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ABSTRACT: An operationally simple, high yielding three-step
cascade process is described for the direct conversion of indole-
tethered ynones into functionalized quinolines. A single “multi-
tasking” thiol reagent is used to promote a three-step dearomatizing
spirocyclization, nucleophilic substitution, and one-atom ring
expansion reaction cascade under remarkably mild conditions. In
addition, a novel route to thio-oxindoles is described, which was
discovered by serendipity.

Cascade reactions (chemical processes by which two or
more consecutive reactions take place in a single pot-

process, also known as “tandem” or “domino” reactions) have
wide utility in synthetic chemistry.1,2 Incorporating cascade
reaction sequences into synthetic routes can significantly
improve the speed and ease with which complex target
molecules can be prepared and often means that the direct
handling of reactive, unstable and/or toxic species can be
avoided by forming these intermediates in situ.
This manuscript concerns a three-step cascade reaction

sequence, starting from indole-tethered ynones 1 (Scheme 1).
In recent years, ynones of this type have emerged as valuable
precursors for the preparation of a diverse array of molecular

scaffolds.3−6 For example, our groups and others have shown
that the activation of the alkyne moiety of 1 promotes efficient
dearomatizing spirocyclization7,8 to form medicinally impor-
tant spirocyclic indolenines 2;9,10 this is most commonly done
using π-acidic catalysts (especially Ag(I) species), although
Brønsted acids, palladium(II) complexes, and electrophilic
halogenation reagents can also be used (1 → 2, Scheme 1a,
step 1).3,11,12 Our groups have also shown that dearomatiza-
tion works well on 2-halogenated indoles (i.e., 1 where X = Cl,
Br or I) and that the resulting indoleninyl halide products (i.e.,
2 where X = Cl, Br or I) can be transformed further via
reaction with nucleophiles, or via Pd-catalyzed cross-coupling,
to substitute the halide for various other groups (2 → 3,
Scheme 1a, step 2).5 Finally, our groups and others have
demonstrated that spirocyclic indolenines of the form 3 will
rearrange via a one-atom ring expansion reaction13 to form
annulated quinolines, with both acidic and basic reagents able
to promote this transformation (3 → 4, Scheme 1a, step 3).6

Efficient protocols for each of the individual steps
represented in Scheme 1a are therefore established, but three
steps are still required to generate functionalized quinolines 4
from ynones 1. Quinolines are found in many marketed drugs,
as well as in various other applications.14 On the basis of a
growing understanding of each of the three individual
processes discussed above,3,5,6 we recognized that certain
reagents may be able to promote all three steps and enable the
transformation of 1 into 4 via a single-cascade process
(Scheme 1b); such a reagent would need to act as an acid
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to promote step 1, a nucleophile in step 2, and a Brønsted acid
to promote step 3. The successful realization of this strategy is
reported herein, with thiols emerging as the optimum
“multitasking” reagent class capable of promoting the
envisaged cascade, under remarkably mild and operationally
simple conditions.
We started by exploring the reactivity of model 2-bromo

ynone 1aBr with various reagents (NuH) that we thought
might have the required acidity and nucleophilicity to promote
its conversion into a quinoline of the form 4. Phenol was tested
first, and added to a solution of 1aBr in DCE,15 but no reaction
was observed after stirring at RT or 60 °C (entries 1 and 2,
Table 1). Next, TFA was included as an additive in the

reaction, which led to the consumption of the starting material,
but the only tractable products observed were oxindole 7a
(presumably formed via acid-mediated dearomatizing spiro-
cyclization and hydrolysis of the resulting spirocycle 5a),5 and
bromoquinoline 8, which likely formed via a Bronsted acid-
mediated rearrangement of 5a (cf. step 3).6b A more acidic
NuH reagent, 4-nitrophenol, was tested but no reaction was
observed at RT (entry 4), while at 60 °C the same side
products 7a and 8 were formed (entry 5). We then decided to
move on to species of similarly acidity to phenol, but also more
nucleophilic, and pleasingly, thiols16 were found to possess this
attractive combination of properties; using n-propanethiol, no
conversion was observed at RT (entry 6), but excellent
conversion into the desired quinoline 4a was observed upon
heating to 60 °C (entry 7). Furthermore, the more acidic
thiophenol was able to promote the conversion of 1aBr into
quinoline 4b smoothly at RT (entry 8).
With conditions for the cascade established, attention turned

to examining the reaction scope. A range of aromatic thiols
were tested (Scheme 2A), and all reacted well with ynone 1aBr;
quinolines 4b−k were all prepared in this manner, generally in
high yield, under the standard RT conditions using a range of

electronically diverse substituted thiophenols. Other aliphatic
thiols were also explored, with quinolines 4a and 4l−n
prepared, although in this series heating to 60 °C was required.
The yield for quinoline 4n was comparatively low (53%), with
thio-oxindole 9a also formed in 27% yield; this unexpected
side reaction is discussed later in the manuscript (see Scheme
3).17

Next, the 2-halide substituent was varied (Scheme 2B).
Thus, 2-chloro (1aCl) and 2-iodo (1aI) analogues of ynone
1aBr were prepared,5 and both reacted smoothly with 4-
methylbenzenethiol to form quinoline 4d in high yield, albeit
at a higher reaction temperature (60 °C). Finally, we explored
variation of the indole-tethered ynone component 1. Four
different additional 2-bromo-indole-tethered ynones were
successfully tested, with variations to the ynone and the indole
motifs explored. For each ynone, a representative aliphatic (n-
propanethiol) and aromatic thiol (4-methylbenzenethiol) were
tested, with the expected quinoline products 4o−v to be
isolated successfully in all cases.18 The only substrate tested
that did not deliver the expected quinoline was 4-NMe2-
substituted ynone 1fBr; in this case, spirocyclic indoleninyl
bromide 5b was isolated in 89% yield.19 Despite not delivering
the expected quinoline, the isolation of spirocycle 5b does
provide indirect mechanistic evidence for the intermediacy of
indoleninyl halides in the reaction cascade (see later for
discussion). Finally, by replacing the thiol with benzeneselenol,
the analogous selenide product 4bSe was obtained in 62% yield.
The unexpected isolation of thio-oxindole 9a during the

synthesis of 4n prompted additional studies, in part to better
understand this side reaction, but also to try and harness it
productively, as a new way to make thio-oxindoles.20 Our
theory for how thio-oxindole 9a formed is summarized in
Scheme 3a. The reaction is likely to have started as expected,
and thus it proceeded through the normal dearomatizing
spirocyclization and nucleophilic substitution steps (i.e., steps
1 and 2). This would generate spirocycle 10, and at this point,
it appears that the route diverges, with some of the material
going on to form quinoline 4n in the usual way, and the rest
undergoing debenzylation, either via an SN1-type pathway as
drawn, or the analogous SN2-type cleavage (not shown). To
test this idea and improve the yield of thio-oxindole 9a, the
reaction was repeated using the silylated thiol Ph3SiSH 11; the
idea was that the weak Si−S would cleave more easily than the
S−Bn bond in 10, and facilitate thio-oxindole formation via a
desilylative mechanism. This idea worked well; the reaction of
ynone 1aBr with Ph3SiSH 11 using the standard 60 °C
procedure led to the formation of thio-oxindole 9a in 82%
isolated yield (Scheme 3b). The same procedure was applied
to other 2-halo-indole-tethered ynones, with thio-oxindoles
9b−9d (47−85%) prepared in the same way.
A proposed mechanism for the three-step cascade is outlined

in Scheme 4a. The cascade likely initiates with dearomatizing
spirocyclization, promoted by the relatively acidic thiol (A →
B, step 1, Scheme 4a); protic acids have been shown to
promote spirocyclization of related ynones,3b,6b and the
isolation of spirocyclic indoleninyl bromide 5b discussed
earlier lends further support to this notion. The resulting
iminium−thiolate ion pair 2 may then undergo facile
nucleophilic substitution to afford substituted spirocycle 12
(step 2).5 The rearrangement of 12 into 17 is then thought to
proceed via a previously studied acid-catalyzed one-atom ring-
expansion.6c

Table 1. Initial Optimizationa

entry nucleophile (NuH) temp outcomeb

1 phenol (Nu = PhO) RT no reaction
2 phenol (Nu = PhO) 60 °C no reaction
3 phenol (Nu = PhO) with 1 equiv

of TFA
RT 7a (62%)

8 (21%)
4 4-nitrophenol (Nu = 4-NO2C6H4O) RT no reaction
5 4-nitrophenol (Nu = 4-NO2C6H4O) 60 °C 7a (35%)

8 (45%)
6 n-propanethiol (Nu = n-PrS) RT no reaction
7 n-propanethiol (Nu = n-PrS) 60 °C 4a (95%)
8 thiophenol (Nu = PhS) RT 4b (93%)

a1aBr (1 equiv) and NuH (1.6 equiv) were stirred in DCE (0.1 M,
degassed) for 20−24 h at the specified temperature. bYields are
isolated material after column chromatography.
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Several control experiments were conducted to investigate
this mechanism and the ordering of the steps. First, to probe
whether the nucleophilic substitution step may proceed before
spirocyclization, 2-bromo-indole substrates lacking an ynone
substituent (18 and 21) were each reacted under the standard
conditions with 4-methylbenzenethiol (Scheme 4b, eq 1). In
the case of indole 18, some bromide substitution was indeed
observed, with sulfide 19 formed in 31% yield. This confirms
that nucleophilic substitution directly on the indole is possible,
although the yield was low, and the major product was in fact
the reduced product 20. Treating the analogous 3-methyl-
indole 21 in the same way resulted in trace formation of 22
only. In view of these results, and given that no reduction
products were observed in any of the synthetic reactions, it

seems unlikely that nucleophilic substitution precedes
dearomatizing spirocyclization.
We then questioned whether the iminium−thiolate ion pair

B might first undergo ring expansion to form a quinoline and
that nucleophilic substitution follows this step. To probe this
idea, both indoleninyl bromide 5a and 2-bromoquinoline 8
were reacted with 4-methylbenzenethiol under the standard
reaction conditions. Interestingly, both reactions afforded the
expected quinoline product 4d in high yields (Scheme 4b, eqs
2 and 3), suggesting that the order of steps 2 and 3 could be
interchanged.
To investigate this idea further, a discrete sample of the

substituted spirocyclic sulfide 6a was reacted with 4-
methylbenzenethiol under the standard reaction conditions
(eq 4). No conversion into quinoline 4d was observed and

Scheme 2. Scope of the Three-Step Thiol-Mediated Cascade for the Conversion of Ynones 1 into Quinolines 4a

a1 (1 equiv) and RSH (1.6 equiv) were stirred in DCE (0.1 M) for 20 h at RT unless specified. bReaction performed at 60 °C. HS-Tol = 4-
methylbenzenethiol.
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only 6a was recovered after stirring for 24 h at both RT and 60
°C. However, the quinoline product 4d could be formed in
high yield at RT upon the addition of 1.1 equiv of 48% aq. HBr
to spirocyclic sulfide 6a. This result suggests that a strong
Brønsted acid is required to promote the ring expansion, and
such an acid would only be present in the reaction following
the nucleophilic substitution step (which generates HX), thus
supporting the originally proposed order of steps. Furthermore,
the success of the series of thio-oxindole forming reactions
described in Scheme 3 also supports the same pathway,
because in these reactions the successful formation of
spirocyclic products 9a−d means that nucleophilic substitution
must have out-competed ring expansion in these cases.
Considering all these observations, we can be confident that

the first step of the cascade is a thiol-promoted dearomatizing
spirocyclization (step 1). The next step is most likely to be
nucleophilic substitution (step 2) of the resultant iminium−
thiolate ion pair, which generates a strong Brønsted acid (HBr)
in situ. This acid then promotes a one-atom ring expansion
(step 3) to form a stable aromatic quinoline product 4. Some
interchange in the ordering of steps 2 and 3 cannot be ruled
out once a reasonable concentration of HBr has built up in the
reaction, however.
In summary, a three-step cascade process has been

developed that allows for the direct conversion of 2-halo-
indole-tethered ynones into substituted quinolines. The key to
the process is the use of thiols as “multitasking” reagents able
to promote dearomatizing spirocyclization and nucleophilic
substitution directly, as well promoting a one-atom ring
expansion indirectly, via the formation of a strong Brønsted
acid (HBr) in situ. The reactions are very simple to perform21

and are typically high yielding, enabling the facile synthesis of a
diverse array of functionalized quinolines. They are also easily
scalable; for example, quinoline 4d was formed in 97% yield on
a 1 mmol scale (see Supporting Information). In addition, a

related route to thio-oxindoles was also developed following a
serendipitous discovery of an unexpected side reaction.
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Scheme 3. Conversion of Ynones 1 into Thio-Oxindoles 9
via a Desilylative Cascade Processa

a1 (1 equiv) and thiol 11 (1.6 equiv) were stirred in DCE (0.1 M) for
20 h at 60 °C.
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