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Abstract: The clinical need for effective bone regeneration therapy remains in huge demands.
However, the current “gold standard” treatments of autologous and allogeneic bone grafts may
result in various complications. Furthermore, safety considerations of biomaterials and cell-based
treatment require further clarification. Therefore, developing new therapies with stronger osteogenic
potential and a lower incidence of complications is worthwhile. Recently, exosomes, small vesicles
of endocytic origin, have attracted attention in bone regeneration field. The vesicles travel between
cells and deliver functional cargoes, such as proteins and RNAs, thereby regulating targeted cells
differentiation, commitment, function, and proliferation. Much evidence has demonstrated the
important roles of exosomes in osteogenesis both in vitro and in vivo. In this review, we summarize
the properties, origins and biogenesis of exosomes, and the recent reports using exosomes to regulate
osteogenesis and promote bone regeneration.
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1. Introduction

In the clinic, lack of bone regeneration may result in a poor prognosis, even in common bone
fractures. It has been reported that approximately 2% to 10% of bone fractures may develop non-union
due to insufficient bone growth [1], and patients suffer from disabilities and may even have a shorter
life expectancy as a result. The surgical removal of carcinomas is another major cause of insufficient
bone regeneration, especially in patients with cancer-related bone metastasis [2]. Additionally,
a higher incidence of obesity results in more pronounced musculoskeletal illnesses and decreased
bone regeneration [3]. The ageing of the population exacerbates this situation. Aging not only results
in a higher bone fracture risk due to loss of bone density but also diminishes the capability of bone
regeneration [4]. Therefore, how to promote bone regeneration, especially in patients with large bone
defects, remains a major challenge for the clinicians.

The current “gold standard” treatment in the clinical settings promotes bone regeneration through
the use of autologous and allogeneic bone grafting. However, approximately 20%–30% of patients
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who undergo autologous bone grafts suffer from morbidity at the graft-harvesting site [5]. Moreover,
autologous bone grafts cannot provide patients with large defects with sufficient bones [6]. After an
allogeneic bone grafts, over 30% of patients suffer from complications, including fracture, non-union,
and infection [7]. Allogeneic bone grafts may also result in graft-versus-host disease (GVHD) [8].
In addition, in cases in which patients received successful bone grafts, the recovery is time-consuming,
up to one and half years [9]. Therefore, neither of these two options is the optimal, because they are
expensive, uncomfortable for the patients, and have high risks of complication.

Biomaterials and the cell-based therapies are two major research fields in bone regeneration.
However, there are some drawbacks to both treatments. The toxicity and immunogenicity of
biomaterials may culminate in severe complications. Cell-based therapy is closely related to tumor
and emboli formation [10]. Today, exosomes, ranging in size from 50–120 nm [11], with fewer safety
considerations and powerful pro-osteogenesis abilities, provide researchers with a novel way to
stimulate bone regeneration. This type of vesicles is endocytic origin and released by various cells
and organs. Exosomes deliver various content [12], including DNAs, RNAs and proteins and are
widely distributed, and are especially enriched in breast milk, semen, saliva, urine and sputum [13].
Exosomes can effectively stimulate regeneration in tissues and organs, including the heart, lung, liver
and kidney. Small vesicles can also stimulate bone regeneration in vitro and in vivo. The good bone
specificity and powerful bone regenerative properties make exosomes a potential treatment to enhance
bone growth and to treat clinical bone diseases.

2. Bone Regeneration Requires the Coordination of Various Cells

Understanding bone biogenesis is a precondition for developing novel approaches to stimulate
bone regeneration. Osteoblasts, osteoclasts and chondrocytes are the major cells involved in bone
regeneration. The bone may regenerate in two different ways: by intramembranous ossification or
endochondral ossification [14]. Intramembranous ossification gives rise to flat bones and endochondral
ossification gives rise to long bone. Both ossifications begin with condensation of the mesenchyme
and culminate in the formation of calcified bone. However, intramembranous ossification achieves
bone calcification directly by mesenchymal stem cell (MSC) osteoblastic differentiation, whereas
endochondral ossification incorporates a complicated step in which chondrocytes regulate the growth
and formation of the skeleton [15]. During endochondral ossification, chondrocytes in the center of the
cartilage stop proliferating and start to enlarge (hypertrophy), while synthesizing and releasing type X
collagen [16]. Hypertrophic chondrocytes undergo mineralization and induce vessel penetration and
osteoblast differentiation and migration. The recruited endothelial cells secrete vascular endothelial
growth factor (VEGF) and direct chondroclasts to digest the surrounding matrix. Finally, hypertrophic
chondrocytes undergo apoptotic cell death, and blood vessels and osteoblasts infiltrate the cartilage
matrix and subsequently achieve bone growth and regeneration.

In addition to osteoblasts, osteoclasts and chondrocytes, endothelial cells also have a large
influence on bone regeneration. Endothelial cells stimulate osteoblast maturation and activity but
inhibit the osteoblastic differentiation of osteoprogenitor cells [17]. Additionally, successful bone
regeneration is closely related to successful angiogenesis, and impaired angiogenesis always results
in failed bone regeneration. Inhibition of VEGF, a potent angiogenesis factor, results in the abnormal
endochondral bone formation [18]. Endothelial cell-specific Notch knock-out not only impairs
angiogenesis but also reduces osteogenesis, bone length and bone mass [19,20]. All of this evidence
indicates that endothelial cells play important roles in bone regeneration.

Previous bone regeneration studies have mainly focused on stimulating the function of cells,
and cell-to-cell communication has not been well studied. However, previous research has shown
that cell-to-cell communication also greatly affects bone regeneration. Therefore, a therapy that could
greatly increase osteogenic cell bone formation and the interaction between cells would be a potential
future treatment. Exosomes, nanoscale vesicles ranging from 50–120 nm [11], have both properties,
which has prompted intensive investigation of the exosomes.
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3. The Properties of Exosomes

Exosomes were first obtained from cell lines and described in 1981 [21], as exfoliated vesicles
with ectoenzyme activities. The current definition is that they are membrane vesicles of endocytic
origin [22] and are released into the extracellular environment upon the fusion with the plasma
membrane (Figure 1) [23]. Exosomes are nanoscale vesicles ranging in size from 50–120 nm [11], with a
density in sucrose of 1.13–1.19 g/mL and are wildly distributed both in vivo and in vitro [24] (Table 1).
Many cells, including reticulocytes [24], dendritic cells [25], B cells [26], T cells [27], mast cells [28],
epithelial cells [29] and tumor cells [30], secrete exosomes. Exosomes transport coding RNA [31],
noncoding RNA [32], proteins [33], antigen presentation molecules [34], and DNA [35] between cells.
By conveying proteins and RNAs, exosomes modulate the recipient cells and other organs function,
activity, and commitment of recipient cells and other organs over a long distance [36].
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Figure 1. Exosome biogenesis: exosomes are generated in two distinct ways: the endocytic pathway
and the biosynthetic pathway. The endocytic pathway begins by receiving extrinsic or intrinsic signals
from the local milieu. Then, the plasma membrane begins to invaginate, and the early endosome
subsequently forms. The early endosome becomes the late endosome under the regulation of multiple
cell signaling pathways. The Golgi Apparatus and the endoplasmic reticulum also participate in
exosome secretion. The multivesicle body resulting from the late endosome fuses with the plasma
membrane and releases the exosome, or undergoes degradation.

Table 1. Exosome, microvesicle, apoptotic body: major similarities and differences.

Characteristic Exosome Microvesicle Apoptotic Body

Size 50–120 nm 100–1000 nm 50–500 nm
Morphology Cup-shaped Heterogeneous Heterogeneous

Protein Marker Alix, Tsg101, CD63, CD9 Selectins, integrins, CD40 Histones
Origin Multivesicular Body Plasma Membrane Programmed cell death

Mechanism of discharge Exocytosis of MVBs Budding from plasma membrane Cell shrinkage and death
Composition Protein, miRNA, mRNA Protein, miRNA, mRNA Protein, DNA, miRNA, mRNA

Although how exosomes participate in cell-to-cell communication is not fully understood, several
studies have revealed that ligand–receptor interaction plays an important role in this process [37].
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This hypothesis was first proposed by Raposo, et al. [26], who noted that exosomes from B cells
incorporate and transport functional antigen-presenting complexes. This discovery suggests that
the mechanism of exosome participation in cell-to-cell communication involves receptor–ligand
interactions [38]. The vesicles attach or fuse with the target cell membrane via exosome surface
proteins such as Alix or Tumor Susceptibility 101 (TSG101), and tetraspanins such as CD9, CD63, CD81
and CD82 [39,40].

Although the cargoes transported by exosomes are diverse, exosomal proteins and RNAs are
believed to play important roles in regulating the function of recipient cells [41]. Spectrometry
data for exosomes have identified over 4000 different proteins in exosomes [11]. Though exosomal
proteins differ substantially according to the origin of the exosome and have different functions, some
proteins are shared by all types of exosomes [42]. These commonly-shared proteins are cell-to-cell
communication related. For example, heat shock protein (HSP) 70 and HSP90 are shared by all
exosomes and are key to protein trafficking [43]. Annexin is a membrane trafficking protein that
is involved in fusion events and is enriched in exosomes. Additionally, the cytoskeletal proteins,
including myosin, actin and tubulin, are found in exosomes. Regarding another potential functional
content in exosomes, small RNAs have attracted the most attention [44,45]. Koppers-Lalic et al. [41]
have provided a review of exosomal RNAs and have noted that the functional exosomal RNAs are
critical in the regulation of cell commitment, differentiation, and activity.

4. Exosomes Promote Regeneration in Various Tissues though Functional Cargo Transportation

The regenerative effect of exosomes has been validated in other tissues and organs, including
the heart [37], lung [46], kidney [47] and brain [48]. Organ functions benefit from exosome treatment.
In myocardial infraction mouse models, ventricular remolding and the left ventricular ejection fraction
have been found to significantly improved after exosome treatment [37]. Exosomes also mediate cell
function, thus, promoting regeneration. In hypoxia-induced pulmonary hypertension mice, exosomes
treatment inhibits disease progression and protected the lung from hypertension through a MSC
cytoprotective action. Furthermore, exosomes not only prevent apoptosis but also strengthen cell
endurance. The renal injury is less severe, and exosome treatment improves renal function in mice
with acute kidney injury [47]. In addition, modification of exosomes may provide a more effective
treatment of diseases. Alvarez-Ervitl et al. [48] have demonstrated amelioration of Alzheimer’s disease
through the injection of exosomes secreted from modified cells. Basu et al. [49] have reviewed of
current exosomal treatment in neuroregeneration and skin regeneration.

These studies have provided a foundation for exosome treatment and the exploration of the
roles of exosomes in bone regeneration. Recent studies have demonstrated that exosome treatment
stimulates bone regeneration in vivo and in vitro. Although the outcome of exosome treatment is
inspiring, the exact underlying mechanism remains elusive.

5. Exosomes Regulate Mesenchymal Stem Cell Osteogenic Differentiation

Exosomes directly regulate and guide MSCs into the osteoblastic lineage. MSC-derived exosomes
can be used as biomimetic tools to induce naïve stem cells into to a osteogenic linage [50]. Profiling
data for the MSC-derived exosome have revealed that nine miRNAs (let-7a, miR-199b, miR-218,
miR-148a, miR-135b, miR-203, miR-219, miR-299-5p and miR-302b) are up-regulated and four miRNAs
(miR-221, miR-155, miR-885-5p, miR-181a and miR-320c) are down-regulated during the process
of MSC osteoblastic differentiation [51]. All of these miRNAs have roles in osteoblast function and
activity. This profiling provides preconditions for further investigation and application of MSC-derived
exosomes. However, the osteoblast itself also secretes exosomes, thus establishing a positive feedback
of bone growth. Mineralizing osteoblast-derived exosome greatly increases osteoblastic differentiation
related miRNAs, and activate Wnt signaling via Axin1 inhibition, thereby promoting MSC osteogenic
differentiation [52]. Furthermore, eukaryotic initiation factor 2 in osteoblast-derived exosomes may
also induce MSC to differentiate into osteoblast [53]. As is well known, the immune system and the
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hematopoietic system have a strong influence on bone growth, although the exact mechanism remains
elusive. Exosomes may contribute to this process. Studies have demonstrated that dendritic cell- [54]
and monocyte [55] cell-derived exosomes significantly stimulate MSC osteogenic differentiation in vitro
by delivery of exosomal miRNAs (Table 2). MSC osteogenic differentiation is under the regulation
of exosomes; however, which cell type-derived exosome is the most potent regulator and how the
exosomes mediate MSC differentiation remain to be investigated.

6. Exosomes Regulate Osteoblast Proliferation and Activity

It is known that 4%–6% of the total resident cells in the bone are osteoblasts, whose major function
is bone formation [56]. During bone formation, osteoblasts produce calcium- and phosphate-based
minerals to form mineralized bone. Exosomes can also stimulate bone regeneration by directly
regulating osteoblast proliferation and activity. Prostate cancer cell-derived exosomes increase human
osteoblast proliferation by 1.5-fold [57], whereas matrix-derived exosome-treated osteoblasts generate
more calcium deposits and greater ALP activity [58]. Prostate cancer cell-derived exosomes showed
an excellent bone affinity [57]. Most injected PKH2-labeled exosomes enter the lung and the bone
marrow within 24 h, and little is found in other organs. Whether other cell-type-derived exosomes
share the same distribution remains unknown. The in vivo influence of exosomes on osteoblasts is
also significant. Rats with calvarial defects benefit from bone marrow stromal cell-derived exosomes
and show an earlier healing of defects [59] (Table 2). The exosomal miRNA-196a is the key factor
stimulating the proliferation and activity of osteoblasts. Although both in vivo and in vitro studies
underscore the importance of exosomes to osteoblast, more information is needed regarding the exact
exosome treatment efficacy in bone systems.

7. Exosomes Regulate Osteoclast Maturation and Activity

As is well known, bone metastasis is closely related to the abnormal activation of osteoclasts.
Research has shown that tumor cells induce osteolysis by secreting vesicles to increase the number and
activity of mature osteoclasts. For example, multiple myeloma-derived exosomes internalized by the
Raw264.7 cell lines and human primary osteoclast, increased expression of osteoclast marker, including
Cathepsin K, Metalloproteinases 9, and Tartrate-resistant Acid Phosphatase (TRAP), thus promoting
the maturation of osteoclasts [60]. In prostate cancer cell-derived exosomes, the vesicles also increase
osteoclastogenesis by stimulating receptor activator of nuclear factor κB (RANK) expression [57].

In fact, the bone system itself is the most important regulator of osteoclast differentiation.
Osteoblast- and osteocyte-derived lysosomal membrane protein 1 (LAMP1) positive exosomes
also contain TRAP, RANK ligand, and osteoprotegerin (OPG), which are critical to osteoclast
differentiation [61]. However, mature osteoclasts may regulate the cells themselves through exosome
secretion. The profiles of osteoclast-derived exosomes indicate that RANK is highly enriched.
The depletion of RANK-enriched exosomes results in inhibition of osteoclast formation [62] (Table 2).
The roles of exosomes in osteoclasts may provide hints as to how bone formation and absorption
are orchestrated.

8. Exosomes Are Potent Pro-Angiogenic Factors

Although there are no direct studies of the angiogenic ability of exosomes in bone, exosomes
stimulate angiogenesis in other tissues and organs. The potent exosomal angiogenic ability may
possibly stimulate bone growth and regeneration by increasing vessel formation. It has been
demonstrated that exosomes stimulate endothelial cell proliferation, migration, and tube formation
in vitro, such as placental MSC-derived exosomes [63]. Furthermore, exosomes also increase endothelial
cell migration and tube formation through transportation of functional enzymes, including subunit
of NADH oxidase [64], metalloproteinases and extracellular matrix metalloproteinase inducer [65].
Moreover, exosomes promote endothelial cell proliferation and vessel formation through exosomal
miR-129, miR-136 [66] and the miR-17-92 cluster [63]. Not only do exosomes show angiogenic potency
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in vitro, but they also enhance angiogenesis in vivo. Research has shown that MSC-derived exosomes
successfully improved angiogenesis in different animal models. For example, tail injection of MSC
derived exosomes reduces myocardial ischemic/reperfusion injury and improves angiogenesis in the
ischemic heart [67], and umbilical cord derived-MSC exosomes from human promotes blood perfusion
and attenuated hind-limb ischemia [68] (Table 2). Exploring the roles that exosomes play in bone vessel
formation is expected to lead to the development of novel treatments for bone regeneration.

9. Advantages of Exosome Treatment

Exosome treatments have several advantages over the cell-based treatments. Living cell
transplantation may cause more safety concerns than exosome treatment. Application of
exosomes resolves toxicity and immunogenicity problems caused by biomaterial treatment, such
as nanoparticles [10]. The vesicles can both positively and negatively regulate the immune response.
MSC-derived exosomes keep the immune privileged properties of their origins. Patients presenting
with intestinal graft-versus-host disease grade IV treated with MSC-derived exosomes undergo a
significant amelioration of symptoms [69]. However, glioblastoma-derived exosomes activate an
immune response to recognized glioblastoma cells. This advantage may greatly help researchers
to develop novel immunotherapies [70]. Additionally, nonviable vesicles, compared with living
cell transplantation, present a lower risk for severe complication, such as tumors, emboli formation,
or GVHD. Furthermore, exosomes are very stable and can be kept approximately 6 months in vitro at
´20 ˝C without loss of potency [71].

10. “Bench to Bedside”: Still a Long Way to Go

Several challenges prevent the development of exosomes into therapeutically agents. One major
challenge is to achieve good manufacturing practices. Current exosomes isolation methods provide
only a low exosome yield; for example, 5 ˆ 106 myeloma cells provide only 5–6 µg of exosomes [72].
Second, the method of exosome isolation is still controversial. There are two widely used
and presumably accepted purification protocols, which use either repeated ultracentrifugation or
ultrafiltration [73]. The drawback of these two protocols is the length of time required. Therefore,
to develop a reliable method to isolate exosomes will greatly help future studies.

Another major concern is that the exact function of the genetic information that exosomes carry
remains elusive. Thus, profiling exosomal contents is a precondition for clinical application. Currently,
exosomal miRNAs are one of the major functional components of exosomes. The exosomes content
varies according to different origins. Baglio et al. [74] have profiled the miRNA and tRNA information
of bone marrow and adipose MSC. The miRNA expression is not significantly different between the cell
types. However, the tRNAs show significant difference, especially for Sox2, POU5F1A/B, and Nanog.
This finding indicates that the diverse cargoes in exosomes differ greatly according to the origin of
the exosome. Furthermore, tumor-supportive miRNA and other bioactive factors are also found in
MSC-derived exosomes [75]. Hence, profiling and understanding the exact function of exosomes is a
precondition for clinical usage.

Understanding the distribution of injected exosomes is important to control exosome location
related side-effects. Studies showed that most exosomes go to bone and the lung; however, other
studies have shown that exosomes may also enter the spleen, liver and kidney within the first 30
min after injection. Therefore, a clear investigation of distribution, dosage and clearance will be the
foundation for assessing exosome safety [76].
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Table 2. Reported roles of exosomes in osteogenesis and angiogenesis.

Origin of Exosomes Content Profile In Vitro Effect In Vivo Effect

MSCs [50] Not mentioned Induce osteogenesis differentiation in naive stem cells No in vivo data

Mineralizing osteoblasts [52] Axin1 inhibitor Promote osteoblastic differentiation by activating Wnt signaling No in vivo data

Osteoblasts [53] Tumor susceptibility gene 101, flotillin 1 and 1069
other proteins

Promote osteoblastic differentiation by activating eukaryotic
initiation factor 2 No in vivo data

Monocytes [55] Small RNAs are enriched in exosomes
Runt-Related Transcript Factor 2, Osteocalcin and Bone
Morphogenetic Protein 2 were Up-regulated in bone mesenchymal
stem cells

No in vivo data

Prostate cancer cells [57] miR-148a, miR-125a Increased osteoblast proliferation
Most PKH2 labeled exosomes go to lung and bone
marrow in 24 h. (liver, spleen, kidney, heart, thymus,
brain, prostate)

Matrix [58] Not mentioned Increase Alkaline Phosphatase activity of osteoblast; Increase
mineral deposition No in vivo data

Bone MSCs [59] miR-196a Increased osteoblast activity Stimulate bone growth in calvarial bone defect models

Myeloma cells [60] Not mentioned Induce pre-osteoclast maturation and migration No in vivo data

Promote osteoclast differentiation

Osteoclasts [62] RANK Induce osteoclast differentiation No in vivo data

Placental MSCs [63] 157 proteins enriched. Increase endothelial cell migration, tube formation No in vivo data

Platelets [64] P22phox and gp91phox subunit of NADPH oxidase
Stimulate mRNA expression for angiogenic factors: Matrix
metallopeptidase 9, vascular endothelial growth factor,
interleukin-8, hepatocyte growth factor in endothelial cells

No in vivo data

Myocardial progenitor cells [65] Metalloproteinases, extracellular matrix
metalloproteinase inducer Increase endothelial cell migration No in vivo data

Bone marrow derived-stem cells [66] miR-126, miR-139 Increase endothelial cell viability, proliferation and tube formation No in vivo data

MSCs [67] Not mentioned Increase endothelial cells proliferation, migration and
tube formation

Reduce myocardial ischemic/reperfusion injury; Improve
angiogenesis in ischemic heart

Human umbilical cord derived
MSCs [68] Not mentioned Increase endothelial cells proliferation, network formation.

Significantly increased blood flow in ischemic model
Promote blood perfusion and attenuate
hind-limb ischemia

Human induced pluripotent stem
cell derived MSCs [77] Not mentioned Increase endothelial cell migration, proliferation, and

tube formation
Promote blood perfusion and attenuate severe
hind-limb ischemia

Chronic myeloid leukemia cells [78] Not mentioned Increase endothelial cell migration and tube formation Promote matrigel induced tube formation in nude mice

Myelogenous leukemia [79] Increase endothelial cell motility, ingrowth and vascularization

Leukemia cells [80] miR-17-92 cluster Increase endothelial cell migration, proliferation and
vessel formation No in vivo data

Adipose MSC [81] Artemin, Axl, Milk Fat Globule-EGF Factor-8, Oncostatin
M, Stem Cell Factor, and thrombopoietin are enriched. Increase vessel-like formation Promote vessel formation in subcutaneous gel
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11. Conclusions

In this report, we reviewed recent studies exploring the application of exosomes to regulate
osteogenesis and angiogenesis. Although much preliminary data indicated that exosomes stimulate
both osteogenesis and angiogenesis, the exact mechanism remains elusive. Before problems can be
realized, reliable methods to identify and purify exosomes must first be developed. In addition, a better
understanding of the roles that exosomes play in regulating osteogenesis and angiogenesis is also
needed. Finally, which cell type- or tissue-derived exosome is the most potent regulator remains to
be determined.
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