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Abstract

Background

The clinically used methods of pain diagnosis do not allow for objective and robust mea-

surement, and physicians must rely on the patient’s report on the pain sensation. Verbal

scales, visual analog scales (VAS) or numeric rating scales (NRS) count among the most

common tools, which are restricted to patients with normal mental abilities. There also exist

instruments for pain assessment in people with verbal and / or cognitive impairments and

instruments for pain assessment in people who are sedated and automated ventilated.

However, all these diagnostic methods either have limited reliability and validity or are very

time-consuming. In contrast, biopotentials can be automatically analyzed with machine

learning algorithms to provide a surrogate measure of pain intensity.

Methods

In this context, we created a database of biopotentials to advance an automated pain recog-

nition system, determine its theoretical testing quality, and optimize its performance. Eighty-

five participants were subjected to painful heat stimuli (baseline, pain threshold, two inter-

mediate thresholds, and pain tolerance threshold) under controlled conditions and the sig-

nals of electromyography, skin conductance level, and electrocardiography were collected.

A total of 159 features were extracted from the mathematical groupings of amplitude, fre-
quency, stationarity, entropy, linearity, variability, and similarity.

Results

We achieved classification rates of 90.94% for baseline vs. pain tolerance threshold and

79.29% for baseline vs. pain threshold. The most selected pain features stemmed from the

amplitude and similarity group and were derived from facial electromyography.
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Conclusion

The machine learning measurement of pain in patients could provide valuable information

for a clinical team and thus support the treatment assessment.

Introduction
Quantifying pain is possible with the aid of the Visual Analog Scale or Numeric Rating Scale.
However, these methods only work when the patient is sufficiently alert and cooperative, i.e.,
under conditions not always given in the medical field (e.g., post-surgery phases). There also
exist instruments for pain assessment in people with verbal and / or cognitive impairments and
instruments for pain assessment in people who are sedated and automated ventilated [1]. Over-
all, these methods are still in development or in need of validation. If conditions do not allow
for a sufficiently valid measurement of pain, then cardiac stress in at-risk patients, under-perfu-
sion of the operating field, or the development of chronic pain may follow in consequence. On
the other hand, opiates may alleviate pain sensation, but can also lead to severe addiction, con-
stipation etc. [2]. Hence, the measurement of biopotentials via the autonomic nervous system
may be a solution that would permit an objective, reliable, and variable surrogate measurement
of pain.

Some studies examined the correlation between a single biopotential and pain [3], [4], [5],
[6], [7], [8], [9], [10]. In conventional pain diagnostics it is known that a measurement on a sin-
gle parameter feature is insufficient for a valid diagnosis. Instead, a combination of multi-
parameter features is required [1]. To the best of our knowledge, the study by Treister et al.
[11] was the first to take a multi-parameter biopotential approach. Tonic heat was applied to
elicit pain for a duration of 1 min, with intensities of “no pain,” “low pain,” “medium pain,”
and “high pain.”While all of the features differed significantly in “no pain” and the other
thresholds via Friedman Test, only the linear combination of parameters significantly differen-
tiated between pain vs. no pain, as well as between all other pain categories. Bustan et al. also
employed multimodal parameters to investigate the relationship between pain intensity,
unpleasantness, and suffering [12]. High-intensity stimulation elicited higher skin conductance
level compared with low-intensity stimulation under conditions of tonic noxious stimulation;
heart rate was higher for short than for long stimulation, while corrugator electromyography
showed of no significant effect regarding the response.

In our research we aim at the advancement of pain diagnosis and monitoring of pain states.
For the purpose we developed an extensive multimodal dataset in which several levels of pain
are induced. In a high density feature space a machine learning model (based on SVM) could
be a solution. “An SVMModel could be trained on one set of individuals, and used to accurately
classify pain in different individuals”, p. 2 [13].

In Walter et al. [14] preliminary results were presented. A total of 135 features were
extracted from the mathematical groupings of amplitude, frequency, stationarity, entropy, lin-
earity, and variability from the facial and trapezius electromyography, skin conductance level,
and electrocardiography signals. The following features were statistically chosen as the most
selective: 1. electromyography_corrugator_amplitude_peak_to_peak, 2. electromyography_cor-
rugator_entropy_ shannon, and 3. heart_rate_variability_slope_RR. We received a classifica-
tion rate (based on SVM) for the two class problem baseline vs. pain tolerance threshold of
77.05%. In Werner et al. [15] we received a classification rate for the two class problem baseline
vs. pain tolerance threshold of 75.6% (without facial electromyography).
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An extension of the feature space and the use of automated feature selection methods could
improve classification rates, as compared to the study of Walter et al. [14].

The aim of the present study (see Fig 1d) was:

1. to select features (“pain pattern”) with a support vector machine learning design

2. to extract systematically a high-density feature space, for which we included signal similarity
features (see Table 1, Equation: 37–42)—Similarity is mentioned in the signal processing lit-
erature as a powerful feature [16], [17]

3. to contribute to the highest recognition rate for pain quantification in a two and multi class
problem.

Methods

Subjects
A total of 90 subjects participated in the experiment, recruited from the following age groups
[18]: 1. 18–35 years (N = 30 years; 15 men, 15 women), 2. 36–50 years (N = 30; 15 men, 15
women), and 3. 51–65 years (N = 30; 15 men, 15 women). Only 85 subjects were included in
the final analysis because four subjects had to be excluded due to limited data quality with
regard to the EMG. Recruitment was performed through notices posted at the university for
the 18- to 35-year-old age group and through the press for the 36-50- and 51-65-year-old age
groups. Only healthy subjects were recruited. The subjects received an expense allowance. The
study was conducted in accordance with the ethical guidelines set out in the WMA Declaration
of Helsinki (ethical committee approval was granted: 196/10-UBB/bal). The study was
approved according the ethics committee of the University of Ulm (Helmholtzstraße 20, 89081
Ulm, Germany). All participants provided a written informed consent to participate in this
study. An official written document of the ethics committee approved this consent procedure.

Exclusion criteria
Prior to the experiment, the case history of each applicant was assessed in order to identify per-
sons who met the exclusion criteria. Pre-existing neurological conditions, chronic pain, cardio-
vascular diseases, regular use of pain medication, and use of pain medication immediately
before the experiment were applied as exclusion criteria.

Individual calibration of pain and tolerance threshold
To induce heat pain [18], a Medoc Pathway thermal stimulator was employed. The ATS ther-
mode was attached to the right forearm of the subject (see Fig 1a). Before data recording com-
menced, we determined each participant’s individual pain threshold and pain tolerance, i.e.,
the temperatures at which the participant’s perception changed from heat to pain and the level
at which the pain became unacceptable. We used these temperature thresholds for the lowest
and highest pain levels and added two additional intermediate levels to obtain a ranged set of
four equally distributed temperatures (see Fig 1b). The instruction given to subjects for deter-
mining the pain threshold was as follows: “Please press the stop button immediately when you
experience a burning, stinging, piercing or pulling sensation in addition to the feeling of heat.”
In order to determine the tolerance threshold, the following instruction was given: “Please
press the stop button immediately when you can no longer tolerate the heat, taking into
account the burning, stinging, piercing or pulling sensation.”
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Experimental pain stimulation
In the experiment, each of the four temperature levels was applied 20 times in randomized
order, resulting in a total of 80 stimuli. The baseline (no pain) was 32°C. For each stimulus, the
temperature was maintained for 4 s. The pauses between the stimuli were randomized between
8–12 s (see Fig 1b). The subjects had the option to abort the experiment immediately by press-
ing an emergency stop button. After the experiment, we asked the subject to apply a cold pack
to the spot of the heat stimulation for at least 5 minutes.

Measurement of biopotentials
Biopotentials. A Nexus-32 amplifier (http://www.mindmedia.nl; accessed May 23, 2014)

was used to record biopotential data (see Fig 1c) during the experiment. Biopotential and event
data were recorded using Biotrace software. The following parameters were included in the
classification process [18].

Electromyography (EMG). Electrical muscle activity is also an indicator of general
psychophysiological stimulation, in which increased muscle tone is associated with increasing
activity of the sympathetic nervous system. A decrease in somatomotor activity reflects pre-
dominantly parasympathetic stimulation. We used two-channel EMGs for zygomaticus, corru-
gator, and trapezius muscles. In the area of affective computing, the activity of zygomaticus
combined with happiness and the corrugator with negative affectivity [19]. The activity of the
trapezius is an indication of a high stress level, which is also to be expected when pain is being
experienced.

Skin conductance level (SCL). To measure the skin conductance level, two electrodes con-
nected to the sensor were positioned on the index and ring fingers. Because the sweat glands
are innervated exclusively sympathetically (i.e., without the influence of the parasympathetic
nervous system), electrodermal activity is considered a good indicator of the “inner tension" of
a person. This phenomenon can be reproduced in particular by the observation of a rapid
increase in skin conductance within 1–3 s due to a simple stress stimulus (e.g., deep breathing,
emotional excitement, or mental activity).

Fig 1. Experimental procedure, (1a) Thermode on the right arm, (1b) Heat signal with baseline, (1c)
Labor setting, (1d) Study procedure.

doi:10.1371/journal.pone.0140330.g001
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Table 1. Feature information.

Number Mathematical
group

Feature name Equation / Description

1 amplitude peak peak = max(signal); index(max(signal))

2 amplitude p2p p2p = max(signal)—min(signal)

3 amplitude rms rms = rms(signal)

4 amplitude mlocmaxv maxlocmaxv = mean(locmax(signal))

5 amplitude minlocminv minlocminv = mean(locmix(signal))

6 amplitude mav mav = mav(signal)

7 amplitude mavfd mavfd = mavfd(signal)

8 amplitude mavfdn mavfdn = mavfdn(signal)

9 amplitude mavsd mavsd = mavsd(signal)

10 amplitude mavsdn mavsdn = mavsdn(signal)

11 frequency zc Calculated by comparing each point of the signal with the next; if there is a crossing by zero then it is
accounted.

12 frequency fmode This fast Fourier transformation equation is valid for this and the following frequency features:

XðkÞ ¼ SN
j¼1xðjÞoN

ðj�1Þðk�1Þ, where oN ¼ e �2pi
Nð Þ. To find the mode, find the maximum value of X.

13 frequency bw To obtain the bandwidth of a signal, find the first and the last frequencies where the spectral density
values X(kl) and X(kh) are approximately 0.707*X(kmax), where X(kmax) is the maximum value of
X. Finally, the bandwidth value is the subtraction of the frequency of kh(fh) by the frequency of kl
(fl).

14 frequency cf The central frequency is simply the mean of the frequencies that delimit the bandwidth: cf ¼ fh�fl
2
.

15 frequency fmean
PNFFT

k¼1
XðkÞ:fðkÞP
XðkÞ

16 frequency fmed To obtain the median frequency, find the value of the frequency that bisects the area below the X
waveform.

17 stationarity median DS ¼ 1
T

R T

0
1� H ðo;tÞ

h ðoÞ=T

� �
2 dt, where H(ω, t) is the value of the spectrogram for frequency ω and time t,

and h(ω) is the spectral density for frequency ω.

18 stationarity freqpond see description 17 above

19 stationarity area see description 17 above

20 stationarity area_ponderada see description 17 above

21 stationarity me Given the signal x, split it into x1, x2,. . . xn, where n ¼ T
Ti, with T as the total time length of the signal,

which is N
Fs, and Ti the time of each part xi. For each xi, compute the mean, then the standard

deviation of the resultant mean vector.

22 stationarity sd Use the same split logic as in the previous feature. For each xi, compute the standard deviation, then
the standard deviation of the resultant standard deviation vector.

23 entropy aprox For a temporal series with N samples {u(i): 1� i �N} given m, create vectors Xm
j for each Xm

N�mþ1 as
Xm

j = {u(i), u(i + 1),. . ., u(i + m − 1)}, i = 1,. . ., N − m +1, where m is the number of points to group
together for the comparison. For each k � N�mþ 1 groups, do Cm

k (r) which is the number of

times the groups had distance less than tolerance r. Then compute the value ;m as ;m rð Þ ¼
PN�mþ1

i ¼ 1

ln Cm
i ðrÞ

ðN�mþ1Þ : The Approximated Entropy is: ApEn(m,r) = limN!1½;mðrÞ � ;mþ1ðrÞ�
24 entropy fuzzy Saen m; s; dð Þ ¼ ln ComðsÞ

Comþ1ðsÞ

h i
, where m is the window size, s is the similarity standard and d is the

signal. It is calculated in a very similar way to the Sample Entropy. The only similarity between the
groups is computed by means of a Fuzzy membership function.

25 entropy sample Saen m; s; dð Þ ¼ ln CmðsÞ
Cmþ1ðsÞ

h i
, where m is the window size, s is the similarity standard and d is the

signal. Cm is the regularity or frequency of similar windows in a given set of windows d with length
m, obeying s tolerance.

26 entropy shannon H ¼ �P
Pk logPk , where Pk is the probability of a value for each value present in a signal.

27 entropy spectral S ¼ P
pk logpk / log (N), where pk is the spectral density estimation of each fk frequency.

(Continued)
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Electrocardiogram (ECG). Wemeasured the average action potential of the heart on the
skin using two electrodes, one on the upper right and one on the lower left of the body. Com-
mon features of the ECG signal are heart rate, interbeat interval, and heart rate variability
(HRV). Heart rate variability refers to the oscillation of the interval between consecutive heart-
beats and has been used as an indication of mental effort and stress in adults [20].

Preprocessing
We performed the following biopotential preprocessing:

1. We visualized all biopotentials to check the intensity of the noise and activity with regard to
pain stimulation.

2. We applied a Butterworth filter to the EMG (20–250 Hz) and ECG (0.1–250 Hz) signals.

3. For the EMG, we also applied an additional filter using the Empirical Mode Decomposition
technique developed by [21].

4. We quantified the pain level caused by the heat applied using four pain thresholds during
the “pain window” (5.5 s) and with regard to the baseline during the “non-pain window”
(see Fig 2).

5. We detected bursts of EMG activity using the Hilbert Spectrum [22].

Table 1. (Continued)

Number Mathematical
group

Feature name Equation / Description

28 linearity pldf t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

o ðkÞ1;...; k�1

q
, where R2

0ðkÞ1;...; k�1 ¼ SQR1;...; k�1�SQR1;...;k
SQR1;...; k�1

29 linearity ldf FDDk ¼ t
ffiffiffiffiffiffiffiffiffiffi
R2

o ðkÞ

q
, where R2

0ðkÞ ¼ SQT0 �SQRðkÞ
SQT0

30 variability var

s2 ¼
PN
i ¼ 1

ðxi��x�Þ2

N�1

31 variability std S ¼ ffiffiffiffiffi
s2

p

32 variability range R ¼ MAXðUÞ �MINðUÞ
33 variability intrange SI ¼ Q3�Q1

2

34 variability meanRR meanRR = mean(hr_RR_vector)

35 variability rmssd
rmssd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1
ð
Xr N�1

i�1

ðRRi � RRi�1Þ2Þ
36 variability slopeRR slopeRR = regression(x, hr_RR_vector)

37 similarity cohe_f_median C fð Þ ¼ Sxy ðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx ðfÞSyy ðfÞ

p

38 similarity cohe_mean see description 37 above

39 similarity cohe_pond_mean see description 37 above

40 similarity cohe_area_pond see description 37 above

41 similarity corr Px;y ¼ EðXYÞ�EðXÞ�EðYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðX2Þ�E2ðXÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðY2Þ�E2ðYÞ

p

42 similarity mutinfo IðA;BÞ ¼ HðAÞ þ HðBÞ � HðA;BÞ
doi:10.1371/journal.pone.0140330.t001
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Feature extraction
We systematically extracted features [23], [24], [25], [26] from the mathematical groups of 1.
amplitude (∑ = 40), 2. frequency (∑ = 24), 3. stationarity (∑ = 24), 4. entropy (∑ = 20), 5. linearity
(∑ = 8), 6. variability (∑ = 19) and 7. similarity (Fig 3) (∑ = 24) (in total: ∑ = 159). Table 1 pro-
vides a detailed information overview of all features. The similarity features of a sample are cal-
culated with regard to the associated mean baseline signal of the person. All features were
normalized (z transformed) per person. The dataset of the study, including the raw and prepro-
cessed signals, as well as the extracted features, is available at: https://www-e.uni-magdeburg.
de/biovid/.

Machine learning with Support Vector Machine (SVM)
Machine learning systems are systems that learn from known data and attempt to recognize
characteristic patterns. After a 'learning phase' (also referred to 'training phase'), they return a
model that can be used to map (i.e., classify) unknown input data into a category [27]. For
these classification tasks, there are several machine learners (classifiers), all of which work
using different decision algorithms, such as Neural Networks, Decision Trees, K-Nearest
Neighbor, and SVM.

For the classification of different pain intensities, we considered using Neural Networks and
k-Nearest Neighbor, but finally we chose SVMs (see Fig 4), as these have proven to be highly
effective in other studies of affective computing [28] and are capable of maintaining sufficient
flexibility with regard to their internal main parameter optimization [29].

The goal of an SVM is to develop a predictive model based on the given training samples
(xi, yi) with xi being a feature vector and yi its associated class label. This model can subse-
quently be applied to an unlabeled test dataset to assign a particular class to each sample. With
the aid of the feature vectors xi, the SVM [30] searches for an optimal hyperplane with maxi-
mummargin in the feature space that separates the feature vectors of one class from feature
vectors of the other. The hyperplane thus serves as the decision function. If the linear separa-
tion is not possible in the original feature space, all training vectors can be transformed to a
higher dimensional space until the SVM finds a dividing hyperplane. This is done by means of

Fig 2. Pain quantification.

doi:10.1371/journal.pone.0140330.g002
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Fig 3. Similarity feature.

doi:10.1371/journal.pone.0140330.g003

Fig 4. Support Vector Machine hyperplane (H).

doi:10.1371/journal.pone.0140330.g004
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a kernel function. In the present case we used a radial basis function kernel (RBF kernel),
because it is able to handle non-linear dependencies between class labels and input attributes.
Furthermore, the RBF-kernel has the advantage that the complexity of the model is limited to
only two main parameters (C, γ). C controls the cost of misclassification of the training vectors
[31], while γ controls the radius of influence of the support vectors [32]. In order to obtain
optimal SVM parameters, a systematic grid search was performed for C and γ on 75% of data
with a resulting 3-fold-cross-validation. When choosing the parameter values, we followed the
procedure by Hsu et al. [29], who recommend exponentially growing sequences for C and γ:
C = 2−5, 2−3,. . ., 215 and γ = 2−15, 2−13,. . ., 23. After testing of all combinations, the pair with the
highest accuracy was finally selected as the optimal parameter set.

The performance of a classifier in general in a given learning task is measured by its classifi-
cation rate (accuracy). Simply put, a set of feature vectors with known class labels is divided
into two randomized mixed subsets. One subset is used for training the model and the other
one is then applied for testing purposes. By putting the remaining feature vectors into the
model, comparing their class labels with the classifier’s predictions, and finally counting the
correctly predicted testing vectors, one receives the classification rate (accuracy) defined as

number of correctly predicted testing vectors
total number of testing vectors

: ð1Þ

We also calculated sensitivity and specificity, which give further information about the per-
formance of the classification task. Both statistical measures are derived from the confusion
matrix of the task. Put the case we have class “positive” and class “negative” with corresponding
testing vectors for “positive” and “negative”. Then sensitivity is defined as

number of correctly predicted testing vectors for 00positive00

total number of testing vectors for class 00positive00
ð2Þ

and specificity as

number of correctly predicted testing vectors for class 00negative00

total number of testing vectors for class 00negative00
: ð3Þ

Feature selection
Automatic pattern selection methods are used to further optimize recognition rates. Feature
selection is a “method for selecting a subset of features providing optimal classification accu-
racy of the classification model” [33]. This is accomplished by means of a variety of feature
selection (pattern configuration) methods, in combination with a classification procedure.

Before we conducted an automatic feature selection algorithm, we performed a manual pre-
selection of the extracted 159 features based on statistical analyses and validation checks. As a
first step, we eliminated features (feature groups) containing either a zero or a static number
for all conditions. Such values may be attributed to a compromised signal or to a special feature
extraction algorithm that appeared as uninterpretable on a particular bio signal. Second, we
deleted all features which correlated positively or negatively with other features with at least
0.95 respectively—0.95. By doing so, we attempted to prevent classification of noise and redun-
dant information.

Finally, we applied a feature selection algorithm combined with pain classification tasks to
the remaining features. For this step, we chose the forward selection as it has shorter run-times
(in most of the cases) as the backward elimination and brute force selection. The forward
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selection algorithm starts with an empty feature set and adds a new feature in each round. At
each round, every new feature is tested for inclusion in the set by calculating a classification
accuracy. The feature with the most increased accuracy is then added to the set before the
beginning of the next round. The algorithm runs until there is no increase anymore [34].

We conducted the Support Vector Machine classification tasks in conjunction with the pre-
viously mentioned feature selection method on varying data sets and different biopotentials.
SVMs were trained on 75% of the data (total number of training samples = 6375) tested on the
remaining 25% of data (total number of test samples = 2125) (see Fig 5). The number of
hereby-obtained optimal features ranges from 5 to 22 (depending on learning task).

Validity of classification rates
In many papers that address classification tasks like emotion or pain detection, machine learn-
ing classification results are presented without a measure of the validity—like in conventional
statistic the p-level or effect size. However, we think this should be included in future analyses.
In our case, we chose Cramér’s V [35] as an appropriate measure as it measures the strength of
association between nominal variables. The value of Cramér’s V is ranging from 0 to +1 and is
interpreted as follows: V< 0.1: negligible association, 0.1< V< 0.2: weak association, 0.2<
V< 0.4:moderate association, 0.4< V< 0.6: relatively strong association, 0.6< V< 0.8: strong
association, and 0.8< V< = 1: very strong association [36].

Results
The classification results are summarized in Fig 6. Significance was tested against chance level.
The classification results for a two class problem are between 79.29% - 90.94%, the Cramer’s V
results and statistical measures sensitivity and specificity for B vs. T1 are V = 0.59 (sensitiv-
ity = 76.00%, specificity = 82.59%), B vs. T2 are V = .63 (sensitivity: 80.00%, specificity:
82.59%), B vs. T3 are 84.94% V = .7 (sensitivity = 84.71%, specificity = 85.18%) and B vs. T4 are
90.94% V = 0.82 (sensitivity = 92.24%, specificity = 89.65%).

The Cramer’s V results and statistical measures sensitivity and specificity for the three and
five class problem are between 43.05% - 73.09%, the classification results for B vs. T1 vs. T4 are
V = .62 (B vs. others: sensitivity = 78.64%, specificity = 70.18%; T1 vs. others: sensitiv-
ity = 69.96%, specificity = 74.69%; T4 vs. others: sensitivity = 70.71%, specificity = 74.34%) and

Fig 5. Support Vector Machine learning architecture.

doi:10.1371/journal.pone.0140330.g005
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for B vs. T1 vs. T2 vs. T3 vs. T4 are V = .38 (B vs. others: sensitivity = 76.32%, specificity = 34.50%;
T1 vs. others: sensitivity = 34.89%, specificity = 45.25%; T2 vs. others: sensitivity = 15.95%, speci-
ficity = 49.74%; T3 vs. others: sensitivity = 28.18%, specificity = 46.52%; T4 vs. others: sensitiv-
ity = 58.71%, specificity = 39.22%). Table 2 points out the most common features in a ranked
order.

Discussion and Conclusions
Our goal was to find significant classification results with high accuracies and an automated
selected feature pattern of biopotentials that represents 'pain' and 'no-pain', respectively. We

Fig 6. Comparison between accuracy via support vector machine of studyWalter et al. [14], without
similarity signal feature [red] vs. support vector machine with similarity feature and automated
selected feature [green].

doi:10.1371/journal.pone.0140330.g006

Table 2. Top ten importance ranking of selected features.

rank feature name

1 Zygomaticus_Similarity_Correlation

2 Zygomaticus_Stationarity_StandardDeviationOfMeanVector

3 Corrugator_Amplitude_Peak

4 Corrugator_Similarity_Correlation

5 Corrugator_Similarity_MutualInformation

6 Trapezius_Similarity_Correlation

7 Zygomaticus_Amplitude_RootMeanSquare

8 Zygomaticus_Linearity_LagDependenceValues

9 Zygomaticus_Variability_Variance

10 Trapezius_Similarity_MutualInformation

doi:10.1371/journal.pone.0140330.t002
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extracted a highly complex and structured mathematical feature space. We could show that (1)
similarity features and an (2) automatic feature selection outperform the accuracy results from
[14]. We found recognition rates with high accuracies based on a configuration of selected fea-
tures. Especially the recognition rate for B vs. T4 (pain tolerance) showed a relatively high qual-
ity with regard to Cramer’s V. To the best of our knowledge, this is the first study in the area of
automated pain recognition to employ biopotential data with accuracy over 90%. Highly rele-
vant are features based on similarity derived from zygomaticus and corrugator. Similarly to
other studies of automated pain recognition via video recording, we pointed out that facial
expressions are highly relevant regarding the pain intensity. The importance of features derived
from similarity thus needs to be tested systematically.

Study weaknesses
We added two additional intermediate levels to obtain a ranged set of four equally distributed
temperatures without a nonlinear correction.

Outlook
Our intention is to optimize our classification algorithm. In reference to that, we are currently
planning future experimental procedures.

1. Generalizability: We will test and improve the generalizability with a complex pain model
(phasic and tonic, heat and pressure).

2. Response Specificity: The specificity of the recognition system will be evaluated with the
task to distinguish pain from psychosocial stress.

3. Assessment modalities: In addition to psychobiological and facial parameters, we will
assess paralinguistic properties, skin temperature, body movement, and other modalities for
pain recognition.

4. Reliability of pain recognition will be tested by repeating the experiment after (at least) one
week.

5. All algorithms will be adapted for online processing to advance towards a pain monitoring
system.

Further, the classification algorithm requires testing and optimization within a clinical envi-
ronment. Finally, the goal of the project is the advancement of pain diagnosis and monitoring
of pain states. With the use of multimodal sensor technology and highly effective data classifi-
cation systems, reliable and valid automated pain recognition will be possible. The surrogate
measurement of pain with machine learning algorithms will provide valuable information with
high temporal resolution for a clinical team, which may help to objectively assess the evolution
of treatments (e.g., effect of drugs for pain reduction, information of surgical indication, the
quality of care provided to patients).
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