measures of the functional

network, functional connectivity strength (FCS), also known as the

“degree centrality” of weighted networks (Liang, Zou, He, &

Yang, 2013; Wang et al., 2015), is a simple, direct, and commonly used

measure and shows high test-retest reliability (Wang et al., 2011). In

addition, FCS has a close relationship with cerebral blood flow (Liang

et al., 2013) and the cerebral metabolic rate of glucose (Tomasi &

Volkow, 2011a), indicating that the FCS is biologically plausible. Fur-

thermore, FCS abnormalities have been found in a variety of neurode-

generative and neuropsychiatric diseases such as Alzheimer's disease

(AD) (Filippi et al., 2017), schizophrenia (SCZ) (Argyelan et al., 2014;

Guo et al., 2015), bipolar disorder (BPD) (Argyelan et al., 2014) and

autism spectrum disorder (ASD) (Khan et al., 2013). However, no

transcription-neuroimaging association study to date has investigated

the genes linked with FCS. Considering that the human brain is a com-

plex network and a vulnerable target of various neurodegenerative

and neuropsychiatric conditions, an elaborate analysis of the associa-

tion between FCS and gene expression is of clinical significance.

Inspired by previous work, in this exploratory study, we aimed to

answer three questions: First, which genes are associated with FCS?

Second, what are the biological functions of these genes? Third, in

which cell types and developmental periods are these genes over-rep-

resented? To this end, we performed a comprehensive transcriptome-

neuroimaging association to identify the molecular correlates of FCS.

Specifically, we first computed the whole-brain voxel-wise FCS from

high-quality rs-fMRI data from the Human Connectome Project (HCP)

(Van Essen et al., 2013). Then, we extracted sample-wise gene expres-

sion data across six postmortem adult human brains from AHBA. Sub-

sequently, partial least squares regression (PLSR), a well-established

multivariate technique that generalizes and combines features from

principal component analysis and multiple regression, was utilized to

identify genes whose transcriptional profiles were significantly linked

to the group mean FCS patterns. Finally, functional annotations of

these FCS-related genes may explain how these genes play crucial

roles in regulating FCS using a suite of recently developed gene

functional-annotation tools. An overview of our study protocol is pro-

vided in Figure 1.

2 | MATERIALS AND METHODS

2.1 | Subjects, data acquisition, and preprocessing

The rs-fMRI data of 100 subjects younger than 30 yo each with

unique family IDs (50 males, mean age ± SD = 26.7 ± 2.3 years) were

randomly chosen from publicly available HCP data (https://db.

humanconnectome.org). We used the preprocessed imaging data

based on an ICA-fixed (FMRIB's ICA-based X-noisifier) pipeline

(Salimi-Khorshidi et al., 2014). For details of HCP rs-fMRI data acquisi-

tion and denoised preprocessing, please refer to previous studies (Van

Essen et al., 2012; Van Essen et al., 2013). Briefly, high-resolution rs-

fMRI data (voxel size = 2 mm) of all participants were collected using

a customized 3T Siemens Skyra scanner. The minimal preprocessing

pipeline (Glasser et al., 2013) used to process the rs-fMRI images
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included mainly gradient distortion correction, spatial distortion

removal, rigid-body head motion correction, fMRI data coregistering

to the T1-weighted anatomical scan, normalizing to Montreal Neuro-

logical Institute (MNI) space and high-pass temporal filtering.

After the preprocessing steps of the ICA-fixed pipeline, we fur-

ther removed the linear detrend and regressed out several nuisance

signals from the data, including Friston's 24 head-motion parameters,

global signal, white matter signal, cerebrospinal fluid signal, and “bad”
time points with a frame-wise displacement of head motion > 0.5 mm

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2013). Finally, tempo-

ral bandpass filtering (0.01–0.08 Hz) was performed to reduce the

effects of low-frequency drift and high-frequency physiological noise.

2.2 | Whole-brain FCS analysis

Pearson's correlation coefficients were computed between the time

series of each pair of voxels, resulting in a whole-brain rsFC matrix for

each subject. To exclude spurious correlations from nongray matter

voxels, the computation was constrained within a gray matter mask

by thresholding (a threshold of > 0.2) a prior gray matter probability

map in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

Of note, we also set a correlation coefficient of r > .2 to eliminate

weak correlations possibly arising from noise signals and negative cor-

relations caused by global signal removal (Wang et al., 2011). Subse-

quently, we calculated the FCS as the sum of the rsFC values

between a given voxel and all other voxels for each subject. Finally,

we averaged whole-brain FCS maps of 100 subjects into a group

mean FCS map.

2.3 | Gene expression data

The human microarray-based gene expression data were downloaded

from AHBA (http://human.brain-map.org) (Hawrylycz et al., 2012),

which were taken from six postmortem adult brains (1 Hispanic, 2 Afri-

can-American and 3 Caucasian; aged 24–57 years, one female and

5 males). The demographic information of each donor is shown in

Table S1. Specifically, AHBA offers comprehensive coverage of nearly

the entire brain, consisting of normalized expression data of 20,737

genes with unique Entrez IDs detected by 58,692 probes taken from

3,702 spatially distinct tissue samples. Since the AHBA-provided coor-

dinates were calculated by affine registering donors' T1-weighted

anatomical images to the MNI space, a more accurate nonlinear cor-

egistration consisting of four steps (translation, rigid body, affine, and

nonlinear deformation field) generated by Gorgolewski et al. (https://

github.com/chrisgorgo/alleninf), which was performed using

Advanced Normalization Tools (Avants et al., 2011), was used in this

study. Therefore, spatial correspondence between gene expression

and neuroimaging phenotypes could be established in MNI space.

The expression level of each gene from each sample of each

donor was extracted from the AHBA database (the expression level of

each gene from all probes was averaged if there were multiple probes

for the same gene). Taking the MNI coordinates of each sample as the

center, a 4-mm radius (two times the voxel size) sphere was drawn,

and the mean FCS value of the sphere was computed as the FCS

value of the sample. Given the gross dissimilarities in the gene expres-

sion profiles of the cerebral cortex, subcortex, and cerebellum (Kang

et al., 2011), we restricted our analyses to a mask of the cerebral cor-

tex generated from the Brainnetome Atlas (Fan et al., 2016). Finally, a

total of 1,765 samples of the cerebral cortex were included in the sub-

sequent analyses (Table S1). The gene expression levels and FCS

F IGURE 1 The workflow of the study protocol. (a) Acquire the
sample-wise whole-genomic transcriptomic profiles from the AHBA
database; (b) Obtain the sample-wise gene expression matrix of each
donor; (c) Download rs-fMRI data of 100 subjects from HCP;

(d) Calculate group mean FCS map; (e) Obtain the sample-wise group-
mean FCS values; (f) Identify FCS-related genes by investigating
correlations between cortical gene expression and FCS using PLSR;
(g) Functional annotations for FCS-related genes, including GO and
KEGG enrichment analysis, disease enrichment analysis and specific
expression analysis in three specific terms (cell types, brain regions,
and developmental stages). Abbreviations: AHBA, Allen human brain
atlas; FCS, functional connectivity strength; GO, gene ontology; HCP,
human connectome project; KEGG, Kyoto encyclopedia of genes and
genomes; PLSR, partial least squares regression; SEA, specific
expression analysis
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values were z-score normalized by subtracting the mean and dividing

by the SD across all the samples.

2.4 | Donor-level PLSR analyses

PLSR, a data reduction and regression technique, was used to explore

genes significantly associated with FCS. PLSR is a widely used multivar-

iate method to identify relationships between multiple predictor and

response variables, with the goal of predicting response variables from

predictors. Here, the predictor variables were the z-score normalized

matrix of the sample-wise mean gene expression level of all probes

from each donor ([donor ID: sample size × gene number]: H0351.1009:

178 × 20,737, H0351.1012: 258 × 20,737, H0351.1015:

225 × 207,37, H0351.1016: 255 × 20,737, H0351.2001:

474 × 20,737, and H0351.2002: 375 × 20,737). In addition, the

response variables were the z-score normalized vectors of the sample-

wise group mean FCS values (178 × 1, 258 × 1, 225 × 1, 255 × 1,

474 × 1, and 375 × 1). The PLSR components are ranked by the

explained variances between predictor and response variables, and

thus, the first several PLSR components provide the optimal low-

dimensional representation of the covariance of the higher dimensional

data matrices (Abdi & Williams, 2013). In the current study, permuta-

tion tests were used to test the statistical significance of the first five

PLSR components of each donor-level model. To do this, we resampled

the data (i.e., AHBA samples) without replacement within each PLSR

model 1,000 times and counted the number of times of the explained

variances which were higher than the real explained variances. The p-

values with statistical significance were calculated by dividing by the

total number of permutation tests (1,000 times). Moreover, bootstrap

tests were utilized to evaluate the significance of genes contributing to

components. After obtaining real PLSR weights for each gene on each

PLSR component, we resampled the data with replacement 1,000 times

to reperform PLSR analysis at the donor level by bootstrap tests and

generated the weights of each gene. The standard errors were assessed

by bootstrapping, and z-values (PLSR weights divided by their standard

errors) were transformed to p-values to evaluate the contribution of

each gene to each PLSR component. We used the Benjamini-Hochberg

false discovery rate (BH-FDR) correction (q < 0.05) to define the signifi-

cance threshold. PLSR models were constructed for each donor to

remove the bias of transcriptomic variations among the six donors.

Only genes whose transcriptional profiles were significantly associated

with FCS patterns in all six donors were defined as FCS-related genes

and were used for the following functional annotation analyses.

2.5 | Gene functional annotations

Gene ontology (GO) (Ashburner et al., 2000) and the Kyoto encyclo-

pedia of genes and genomes (KEGG) (Kanehisa & Goto, 2000) imbed-

ded in the Enrichr tool (http://amp.pharm.mssm.edu/Enrichr/) (Chen

et al., 2013; Kuleshov et al., 2016) were used for functional annota-

tions of the FCS-related genes (with both positive and negative

weights). GO was used to enrich these genes for specific molecular

functions, biological processes and cellular components, and KEGG

was used to identify related biological pathways.

In addition, Enrichr and ToppGene (https://toppgene.cchmc.org/)

(Dougherty, Schmidt, Nakajima, & Heintz, 2010) were applied to

enrich the FCS-related genes for specific neurodegenerative and neu-

ropsychiatric diseases.

Furthermore, specific expression analysis (SEA) (Xu, Wells,

O'Brien, Nehorai, & Dougherty, 2014) (http://genetics.wustl.edu/

jdlab/csea-tool-2/) was utilized to evaluate whether these FCS-

related genes were over-represented in three specific terms (cell

types, brain regions and developmental stages) with a specificity index

probability (pSI) (to assess how genes are more enriched in the spe-

cific terms relative to others). Specifically, cell-type transcriptome data

were collected from the translational profiles of 25 central nervous

system cell populations in mice, including cerebellar (1–9), spinal cord

(10), striatal and basal forebrain (11–14), brainstem (15), and cortical

(16–25) cell types (Dougherty et al., 2010). The brain development

transcriptional profiles were acquired from the BrainSpan Atlas of the

Developing Human Brain (http://www.brainspan.org/), which was

generated across 13 developmental stages in 8–16 brain structures.

All enrichment analyses were performed using Fisher's exact

tests. BH-FDR correction for multiple comparisons (q < 0.05) was

applied for gene functional annotations.

2.6 | Robustness analyses

To exclude the potential influence of different preprocessing

approaches for neuroimaging and gene expression data on our main

findings, we performed a series of robustness analyses.

2.6.1 | The effect of correlation thresholds

In the main analysis, a single correlation threshold of r > .2 was used

during the FCS calculation. To assess the effects of different thresholds

on our results, we recomputed the FCS using two other thresholds (r >

.1 and r > .3) and then reperformed donor-level PLSR analyses.

2.6.2 | Global signal regression effect

The use of global signal regression (GSR) is a debate in the field of rs-

fMRI preprocessing (Liu, Nalci, & Falahpour, 2017). We recalculated

FCS (r > .2) without GSR and reperformed donor-level PLSR analyses

to compare with our main results (r > .2 with GSR).

2.6.3 | Independent imaging data set

We applied another 100 HCP subjects with unique family IDs to test

the stability of our main results, and after removing those with the
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same family IDs from the main analysis, 88 subjects were kept

(44 males, mean age ± SD = 25.76 ± 2.70 years). The sex and age of

the subjects were matched in the two neuroimaging data sets. We

reperformed all the analyses in the same manner as mentioned above

based on FCS values calculated by this independent imaging data set

and gene expression values extracted from AHBA.

2.6.4 | Individual FCS map level PLSR analyses

In view of individual differences in FCS patterns (Mueller et al., 2013),

we repeated donor-level PLSR analyses with the FCS pattern of each

subject rather than the group mean FCS map, which resulted in a total

of 600 (100 subjects × 6 donors) PLSR analyses. For each donor, the

significant genes obtained with each subject overlapped together, and

genes with repetition rates greater than 95% were retained. Finally,

the FCS-related genes were defined as the genes kept in all six

donors.

2.6.5 | Different preprocessing approaches for
gene expression data

The preprocessing approaches for gene expression data are highly

inconsistent across studies (Hawrylycz et al., 2015; Krienen et al.,

2016; Romero-Garcia et al., 2018). We used a newly proposed pipe-

line (Arnatkevic Iute, Fulcher, & Fornito, 2019) to repreprocess the

gene expression data to validate our findings (please see the Supple-

mentary Materials for details).

2.6.6 | Remove the effect of the DMN

In consideration of the high correspondence of the final computed

grand-average FCS map with the DMN (i.e., higher FCS values, see

Figure 2 for details), the results may be biased by the expression gra-

dients between DMN regions and non-DMN regions. Therefore, we

divided the group mean FCS map into two parts, DMN regions, and

non-DMN regions, based on the DMN mask embedded in the GIFT

software (https://trendscenter.org/software/gift/). Then, donor-level

PLSR analyses were carried out within the samples in DMN regions

and non-DMN regions, respectively.

2.6.7 | Parcellation effect

To investigate the effect of parcellation on the results, we performed

transcriptome-neuroimaging association analyses at the regional level

rather than at the voxel level. We assigned the cerebral cortical brain

samples into the Brodmann atlas (Brodmann, 1909) according to the

MNI coordinate of each sample. We assigned a total of 2,273 samples

(H0351.1009: 243 samples, left hemisphere; H0351.1012: 318 sam-

ples, left hemisphere; H0351.1015: 294 samples, left hemisphere;

H0351.1016: 312 samples, left hemisphere; H0351.2001: 581 sam-

ples, both hemispheres; H0351.2002: 525 samples, both hemispheres)

to cerebral cortex regions of the Brodmann Atlas.

The voxel-wise group mean FCS map was calculated with the

same methods mentioned in the main analyses. After sample assign-

ment, region-wise FCS values were obtained by averaging a set of

FCS values of samples in the same region, and a region-wise

F IGURE 2 The spatial
distribution pattern of the group
mean FCS pattern in healthy
young adults. The voxel-wise
group mean FCS spatial
distribution pattern of the
cerebral cortex in healthy young
adults (a correlation threshold of
r > .2 with GSR) shows that the
regions with higher FCS are
primarily located in the DMN
(mainly involving the PCC/PCU,
inferior parietal lobule, medial
prefrontal cortex) and in the
DLPFC and the lateral temporal,
parietal, and visual cortices. The
color bar represents the z-scored
FCS values. Of note, only positive
FCS values (i.e., higher FCS
values) are shown here for
visualization purpose.
Abbreviations: L, left; R, right
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expression matrix was extracted in the same way. The gene expres-

sion levels and FCS values were z-score normalized by subtracting the

mean and dividing by the standard deviation across all the regions at

the donor level.

Donor-level region-wise PLSR analyses were carried out with per-

mutation and bootstrap tests to identify components and genes that

correlated with FCS. The predictor variables were as follows:

H0351.1009: 35 × 20,737, H0351.1012: 39 × 20,737, H0351.1015:

37 × 20,737, H0351.1016: 41 × 20,737, H0351.2001: 76 × 20,737,

and H0351.2002: 74 × 20,737. In addition, the response variables

were the z-score normalized vectors of the region-wise group mean

FCS values (H0351.1009: 35 × 1, H0351.1012: 39 × 1, H0351.1015:

37 × 1, H0351.1016: 41 × 1, H0351.2001: 76 × 1, and H0351.2002:

74 × 1). Finally, only genes significantly associated with FCS in six

PLSR models were considered FCS-related genes.

2.6.8 | Comparison with the prior publications

We compared the FCS-related genes with the gene lists obtained by

correlating the rsFC network with gene expression in healthy subjects

(Anderson et al., 2018; Krienen et al., 2016; Richiardi et al., 2015;

Vertes et al., 2016) by using permutation tests. Specifically, we

selected 1,518 genes (the number of FCS-related genes was 1,518,

please see details in the RESULTS section) from 20,737 genes ran-

domly 1,000 times and obtained the overlapping genes by intersecting

them with the results of the studies mentioned above. We counted

the number of overlapping genes more than the real overlapping

genes, and the p-values with statistical significance were calculated by

dividing by the total number of permutation tests (1,000 times).

2.7 | Validation analyses

We performed validation analyses using independent imaging data

sets and Brainspan expression data. Notably, the independent imaging

data were the same as the data set in subsection 2.6.3.

Brainspan is a transcriptome atlas designed as a foundational

resource for studying transcriptional mechanisms involved in human

brain development (Miller et al., 2014). The data were generated across

13 developmental stages in 8–16 brain structures. The normalized

expression data of 20,563 genes from seven donors aged 20–40 in the

adult stage were extracted, which contained 11 cerebral regions (each

region consists of one or more Brodmann areas) in both hemispheres

(https://help.brain-map.org/display/devhumanbrain/Documentation).

The average expression level of samples in the same area was taken as

the expression level of the area. Then, functional connectivity networks

were constructed based on the Brodmann atlas, and mean FCS values

in each of the 11 cerebral regions were calculated.

The gene expression levels and FCS values were z-score trans-

formed across all the samples before PLSR analyses. Here, the inde-

pendent variables were the gene expression levels of the cortical

regions (22 regions × 20,563 genes), and the dependent variables

were the FCS values of the 22 regions. After PLSR analyses,

functional annotations were reperformed with FCS-related genes in

the exact same way as mentioned above.

3 | RESULTS

3.1 | Whole-brain voxel-wise FCS pattern

As illustrated in Figure 2, the regions with higher FCS values were

predominantly located in the DMN (involving mainly the posterior cin-

gulate cortex/precuneus [PCC/PCU], inferior parietal lobule, medial

prefrontal cortex) and dorsolateral prefrontal cortex (DLPFC), lateral

temporal, parietal, and visual cortices, which is highly in line with the

findings of previous studies (Bokde et al., 2006; Liang et al., 2013; Liu

et al., 2015; Tomasi & Volkow, 2011a; Tomasi & Volkow, 2011b).

3.2 | PLSR characterization

As shown in Table S2 and Figure 3, the permutation tests revealed

that only the scores of the first PLSR component (PLSR1) were signifi-

cantly positively associated with the FCS in all six donors (all ps <

.001). A total of 1,518 genes were repeatedly identified to make sig-

nificant contributions to PLSR1 (BH-FDR q < 0.05) in all six donors

(Figure S1). Thus, these genes were considered FCS-related genes and

were used for the following gene functional annotation analyses.

3.3 | Gene enrichments

In the GO enrichment analysis, FCS-related genes were enriched for

the biological processes of metal ion transport (corrected

q = 1.85 × 10−2) and the molecular functions of voltage-gated-like ion

channels, especially potassium (corrected q = 1.53 × 10−4) and sodium

(corrected q = 5.46 × 10−3) channels (Figure 4a). In the KEGG path-

way analysis, FCS-related genes were enriched for the calcium signal-

ing pathway (corrected q = 1.99 × 10−5), axon guidance pathway

(corrected q = 5.32 × 10−4) and synaptic transmission processes such

as dopaminergic synaptic transmission (corrected q = 5.32 × 10−4),

long-term potentiation (corrected q = 5.32 × 10−4), long-term depres-

sion (corrected q = 2.79 × 10−4) and glutamatergic synaptic transmis-

sion (corrected q = 2.79 × 10−3) (Figure 4b).

In the disease-related enrichment analyses, FCS-related genes

were enriched for several common neurodegenerative and neuropsy-

chiatric disorders and were differentially expressed in patients with

these disorders such as AD, ASD, BPD, and SCZ (Figure 5a). Moreover,

both upregulated (Figure 5b) and downregulated (Figure 5c) genes were

found in patients with these disorders rather than healthy populations.

In the human brain, FCS-related genes were preferentially

expressed during young adulthood (corrected q = 2.541 × 10−4, pSI =

.0001), particularly in the cerebral cortex (corrected q = 0.03, pSI =

.0001). In mice, 1130 homologs of the 1518 FCS-related genes were

primarily overexpressed in neurons, including layer 5b corticospinal

and corticopontine pyramidal neurons (corrected q = 1.151 × 10−4,
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pSI = .05) and layer six corticothalamic pyramidal neurons (corrected

q = 2.366 × 10-4, pSI = .05) (Figure 6 and Tables S3–S5).

3.4 | Robustness analyses

3.4.1 | The effect of correlation thresholds

The correlation threshold effect was tested by recomputing the FCS

maps with two other thresholds (r > .1 and r > .3, Figure S2a,b) and

reperforming PLSR analyses. We calculated Spearman's rank correla-

tion coefficient between the group mean FCS maps to evaluate the

effect of correlation thresholds on the FCS pattern both in the voxel

and sample levels (Figures S3a,b and S4a,b). The results of PLSR ana-

lyses based on the two FCS maps with different thresholds were

highly similar to our main findings (r > .2). Specifically, only the PLSR1

scores were significantly positively correlated with the FCS maps. The

number of significant FCS-related genes, the genes overlapping with

those in our main findings, and the variance in the FCS patterns

explained by the PLSR1 scores are shown in Tables S6–S8.

F IGURE 3 Results derived from PLSR analyses. (a) Permutation tests revealed that only the PLSR1 scores explain a significant amount of the
variance in the FCS in all six donors (explained variances at least > 29%). Purple vertical lines represent the real explained variances in each donor,
and bar plots indicate the distribution of random explained variance. (b) All donors show significantly positive correlations between PLSR1 scores
(the liner combinations of the expression matrix) and group-mean FCS values in each donor, with Pearson's correlation coefficients ranging from
0.53 to 0.63. Abbreviations: PLSR1, the first component of partial least squares regression

F IGURE 4 Biological function analysis for FCS-related genes. The GO (a) and KEGG (b) enrichment analyses show that FCS-related genes are
significantly enriched for ion channels, axon guidance pathway, and synaptic transmission processes. The color bars represent the -log10 (q value)
of BH-FDR correction. The size of the circles (biological processes), triangles (molecular functions), and rhombus (KEGG terms) represents the
gene number hit on the terms. Abbreviations: GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes
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F IGURE 5 Disease enrichment analysis for the FCS-related genes. (a) ToppGene shows the number of FCS-related genes associated with
neurodegenerative and neuropsychiatric disorders. Enrichr shows that FCS-related genes are enriched for genes with different expression
patterns in patients with neurodegenerative and neuropsychiatric diseases; the red and blue bars indicate upregulated (b) and downregulated
(c) genes, respectively. The colors indicate the significances of enrichment. These data are obtained from Gene Expression Omnibus (GEO) data

sets, and the text on the left shows the name of the disease, disease ID, species, GEO Series (GSE) ID, and sample ID for each term
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3.4.2 | The GSR effect

We recomputed the FCS maps (r > .2) without GSR (Figure S2c) and

reperformed the PLSR analysis. Spearman's rank correlation showed

that FCS maps were significantly positively correlated both in the

voxel and sample levels (Figures S3c and S4c). The PLSR results were

also highly similar to our main findings. Specifically, only the PLSR1

scores were significantly positively correlated with the FCS maps. The

number of significant FCS-related genes, the genes overlapping with

those in our main findings and the variance in the FCS patterns

explained by the PLSR1 scores are shown in Tables S6 and S9.

3.4.3 | Independent imaging data set

We replicated our main findings in another independent neuroimaging

data set with 88 subjects and recomputed the FCS maps with r > .2

and GSR. The group mean FCS patterns are shown in Figure S2d. Spe-

arman's rank correlation was utilized to evaluate the relationship

between the group mean FCS maps of our main results and indepen-

dent imaging data sets. We found that the two group mean FCS maps

were significantly positively correlated both in the voxel and sample

levels (Figures S3d and S4d). The permutation tests revealed that only

the PLSR1 scores explained a significant amount of the variance in

the FCS in all six donors (all ps < .001, Table S10). Additionally, the

PLSR1 scores were positively correlated with the sample-wise group

mean z-scored FCS values of each donor, with Pearson's correlation

coefficients ranging from 0.52 to 0.63 (Figure S5). We identified

1,603 FCS-related genes (Figure S6), of which 1,449 genes (95%)

overlapped with those in our main findings. Gene enrichment analyses

and SEA revealed that the 1,603 FCS-related genes had highly similar

functions to those in our main results (Figures S7–S9).

3.4.4 | Individual FCS map level PLSR analyses

After 600 PLSR analyses, 113 FCS-related genes were found, and all

these genes were in total in our main results.

3.4.5 | The new preprocessing pipeline for gene
expression data

According to the newly proposed pipeline for preprocessing gene

expression data, probe-to-gene reannotations resulted in 47,795 pro-

bes and 20,919 unique genes. After all the preprocessing procedures,

10,185 genes and 1,122 cortical samples were left for the PLSR ana-

lyses. We found that the gene expression profiles of the first two

components (PLSR1 and PLSR2) significantly predicted the FCS pat-

tern (r > .2 with GSR) with explanatory variances of > 26.25%, and

F IGURE 6 Specific expression analyses of the FCS-related genes. (a) Development SEA indicates that the FCS-related genes show the most
significant enrichment during young adulthood (corrected q = 2.541×10−4, pSI = .0001). (b) Brain region SEA indicates that FCS-related genes
preferentially express in the cerebral cortex (corrected q = 0.03, pSI = .0001). (c) Cell type SEA indicates that FCS-related genes have higher
expression levels in the neurons of several brain regions. The sizes of the bullseyes are scaled to the numbers of enriched genes at different
thresholds (i.e., pSI = .05 [outermost], .01 [outer], .001 [inner], and .0001 [innermost]). The bullseyes are color-coded according to the q values
(BH-FDR correction)
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> 15.12%, respectively. From these two components, we found that

1,121 genes (74%) overlapped with those in our main findings.

3.4.6 | Remove the effect of the DMN

Seventy-six and 1591 genes were significantly related to the FCS pat-

terns of DMN and non-DMN regions, respectively. Most of those

genes overlapped with the 1518 FCS-related genes, especially the

genes related to the FCS patterns of the non-DMN (63.2% [48/76]

and 85.3% [1357/1591]), indicating that our transcriptome-neuro-

imaging association analysis was not driven by the gene expression

gradient between the DMN and non-DMN regions.

3.4.7 | Parcellation effect

We obtained 1,685 FCS-related genes by using the Brodmann Atlas,

693 of which overlapped with 1,518 FCS-related genes found in

the main results. The genes were enriched in potassium ion trans-

port biological process, voltage-gated cation channel activity and

voltage-gated cation channel activity molecular function, and in

KEGG analysis, the genes were enriched in pathways similar to the

main results.

3.4.8 | Comparison with the prior publications

We found significant overlap between the 1,518 FCS-related genes

and the results in prior publications (permutation test, all ps < .05),

which indicated the reliability of our results (Table S11).

3.5 | Validation analyses

By using independent imaging data and the Brainspan atlas, we found

651 FCS-related genes overlapping with the main results. Gene func-

tional annotations revealed that the FCS-related genes had highly sim-

ilar functions to those in our main results. In the GO enrichment

analysis, these genes were enriched for the biological processes of

metal ion transport (corrected q = 2.50 × 10−2), neuronal action

potential (corrected q = 1.49 × 10−2) and monovalent inorganic cation

transport (corrected q = 1.18 × 10−2), and some ion channel activities

of molecular functions such as voltage-gated sodium channel activity

(corrected q = 2.24 × 10−3) and voltage-gated potassium channel

activity (corrected q = 5.15 × 10−3). In the KEGG pathway analysis,

similar terms of the main results were also validated. Moreover, in the

disease-related enrichment analyses, these genes were enriched for

several common neurodegenerative and neuropsychiatric disorders

and were differentially expressed in patients with these disorders

such as AD, ASD, BPD, and SCZ. Furthermore, both upregulated and

downregulated genes were found in patients with these disorders

rather than healthy populations.

4 | DISCUSSION

This transcriptome-neuroimaging association study investigated spa-

tial correlations between gene transcriptional profiles and resting-

state functional network centrality in healthy young adults. Specifi-

cally, we identified a set of genes correlated with FCS using PLSR.

The FCS-related genes were enriched for ion channels, axon guidance

pathways, and synaptic transmission processes. These genes were

preferentially expressed in cortical neurons in young adulthood and

were associated with common neurodegenerative and neuropsychiat-

ric disorders. Our results showed high robustness and large reproduc-

ibility by using a series of robustness analyses and validation analyses.

In total, 1,518 FCS-related genes were enriched for ion channels,

especially voltage-gated potassium and sodium channels, and calcium

signaling pathways. Ion channels are vital for neuronal functions, trig-

gering nerve impulses, and neurotransmitter release (Kumar, Kumar,

Jha, Jha, & Ambasta, 2016). Mutations in ion channel-related genes

are associated with diverse neuropsychiatric disorders in humans

(Kim, 2014; Pietrobon, 2002). Voltage-gated potassium channels are

widely present in the central nervous system (CNS) and are responsi-

ble for neuronal excitability (Shah & Aizenman, 2014). Abnormally

high or low neuronal excitability can lead to various neurodegenera-

tive and neuropsychiatric disorders. For example, abnormally low neu-

ronal excitability can be seen in major depressive disorder (MDD) and

AD; in contrast, attention deficit/hyperactivity disorder (ADHD), anxi-

ety, BPD, and SCZ show abnormally high neuronal excitability. Simi-

larly, voltage-gated sodium channels are also broadly present in the

CNS (Eijkelkamp et al., 2012) and are linked to neuronal excitability,

with their dysfunction being implicated in brain disorders such as SCZ

(Rees et al., 2019), AD (Verret et al., 2012) and ASD (Weiss

et al., 2003). Moreover, the calcium signaling pathway also plays a piv-

otal role in neurodegenerative and neuropsychiatric disorders. For

example, in AD, Aβ aggregation can increase neuronal cytosolic cal-

cium concentrations and further trigger synaptic dysfunction and neu-

rodegeneration (Alzheimer's Association Calcium Hypothesis

Workgroup, 2017). Furthermore, GWAS have indicated that genetic

variations associated with the calcium signaling pathway can increase

the risk of developing five major psychiatric disorders: ASD, ADHD,

BPD, SCZ, and MDD (Cross-Disorder Group of the Psychiatric Geno-

mics Consortium, 2013). FCS-related genes were also enriched for

axon guidance pathways. Directing axon growth and elongation dur-

ing development and regulating the structural plasticity of synaptic

connections in adults rely heavily on axon guidance pathway proteins

encoded by axon guidance genes. Common variants of axon guidance

pathway genes (Hollingworth et al., 2011) or alterations in their

expression profiles have been found to contribute to the pathogenesis

of AD (Antonell et al., 2013; Simon et al., 2009) and ASD (Melin

et al., 2006; Suda et al., 2011). The role of these genes in FCS abnor-

malities in these disorders needs to be further elucidated.

FCS-related genes were also enriched for synaptic transmission

and plasticity. Synaptic transmission is important for information

exchange between neurons, which depends on neurotransmitter sys-

tems. Changes in the synaptic plasticity of dopamine neurons may
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affect dopamine release (Slifstein et al., 2015). Dopamine is one of the

most important neuromodulators regulating circuit function and plas-

ticity (Tritsch & Sabatini, 2012), including neurotransmitter release,

postsynaptic sensitivity to neurotransmitters, and the membrane

excitability of pre- and postsynaptic cells. Dopaminergic neurotrans-

mission dysfunction has been found to be involved in the pathogene-

sis of several psychiatric and neurological disorders (Ko &

Strafella, 2012) such as MDD (Pogarell et al., 2006), AD (Nobili

et al., 2017), and SCZ (Chuhma, Mingote, Kalmbach, Yetnikoff, &

Rayport, 2017). Glutamate is one of the major excitatory neurotrans-

mitters in the mammalian CNS and is involved in numerous neuronal

functions, including synaptic transmission (Pittenger, Bloch, &

Williams, 2011). This role is consistent with previous findings that

mutations and expression abnormalities in genes encoding glutamate

and glutamatergic receptors are associated with ASD (Leblond

et al., 2014; Rabaneda, Robles-Lanuza, Nieto-Gonzalez, & Scholl,

2014), ADHD (Miladinovic, Nashed, & Singh, 2015) and SCZ (Zhou

et al., 2016). Long-term potentiation and long-term depression are

two forms of synaptic plasticity and are substrates for learning and

memory in the brain (Anggono & Huganir, 2012; Collingridge, Peineau,

Howland, & Wang, 2010; Pignatelli & Bonci, 2015). Thus, the genes

associated with synaptic plasticity have been linked to many brain

disorders.

FCS-related genes were preferentially expressed during young

adulthood, which is the late developmental stage of the cerebral cor-

tex and a period in which the risk for many neuropsychiatric disorders

increased. Brain tissue expresses more alternatively spliced transcripts

than other tissues at this stage (Yeo, Holste, Kreiman, & Burge, 2004),

which is one of the biological mechanisms for generating the complex-

ity and function of the transcriptome in the brain and is involved in

numerous neuropsychiatric disorders (Licatalosi & Darnell, 2006). This

theory is supported by the findings of the disease-related enrichment

analysis in that these genes were enriched in several neuropsychiatric

disorders (such as SCZ, MDD, and BPD), with a higher incidence at

this stage (Argyelan et al., 2014; Filippi et al., 2017; Guo et al., 2015;

Khan et al., 2013).

Several limitations need to be considered when interpreting our

results. First, the gene expression data and neuroimaging data were

not collected from the same participants. However, comparative stud-

ies have shown a high degree of conservation in overall gene expres-

sion across human populations (Stranger et al., 2007), and the

resulting FCS-related genes should be considered those with high

conservation across subjects. Second, the gene expression data were

derived from six adult brains from donors of different ages, ethnicities,

sexes, medical histories, and causes of death, which may have led to

variance in transcriptome profiles and could have further influenced

our results. Third, transcriptional activity in the AHBA was measured

by microarray (the relative levels of gene expression were measured

in a tissue sample), which is limited to known gene sequences and is

prone to background noise. In addition, the expression levels of the

bulk tissue samples might be influenced by the cellular composition.

These factors might confound the transcription-neuroimaging associa-

tions. Fourth, the different preprocessing procedures for the gene

expression data may have impacted the resulting FCS-related

genes, and although the proposed pipeline has several merits, only

including a single cerebral hemisphere may introduce biases from

functional connectivity and gene expression asymmetries across

the two hemispheres (Hawrylycz et al., 2012; Pletikos et al., 2014;

Sun et al., 2005). Therefore, we did not use the newly proposed

preprocessing pipeline for our main analysis. In addition, the reli-

ability of our findings is supported by the 74% overlap in the FCS-

related genes with the two pipelines for preprocessing gene

expression data. Fifth, the sample sizes of image data in our study

were small due to the heavy calculation burden (voxel size:

2 × 2 × 2 mm3). Our results are preliminary, and a larger sample is

needed to verify this association in the future. Sixth, although

there is an improved gene set enrichment analysis method

(https://doi.org/10.1101/2020.04.24.058958), the codes in this

paper now only support univariate analysis (e.g., Pearson or Spear-

man analysis) and cover only biological processes of GO terms. In

the future, we will test the PLSR results using this method. Finally,

although we identified a set of genes associated with FCS, this

relationship is correlational rather than causative. Our results need

to be validated by animal experiments in the future.

5 | CONCLUSIONS

This transcription-neuroimaging association study identified that the

expression profiles of a set of genes, especially those involved in pro-

cesses related to ion channels, the axon guidance pathway, and syn-

aptic transmission, are related to FCS. These findings provide new

insight into the biological substrates underlying intrinsic functional

network centrality.
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