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Functional connectivity (FC) analysis with data collected as continuous tasks and activation analysis using data from block-design
paradigms are two main methods to investigate the task-induced brain activation. If the concatenated data of task blocks extracted
from the block-design paradigm could provide equivalent FC information to that derived from continuous task data, it would
shorten the data collection time and simplify experimental procedures, and the already collected data of block-design paradigms
could be reanalyzed from the perspective of FC. Despite being used in many studies, such a hypothesis of equivalence has not yet
been tested from multiple perspectives. In this study, we collected fMRI blood-oxygen-level-dependent signals from 24 healthy
subjects during a continuous task session as well as in block-design task sessions. We compared concatenated task blocks and
continuous task data in terms of region of interest- (ROI-) based FC, seed-based FC, and brain network topology during a short
motor task. According to our results, the concatenated data was not significantly different from the continuous data in multiple
aspects, indicating the potential of using concatenated data to estimate task-state FC in short motor tasks. However, even under
appropriate experimental conditions, the interpretation of FC results based on concatenated data should be cautious and take the
influence due to inherent information loss during concatenation into account.

1. Introduction

In the past few decades, fMRI has been widely used in various
fields of brain science. The initial use of fMRI was to identify
the brain regions related to specific mental behaviors by
task-related activation analysis [1–3]. Furthermore, advances
in fMRI have resulted in numerous studies focusing on
temporal correlations between different brain regions and
such correlations were interpreted as functional connectivity
(FC) [4–8]. FC estimated from resting-state fMRI (i.e., no
task engagement) is dominating this field [9–11]. Neverthe-
less, FC during task state is also a promising topic and has

been used to investigate how task loads modulate functional
brain organization [12–15]. For example, in working memory
system, increasingly negative correlations emerged in the
dorsal region of the posterior cingulate cortex during steady-
state N-back task [16]. In motor system, the motor-related
network was reported to be modulated during voluntary
movements based on fMRI [12] and MEG [17]. In addition,
the FC strength was related with the rate of finger tapping in
key regions of themotor network [18]. In addition to working
memory andmotor systems, regions engaged in auditory [19]
and visual [20, 21] functions also demonstrated modulated
FC during corresponding tasks. These findings suggested
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that task-state FC is a promising method to investigate the
task-induced modulations of functional brain networks and
can be further applied to the research of neurological and
psychological diseases.

Given the noisy and uncomfortable environment inside
the fMRI scanner, it is not easy for the subjects, especially
patients, to keep performing a task for several minutes
without rest in order to acquire a continuous task suitable
for traditional FC analysis. Thus, if it is possible to use
block-design paradigms to collect the data and then estimate
the task-state FC based on the concatenated task data from
multiple task blocks, both activation analysis and FC analysis
could be done based on the same block-design session,
which would reduce the data collection time and simplify the
procedures. In addition, more work regarding task-state FC
could be done based on the existing large amount of block-
design task datasets obtained in previous studies.

Studies with FC estimated from concatenated rest blocks
of block-design fMRI experiment have been reported [22–
24]. Salvador and colleagues reported that the concatenated
rest blocks were able to yield similar correlation profiles
to those of continuous rest data [25]. In addition, another
study found similar correlation patterns between rest blocks
of block-design data and continuous rest data for premotor
cortex despite some differences [26]. In particular, Fair and
colleagues found that the FC for the interleaved resting-state
data taken from block-design task was both qualitatively and
quantitatively similar to that of continuous rest data [22]. For
task-state FC, it has been reported that the task-state FC and
network were jointly shaped by the intrinsic network archi-
tectures represented by intrinsic resting-state FC and evoked
network architectures represented by activation pattern [27–
30], which makes task-state FC more complex than resting-
state FC.Thus, there is no guarantee that data splicing, which
did not induce significant differences between continuous
resting-state FC and FC estimated from concatenated resting-
state data, would not induce differences between task-state
FC estimated from concatenated task blocks and continuous
task data. To the best of our knowledge, the similarity of task-
state FC between concatenated task blocks and continuous
task data has not yet been examined, although studies have
already used concatenated task blocks to estimate task-state
FC and brain networks [31–35]. Furthermore, previous stud-
ies only examined the similarity of seed-based resting-state
FC. Region of interest- (ROI-) based FC and brain network
topology could provide more comprehensive information
regarding the underlying brain activities during tasks.There-
fore, in addition to seed-based FC, the similarities of ROI-
based FC and brain network topology between concatenated
task blocks and continuous task data are also worthy of
investigation.

With the above considerations, blood-oxygen-level-
dependent (BOLD) signals collected from 24 healthy subjects
were used to make comparisons between concatenated task
blocks and continuous task data from several perspectives,
including ROI-based FC, seed-based FC, and brain network
topology. In this study, the collected continuous task data
was longer than the concatenated task blocks. Considering
that data length was reported to be critical in FC estimation

[36–39], we used a continuous task data segment with iden-
tical length to the concatenated task blocks in comparison to
ensure that the results would not be affected by mismatched
data length. Furthermore, as nonstationarity of FC across
time has already been reported [37, 40, 41], comparisons were
performed between concatenated task blocks and several
continuous task data segments extracted by slidingwindow to
test the robustness of comparisons regarding nonstationarity
of FC. Our results are expected to provide suggestions
regarding whether it would be appropriate to completely
substitute continuous task data by concatenated task blocks.

2. Materials and Methods

2.1. Participants. Twenty-four healthy right-handed volun-
teers (male/female: 12/12; age: 53.8 ± 5.3 years) were enrolled
in this study. All participants provided written informed
consent and procedures were reviewed and approved by
the Ethics Committee of Shanghai Second People’s Hospital,
Shanghai, China.

2.2. Experiment Design. The fMRI experiment for each sub-
ject consisted of two sessions. In the continuous task session,
subjects were instructed to keep performing hand closing
and opening (HCO) one time per second paced by the cues
displayed on the screenwith indicated hand for 4minutes and
20 seconds.The second session was a block-design paradigm
consisting of six rest blocks alternated with five HCO task
blocks, preceded by 8 sec of preparing period. Each block
lasted for 20 sec. At the rest block, subjects were instructed
to remain motionless, relaxing, and awake; while in HCO
task block, subjects were opening and closing the indicated
hand one time per second paced by the cues. Fifteen subjects
using their left hands in continuous task session and block-
design session were regarded as left hand group (LHG).
The other nine subjects who were using their right hands
in continuous task session and block-design session were
regarded as right hand group (RHG). Subjects were randomly
instructed to use left/right hand. The whole experimental
procedure was monitored by a physician to ensure that the
subjects performed the task correctly.

2.3. Image Acquisition. All images were acquired by a 3.0 T
Signa Excite GemseMRI system (GEHealthcare, Milwaukee,
WI, USA) at Ruijin Hospital. The head of the subject was
snugly fixed by a foam pad to reduce head movements and
motion-induced noise. 3D structural MRI was acquired from
each subject using a T1-weighted MPRAGE sequence (TR =
5.6ms; TE = 1.7ms; flip angle = 12∘; matrix size = 256 × 256;
voxel size = 1 × 1 × 1mm3), yielding 196 contiguous sagittal
slices (1mm thick) covering thewhole brain. BOLDdatawere
acquired with the same EPI sequence (TR = 2000ms; TE =
30ms; flip angle = 90∘; matrix size = 64 × 64; voxel size = 3.75
× 3.75 × 4mm3) for all subjects.

2.4. Data Preprocessing. For both continuous task session
and block-design session, identical preprocessing procedures
were performed using SPM8 (Wellcome Trust Centre for
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Figure 1: A schematic diagram for extracting task blocks from
block-design session. A temporal shift of 2 volumes was adopted for
the hemodynamic delay.

Neuroimaging, University College London, London, UK)
and scripts from the DPARSFA toolbox [42]. The data of
the first 8 sec (4 volumes) were abandoned to avoid the
magnetization equilibrium effects and also allow the subjects
to get ready for the experiments. The remaining fMRI data
were spatially realigned to the mean image, slice-timing
corrected using the middle slice as the reference frame,
detrended, and high-pass filtered (>0.01Hz). In addition, the
fMRI data were coregistered with each subject’s anatomical
data.The anatomical imageswere then segmented [43]. Based
on the deformation field obtained from segmentation step,
theAutomatedAnatomical Labeling (AAL) atlas [44]with 116
ROIs and themotor-related keyROIswerewarped to subject’s
native brain space and the representative BOLD time course
for each ROI was estimated in the native brain space. After
that, nuisance covariates including Friston 24 parameters
of head motion [45], white matter, and cerebrospinal fluid
signals were regressed out from the representative BOLD
time courses. In addition, the autocorrelationwas removed by
a first-order autoregressive model using scripts from SPM8.

2.5. Extraction of Task Blocks Data. In order to estimate the
FC based on concatenated task blocks, we extracted the task
blocks from the block-design session. Due to neurovascular
coupling, the hemodynamic response is delayed compared
with neural activities. Thus, following previous study [22],
each task block was shifted by 2 volumes; that is, two volumes
immediately after the start of each task block were excluded
and the starting two volumes of the following rest block were
included. After that, the five task blocks were concatenated
for further analysis (100 sec, 50 volumes; Figure 1). Note that
the concatenated task blocks are referred to as concatenated
data hereafter.

2.6. ROI-Based FC Analysis. In order to compare the ROI-
based FC and the brain network topology based on con-
tinuous data with those estimated from concatenated data,
ROI-based FC analysis was performed for both continuous
data and concatenated data. In this study, the length of
concatenated data was 100 sec (50 volumes), while the total
length of continuous data collected was 250 sec. Considering
that data length was reported to be critical in FC estimation
and the comparison of functional connectivity should be per-
formed under matching data lengths [36–39], we extracted

continuous data segments of 100 sec for comparison so as
to ensure that the comparison would not be affected by
mismatched data length. In order to take the temporal non-
stationarity of BOLD signal into account, four data segments
of 100 sec were selected from thewhole continuous data using
sliding windows with 50% overlap and the four continuous
data segments were denoted as continuous segments 1, 2,
3, and 4, respectively (i.e., continuous segment 1: 1–100 sec;
continuous segment 2: 50–150 sec; continuous segment 3:
100–200 sec; continuous segment 4: 150–250 sec). For each
subject, Pearson’s correlation coefficients of all pairs between
116 ROI time courses were calculated and then were r-to-
z transformed by Fisher’s transformation, resulting in a 116
× 116 association matrix for each data segment, including
concatenated data and the four continuous segments.

2.7. Topological Analysis of Brain Networks. In order to com-
pare the brain network topology estimated from continuous
segments and concatenated data, the association matrices
were converted into adjacency matrices by eliminating the
entries, which were smaller than the preset thresholds. The
thresholds were selected according to the predefined sparsity,
which was defined as the ratio of the existing edge number
over the maximum possible number of edges in a network.
In order to eliminate the effects of the selection of sparsity,
adjacency matrices with sparsity ranging from 0.1 to 0.5 with
a sparsity increment of 0.02 for each association matrix were
examined. The selection of sparsity range was based on two
considerations, which were the following: (1) the average
degree of the functional brain networks should not be smaller
than 2 × ln(𝑁) to apply graph theory [46]; (2) in order to
reduce the false discovery rate, the sparsity should be as small
as possible [24]. Based on the adjacency matrices, clustering
coefficient (CC) and characteristic path length (Lambda),
whichwerewidely used to evaluate the functional segregation
and integration of brain networks, were calculated for both
concatenated data and continuous segments [47, 48]. In
order to account for the variability across different scanning
sessions and subjects, the CC and Lambda were normalized
by comparing the values of parameters with the correspond-
ing average values across 50 random graphs with preserved
degree distribution [49].

2.8. Seed-Based FC Analysis. In addition to the ROI-based
FC and brain network topology, the continuous segments and
concatenated data were also compared from the perspective
of seed-based FC. Since subjects were performing HCO
during continuous task session and task blocks, seed ROIs
were defined as spheres of radius of 20mm centered on
coordinates 𝑥 = ±38, 𝑦 = −26, and 𝑧 = 56, representing
contralateral hand part of primary motor area (M1) for
LHG and RHG, respectively [50, 51]. After that, a voxel-wise
FC map (covering all voxels of brain) was created for the
corresponding seed ROI by calculating Pearson’s correlation
coefficient (r-to-z Fisher’s transformation applied) between
the seed time course and the time course of each voxel for
both concatenated data and continuous segments of each
subject.
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2.9. Comparison between Continuous Data and Concatenated
Data. To examine whether the concatenated data was able
to provide similar information as the continuous data, com-
parisons were performed between each continuous segment
and concatenated data from perspectives of ROI-based FC,
the brain network topology, and the seed-based FC map.
For ROI-based FC, three measurements were estimated for
comparison. The first one was the number of significantly
shifted ROI-based FCs obtained by paired 𝑡-test between
continuous segment and concatenated data. The second one
was the similarity (measured through Pearson’s correlation)
of association matrices between continuous segment and
concatenated data.The last one was the overlap ratios of adja-
cency matrices under ranging sparsity between continuous
segment and concatenated data.Theoverlap ratiowas defined
as the ratio of the number of overlapped FCs between two
data segments over the total number of FCs under specific
sparsity.With respect to brain network topology, comparison
was performed by paired 𝑡-test between continuous segment
and concatenated data for normalized CC and Lambda under
ranging sparsity. For seed-based FC, paired 𝑡-test was per-
formed to identify voxels with significantly changed FC to the
corresponding seed. In addition, the similarity of seed-based
FCmaps between continuous segment and concatenated data
was estimated through Pearson’s correlation for each subject.

In order to examine whether the similarity between
concatenated data and continuous data was high enough, a
reference of similarity is needed. If the similarity between
the concatenated data and continuous segment is at the same
level of the reference of similarity, it could be concluded that
the continuous data can be substituted by concatenated data
in FC analysis. The optimal reference of similarity would
be the similarity of continuous segment with another data
segment selected from the same session, as they are assumed
to be statistically interchangeable in fMRI studies. Thus,
a 100 sec-long reference continuous segment was extracted
from the continuous task session to calculate the reference of
similarity. Since four continuous segments were used in com-
parison, four reference continuous segments were extracted
correspondingly. There were two criteria for the selection of
reference continuous segments, which were the following: (1)
there should be no overlap between the continuous segment
and corresponding reference continuous segment; (2) the
reference continuous segment should be temporally farthest
away from continuous segment. Thus, continuous segment 4
was regarded as the reference continuous segment for both
continuous segments 1 and 2, while continuous segment
1 was regarded as the reference continuous segment for
both continuous segments 3 and 4. The similarity between
each pair of reference continuous segment and continuous
segment was calculated in terms of association matrices,
overlap ratios of adjacency matrices, and seed-based FC
maps and further compared with the similarities between
corresponding continuous segment and concatenated data.

In addition, estimation of FC is sensitive to data length
as the variance increases when data length shrinks [36–
39]. Therefore, we also performed comparisons between
reference pair and comparison pair with data segments of
80 sec (40 volumes) and 60 sec (30 volumes), respectively, for

ROI-based FC and seed-based FC to see whether the data
length would affect our findings. For data segments of 80 sec,
five continuous segments and five reference continuous seg-
ments were extracted from continuous task data, respectively.
With respect to data segments of 60 sec, seven continuous
segments and seven reference continuous segments were
extracted, respectively. The reference continuous segments
were selected according to the two criteria used above.

3. Results

3.1. ROI-Based FC. With respect to ROI-based FC, paired
𝑡-tests were performed to identify significantly changed FC
between continuous segments and concatenated data. With
respect to all four continuous segments, the comparison
between continuous segment and concatenated data resulted
in no significantly changed FC for both LHG and RHG
after multiple comparison correction by FDR. In addition,
the similarity of association matrices between continuous
segment and concatenated data was estimated for each
subject. For all subjects in LHG and RHG, the association
matrices of all four continuous segments were significantly
correlated with those of concatenated data (𝑝 < 0.001).
Hereafter, the illustrations of results were mainly based on
continuous segment 4. Figure 2 illustrates the results of
correlation analysis based on continuous segment 4 for a
typical subject in LHG (Figure 2(a)) and a typical subject in
RHG (Figure 2(b)). However, by comparing the similarity of
comparison pair (i.e., continuous segment and concatenated
data) with that of reference pair (i.e., continuous segment
and reference continuous segment), mixed ANOVAwith one
within-subject factor PAIR (comparison pair versus reference
pair) and one between-subject factor GROUP (LHG versus
RHG) suggested that the similarity of reference pair was
significantly greater than that of comparison pair for all four
continuous segments in both groups (Figure 3).

With respect to the overlap ratios of adjacency matrices,
the overlap ratios in reference pair were significantly greater
(FDR corrected, 𝑝 < 0.05) than those in comparison pair
under all ranging sparsities in LHG (Figure 4(a)) and most
ranging sparsities in RHG (Figure 4(b)). Figure 4 illustrated
the results of continuous segment 4 and the results of other
three continuous segments were similar.

3.2. Brain Network Topology. For brain network topology,
normalized CC and Lambda of brain networks were com-
pared between continuous segments and concatenated data
in both groups, respectively. No significant difference was
found for both measures at sparsity ranging from 0.1 to 0.5
for continuous segment 4 (Figure 5), and the results of other
three continuous segments were similar, which suggested
that there was no substantial difference of network topology
between continuous data and concatenated data.

3.3. Seed-Based FC Map. For both LHG and RHG, one
group-level seed-based FC map was obtained by one-sample
𝑡-test (FDR corrected, 𝑝 < 0.05) for continuous segments
(Figures 6(a) and 6(c) illustrated the FC map of continuous
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Figure 2: Scatter plots of FC strength for continuous segment 4 and concatenated data for a typical subject in LHG (a) and a typical subject
in RHG (b). There are a total of 6670 FCs between 116 nodes (i.e., ROIs), and each circle represents one FC.
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Figure 3:The similarities of association matrices (r-to-z transformed) in comparison pair as well as those in reference pair in LHG and RHG
for four continuous segments. Error bars denote the standard deviation across subjects.

segment 4) and concatenated data (Figures 6(b) and 6(d)). In
addition, paired 𝑡-tests were used to identify the differences
of seed-based FC maps between continuous segments and
concatenated data and no voxel with significantly changed
FC with seed ROI was identified after multiple comparison
correction (FDR corrected, 𝑝 < 0.05) in any of the four
continuous segments. In addition, the similarity of group-
level seed-based FCmaps between continuous segment 4 and
concatenated data as calculated by Pearson’s correlation was
significant for both LHG (R = 0.78; 𝑝 < 0.001) and RHG (R
= 0.71; 𝑝 < 0.001).

In addition to the similarity between group-level seed-
based FC maps, the similarities of seed-based FC maps
in comparison pair were compared with similarities of the
reference pair for four continuous segments. For all four
continuous segments, mixed ANOVA suggested that the
similarities in reference pair were significantly greater than
those in comparison pair in both groups (Figure 7).

3.4. Comparisons under Different Data Segment Length.
Mixed ANOVA was also used to examine the main effects of
within-subject factor PAIR (comparison pair versus reference
pair) for data segments of 60 sec and 80 sec, respectively.
These results, as well as the case of 100 sec, are listed in
Table 1. For ROI-based FC, just like the results based on
data length of 100 sec, the similarity in comparison pair was
significantly smaller than reference pair for most continuous
segments in both groups under data segment lengths of 60 sec
and 80 sec, respectively (Table 1). However, for seed-based
FC, no significant differences between comparison pair and
reference pair were identified for most continuous segments
for these data lengths (Table 1).

4. Discussion

In this study, we compared the concatenated data with
continuous segments from the perspectives of ROI-based FC,



6 Computational and Mathematical Methods in Medicine

Left hand group

Comparison pair
Reference pair

∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
O

ve
rla

p 
ra

tio

30 4020 5010
Sparsity (%)

(a)

Comparison pair
Reference pair

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Right hand group

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ve

rla
p 

ra
tio

20 30 40 5010
Sparsity (%)

(b)

Figure 4: The overlap ratios of adjacency matrices for comparison pair as well as those for reference pair under sparsity from 0.1 to 0.5 with
an increment of 0.02 in LHG (a) and RHG (b) for continuous segment 4. Error bars denote the standard deviation across subjects. Asterisk
(∗) denotes that the overlap ratio for reference pair is significantly greater (FDR corrected, 𝑝 < 0.05) than that for comparison pair under the
sparsity.

Table 1: Main effect of PAIR (comparison pair versus reference pair) of mixed ANOVA used in similarities comparison of ROI-based FC and
seed-based FC.

Data length Segment number ROI-based FC Seed-based FC
𝐹 value 𝑝 value 𝐹 value 𝑝 value

50 TRs
(100 s)

1 21.772 <0.001∗∗∗ 10.671 0.004∗∗

2 48.276 <0.001∗∗∗ 14.020 0.001∗∗

3 22.726 <0.001∗∗∗ 6.798 0.016∗

4 19.971 <0.001∗∗∗ 8.850 0.007∗∗

40 TRs
(80 s)

1 7.620 0.011∗ 4.690 0.041∗

2 16.659 <0.001∗∗∗ 4.225 0.052
3 17.730 <0.001∗∗∗ 3.696 0.068
4 10.880 0.003∗∗ 2.520 0.127
5 15.341 0.001∗∗ 4.372 0.048∗

30 TRs
(60 s)

1 1.768 0.197 5.783 0.025∗

2 3.445 0.077 2.427 0.134
3 9.656 0.005∗∗ 1.834 0.189
4 12.651 0.002∗∗ 2.226 0.150
5 5.248 0.032∗ 3.443 0.077
6 5.299 0.031∗ 1.736 0.201
7 9.734 0.005∗∗ 2.004 0.171

∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, and ∗𝑝 < 0.05.

seed-based FC, and brain network topology to investigate
whether it would be appropriate to substitute continuous
task-state data by concatenated task-state datawhenperform-
ing FC analysis.

With respect to the ROI-based FC, no significantly
changed FC was found between continuous segments and

concatenated data for both groups. In addition, there were
no differences between seed-based FC maps of continuous
segments and concatenated data. When considering the
brain network topology, the normalized CC and Lambda
of concatenated data were not significantly different from
those of continuous segments for both groups (Figure 5).
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Figure 5: The normalized CC and Lambda of continuous segment 4 and concatenated data in LHG ((a) and (c)) and RHG ((b) and (d)),
respectively. Error bars denote the standard deviation across subjects.

These results suggested that the concatenated data was not
significantly different from the continuous segments in terms
of ROI-based FC, seed-based FC, and brain network topol-
ogy, indicating the feasibility of using concatenated data to
estimate FC and brain network statistics, which is in line with
studies simulating continuous resting-state data by concate-
nated resting-state blocks [22, 23]. Previous studies reported
that the intrinsic network architectures as represented by
intrinsic brain activities and evoked network architectures
represented by activation pattern jointly shaped the task-
state FC and network organization [27–30]. Therefore, the
lack of significant differences between continuous segments
and concatenated data suggested that the splicing might

not dramatically affect the expressions of intrinsic network
architecture as well as evoked network architectures, and
the information lost during splicing would not result in
significant distortions in terms of ROI-based FC, seed-based
FC, and brain network topology.

However, a lack of significant differences between con-
tinuous segments and concatenated data does not necessarily
suggest that continuous data can be completely substituted
with concatenated data in performance of FC analysis with-
out taking the influences of concatenation into account.
According to the correlation analysis between continuous
data and concatenated data, though the correlation is sig-
nificant (Figure 2), we cannot draw conclusions from it
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region (𝑥 = ±38, 𝑦 = −26, and 𝑧 = 56), indicated by a green sphere, with cool color for negative FC. 𝑅 values and 𝑝 values ((a) versus (b) and
(c) versus (d)) indicate that the similarities between the seed-based FC maps of continuous segment 4 and concatenated data are significant.
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Figure 7:The similarities of seed-based FCmaps (r-to-z transformed) in comparison pair as well as those in reference pair in LHG and RHG
for four continuous segments. Error bars denote standard deviation across subjects.

alone as it may only indicate that overall similarities of net-
work architectures and the significant correlations observed
might instead be due to a large number of data points.
In order to further test whether the continuous data can
be substituted by concatenated data, we extracted another

reference continuous segment from the same session under
the assumption that two data segments from one session are
statistically interchangeable. Our results demonstrated that
the similarities in comparison pair were significantly smaller
than those in reference pair in terms of association matrices
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(Figure 3), overlap ratios of adjacency matrices (Figure 4),
and seed-based FC maps (Figure 7). So, even though the
information lost during splicing did not dramatically affect
expressions of intrinsic and evoked network architectures,
its influences on expressions of network architectures still
existed. Three arguments may account for the difference
between comparison pair and reference pair. (1) The influ-
ences might be due to the formation of the concatenated
data. It has been reported that the task-state network and
FC were jointly shaped by the intrinsic network architectures
represented by intrinsic brain activities and evoked network
architectures represented by activation pattern [27–30]. The
extracted task blocks used in this study were only 20 sec long,
which inherently ignores the information in low frequency
range, where intrinsic brain activities were prominent [4, 9].
Thus, the information loss of intrinsic brain activities due
to splicing would likely affect the expression of intrinsic
network architectures and further resulted in the reduced
similarity in comparison pair than in reference pair. (2)
In addition, since the reference pair was extracted from
the same session, while the comparison pair was from
two separate sessions, intersession differences might also
contribute to the reduced similarity of comparison pair [52,
53]. (3) Another cause of reduced similarity of comparison
pair may be distinct conditions of subjects between contin-
uous task and block-design task. The continuous task was
relatively long, which might cause tiredness and inattention
of subjects, while the block-design with shorter task blocks
and rest blocks would allow subjects to recover and keep
attention.

Numerous studies have reported the nonstationarity of
FC and network architectures, which are subject to change
over time [37, 40, 41]. Our study shows that data segments
of reference pair had differences in terms of association
matrices, overlap ratios of adjacency matrices, and seed-
based FC maps, which are consistent with the findings of
above studies. Taking the nonstationarity of FC into account,
we also performed comparisons based on the four continuous
segments, which were generated by sliding window with
50% overlap. For all the continuous segments, the results
were similar, suggesting that our findings were robust to
the nonstationarity of FC during continuous data. With
respect to data segment length, the inconsistent results of
seed-based FC under data segment length of 60 sec and
80 sec compared with those under data segment length of
100 sec might be due to the increased variance introduced
by shortened data lengths. Note that the seed-based FC was
obtained by voxel-wise estimation, which is more suscep-
tible to this increased variance, while estimation of ROI-
based FC is based on ROI-representative BOLD time series
obtained by averaging the voxel BOLD time series within
the ROI, which reduces the noise of the representative
BOLD time series and therefore offsets the increasing of
variance. Therefore, the results of ROI-based FC under data
length of 60 sec and 80 sec were consistent with those under
data length of 100 sec, while the results of seed-based FC
were not.

In addition to concatenation, previous studies also
extracted resting-state activities from block-design task data

by adopting the general linear model (GLM) to regress
out the effect of task and estimate the resting-state FC
using the residuals. However, the GLM method was not
observed to be as effective as the concatenation method
according to the results of Fair et al. [22]. The authors
attributed this difference to the nonlinearity of task effects
on the intrinsic brain activities and thus the GLM was not
able to effectively remove the task effects [20, 54]. For the
application of GLM method on task-state FC estimation
based on block-design task data, another shortcoming was
that task-state FC and network were reported to be jointly
shaped by the intrinsic network architectures represented by
intrinsic resting-state FC and evoked network architectures
represented by activation pattern [27–30]. Thus, using GLM
to extract only the evoked brain activities from block-design
task data to estimate task-state FC would ignore the intrinsic
network architectures, resulting in significant differences
from the task-state FC based on continuous task data. There-
fore, it was reported that the concatenation was a superior
method to estimate task-state FC based on block-design task
data.

There were several limitations of this study. First, the
time length of block-design session may not have been
sufficient, though previous studies suggested that 100 sec was
long enough to estimate reliable FC [37, 39]. Longer block-
design session would result in longer concatenated data,
which would enable a more comprehensive comparison of
FC. Second, our study mainly focused only on the feasibility
of concatenation in a motor task, which limited the direct
interpretation of our results to motor function. More studies
with tasks involving function of other cognitive domains
should be done to verify whether a similar procedure can be
validated for use in other tasks.

5. Conclusions

In this study, concatenated data were compared with con-
tinuous data in perspectives of ROI-based FC, seed-based
FC, and brain network topology during a short motor task.
According to our results, the concatenated data were not
significantly different from the continuous data in multiple
respects, indicating the potential of using concatenated data
to estimate FC and brain networks for short motor tasks.
However, since the similarities in comparison pair were
significantly smaller than those in reference pair in terms
of association matrices, overlap ratios of adjacency matrices,
and seed-based FC maps, the interpretation of FC results
based on concatenated data should be done cautiously and
taking the influences caused by concatenation and the task
type employed into account.
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