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Abstract
ForceGen is a template-free, non-stochastic approach for 2D to 3D structure generation and conformational elaboration for 
small molecules, including both non-macrocycles and macrocycles. For conformational search of non-macrocycles, ForceGen 
is both faster and more accurate than the best of all tested methods on a very large, independently curated benchmark of 2859 
PDB ligands. In this study, the primary results are on macrocycles, including results for 431 unique examples from four sepa-
rate benchmarks. These include complex peptide and peptide-like cases that can form networks of internal hydrogen bonds. 
By making use of new physical movements (“flips” of near-linear sub-cycles and explicit formation of hydrogen bonds), 
ForceGen exhibited statistically significantly better performance for overall RMS deviation from experimental coordinates 
than all other approaches. The algorithmic approach offers natural parallelization across multiple computing-cores. On a 
modest multi-core workstation, for all but the most complex macrocycles, median wall-clock times were generally under a 
minute in fast search mode and under 2 min using thorough search. On the most complex cases (roughly cyclic decapeptides 
and larger) explicit exploration of likely hydrogen bonding networks yielded marked improvements, but with calculation 
times increasing to several minutes and in some cases to roughly an hour for fast search. In complex cases, utilization of 
NMR data to constrain conformational search produces accurate conformational ensembles representative of solution state 
macrocycle behavior. On macrocycles of typical complexity (up to 21 rotatable macrocyclic and exocyclic bonds), design-
focused macrocycle optimization can be practically supported by computational chemistry at interactive time-scales, with 
conformational ensemble accuracy equaling what is seen with non-macrocyclic ligands. For more complex macrocycles, 
inclusion of sparse biophysical data is a helpful adjunct to computation.
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Introduction

ForceGen is a method for 3D structure generation and 
conformational elaboration that does not rely on distance 
geometry [1–6], precalculated molecular templates [7, 8], or 
stochastic sampling [9–11]. It is driven by coupling intuitive 
physical molecular movement with the internal conforma-
tional energy computed from a molecular mechanics force 
field (MMFF94sf [12–18]). For full details on the Force-
Gen method, please refer to the original publication [18], 
which included comparisons to other methods on both non-
macrocycles and macrocycles, though comparisons were 
limited in scope and could not include more recent alterna-
tive method performance data. The primary changes within 
the ForceGen methodology reported here have been in the 
area of macrocycles, so detailed discussion and compara-
tive analysis will be presented on large macrocycle-focused 
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benchmarks. Additional speed optimization has been done, 
in particular making use of parallel calculations on multi-
core workstations.

ForceGen uses exactly the same algorithmic machinery 
to search non-macrocycles and macrocycles. Using the large 
Platinum Diverse Dataset (99% non-macrocycles) from the 
recent paper of Kirchmair’s group [19], a brief summary 
of ForceGen’s performance will be made to facilitate com-
parison with recent versions of other widely used methods. 
However, the primary focus in this study is on macrocyclic 
ligands. The original ForceGen report showed comparative 
performance using 30 macrocyclic ligands from the widely 
used Chen and Foloppe benchmark [20], but more sub-
stantial analysis was presented on a set of 182 macrocycles 
curated from the PDB, which will be used here to compare 
current and prior ForceGen performance. In this report, we 
add a 150 macrocycle data set curated from the CSD and 
PDB in a detailed study of the MacroModel Large-Scale 
Low-Mode approach [11] and a recently published 208 mol-
ecule macrocycle set reported with the introduction of the 
Prime-MCS approach [21]. The latter study included com-
parative performance for a number of widely used methods. 
The overall complexity of the four data sets is summarized 
in Table 1. In total, the data include 431 unique macrocyclic 
ligands, forming the largest such set analyzed in a single 
study.

ForceGen’s approach to conformer generation is driven 
by the force field (a variant of MMFF94s). Figure 1 (left 
side) illustrates the search method for ring systems com-
posed of multiple small flexible rings, exemplified by tet-
racycline. The central concept is the “bend.” Such bending 
replicates the intuitive physical manipulation of a plastic 
organic chemistry model of cyclohexane to produce chair, 
twist-boat, and boat conformations. Following identification 
of ring systems, ring atom pairs are identified across which 
to make a bend. Bends are repeatedly applied to an evolv-
ing set of distinct low energy ring conformations, with each 
bend requiring a direct movement of atoms followed by a 
careful force field minimization procedure that avoids rever-
sion. Additional details of the bending process are given in 
the Methods Section. For tetracycline, ring system identifi-
cation yields the fused set of four six-membered rings (each 
with different saturation patterns). The repeated process of 

bending the ring system yields an ensemble of 117 low-
energy conformers. The procedure is general, not requir-
ing any precomputation of large numbers of specific ring 
templates, and its pure physical manipulation is effective on 
diverse ring systems.

For macrocyclic systems, the components that are com-
posed of small rings are elaborated using the bending 
approach just described. For ring systems of size 9 or larger, 
ForceGen makes use of an additional physical manipula-
tion: a “twist” that is applied to force rotation around the 
bonds within macrocycles. Figure 1 (right side) illustrates 
this using cyclodecane as an example. The approach is very 
similar to that described for application of ring bends, with 

Table 1   Summary of molecular datasets and their relative complexity

Set name Description N N heavy atoms Rot. bonds N macrocycles Macro. size

Platinum [19] Large PDB benchmark 2859 24.1 ± 8.2 5.5 ± 3.2 29 14.7 ± 6.1
Chen/Foloppe [20] Diverse macrocycles 30 39.6 ± 15.6 6.2 ± 5.1 30 18.2 ± 8.3
ForceGen [18] Diverse macrocycles 182 40.0 ± 11.1 6.7 ± 4.5 182 16.7 ± 4.3
Shelley [11] Diverse macrocycles 150 49.5 ± 18.7 7.8 ± 6.1 150 20.2 ± 6.9
Prime-MCS [21] Diverse macrocycles 208 42.3 ± 21.8 6.0 ± 6.9 208 19.3 ± 7.1

Fig. 1   Ring bending for elaboration of ring system flexibility: initial 
3D structure generation produced a reasonable conformer for tetra-
cycline (upper left); ring bends are identified among atoms of a ring 
system according to rules, with an example for cyclohexane shown 
(middle left); iterative application of the bends identifies new ring 
conformations effectively (bottom left). Ring twisting for macrocy-
clic search: the initial structure of cyclodecane (upper right) is shown 
with four atoms marked; those atoms seen through the 2–3 axis (mid-
dle right) are pushed through a twisting motion where atom 4 is 
forced around the axis; iterative application of this strategy results in 
an effective enumeration of ring conformers for cyclodecane
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force being applied to push a macrocycle atom around a tor-
sional axis (see the Methods Section for additional details). 
This simple procedure produces 245 distinct conformations 
for cyclodecane in about 10 s on a four-core workstation.

In this work, two additional physical movements are 
introduced (see Fig. 2), which aid in macrocyclic conformer 
elucidation. The first is the “flip” which identifies nearly co-
linear macrocyclic ring bond pairs that are rotatable (marked 
by red arrows). The degree to which the bonds are consistent 
with a sensible flipping motion is assessed by considering 
the bond vectors themselves and the vectors between mid-
points of the pair of bonds. If the two bonds point in simi-
lar directions and they also point in the same direction as 
the vector between their mid-points, then a flip is made. In 
Fig. 2, the indicated flip will cause a coordinated movement 
of two residues (an isoleucine and a serine).

The second physical movement is the explicit formation 
of cross-macrocycle hydrogen bonds. For large peptide mac-
rocycles, such interactions are often critical features of stable 
low-energy conformations. This requires the identification 
of likely hydrogen bonding pairs across macrocyclic rings 

and of sets of such hydrogen-bonding pairs. The geometry 
of sharp ring turns is such that hydrogen-bonding pairs will 
have shortest path lengths of 5 ring atoms or greater, but, 
often, such interactions involve much larger spans. Figure 2 
shows the structure of a 14 residue cyclic peptide with a 
disulfide bridge (the sunflower trypsin inhibitor from the 
PDB complex 4KEL). Five hydrogen bonds are labeled A–E 
(yellow dashed lines, with distances in Å), and the respective 
ring atom numbers along the main macrocycle are indicated 
(a total of 42 atoms are in the ring, excluding the disulfide 
bridge).

Using only the topology of a macrocyclic structure, it 
is possible to identify sets of mutually consistent hydrogen 
bond pairs. In the example, the triplet of A-B-C has the char-
acteristic that on one side of the ring, the topological indices 
increase by 2 and 4 moving across the triplet, but on the 
other side, the the indices decrease by exactly 2 and 4. The 
ForceGen method identifies all such topologically compat-
ible triplets of trans-annular hydrogen bonds, accounting 
for the complexities of ring numbering induced by bridges. 
For each such triplet, an initial structure is generated with 
forces applied to yield the preferred trio of hydrogen bonds. 
Those with the most favorable initial average hydrogen-
bond distances are retained for ring conformer elaboration. 
In addition, ring conformer search is carried out without any 
hydrogen-bonding triplet constraint, to avoid turning a heu-
ristic search ploy into a hard and fast assumption. The results 
of these independent ring conformer explorations are com-
bined prior to torsional elaboration of exocyclic components 
(additional details can be found in the Methods section).

In Fig. 2, the crystallographic pose of the ligand (green) 
is shown with the best exemplar from a pool of 1000 con-
formers generated using ForceGen’s thorough search mode 
(cyan). The RMS deviation (beginning from a memory-free 
starting point) was 1.6 Å (ring RMSD of 0.8 Å). Structures 
of the complexity seen in Fig. 2 are not always tractable 
using even the most exhaustive search implemented within 
ForceGen. Also, it may be important to obtain a more com-
plete and representative ensemble of what is relevant in 
the system under study. Here, we show a case study using 
Aureobasidin A (a depsipeptide antifungal with a 27-atom 
macrocyclic ring), where sparse distance and torsion con-
straints from NMR are used to enhance sampling of biologi-
cally relevant conformational space.

The results presented here exhaustively characterize 
ForceGen’s performance on the largest non-macrocycle and 
macrocycle benchmarks currently available. ForceGen is a 
general method whose performance, both in terms of speed 
and quality, represents a significant advance over existing 
conformer generation approaches, including performance 
on non-macrocycles but particularly on macrocyclic mol-
ecules. Extensions of the method are natural, whether by 
adding new physical movements to explore energetically 

Fig. 2   New physical movements include flips of stretches of mac-
rocycle sub-rings and coordinated formation of multiple hydro-
gen bonds (top); best matching conformer from ForceGen thorough 
search (bottom, shown in cyan)
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viable motifs or by incorporating additional data such as 
NMR constraints.

ForceGen is implemented within the Tools module of the 
Surflex Platform, now in version 4.4.

Methods

Where possible, data were collected to support fair and 
direct comparisons between the methods reported here and 
widely used alternatives. Every effort has been made here to 
ensure that the curated data fairly represents the structural 
data underpinning other published reports, and great care has 
been taken to remove all memory of 3D coordinates prior 
to generating initial 3D structural models and proceeding 
with conformational elaboration. Note that all non-ForceGen 
performance data were taken from the cited literature, where 
experts applied the respective methods to data sets specifi-
cally prepared for utilization by those methods.

Molecular data sets

The results in this work were derived from the data sum-
marized in Table 1. The 2859 molecule Platinum Set has 
similar characteristics to those used for development and 
validation of several conformer generation approaches (e.g. 
OMEGA and ConfGen [7, 8]), but it is much larger, and it 
has been very carefully curated in a manner unbiased toward 
any particular algorithmic approach [19]. It contains 29 mac-
rocyclic ligands (about 1%), but the remaining 99% span a 
wide variety of biologically relevant molecular space.

The 30 ligand set from Chen and Foloppe [20] became an 
early and influential benchmark, though its size sharply lim-
its its ability to distinguish performance of different methods 
with statistical support. The 182 macrocycle ForceGen Set 
matches closely with the Foloppe Set in terms of molecular 
complexity, but the sixfold increase in size makes it possible 
to demonstrate significant differences between alternative 
approaches. The 150 macrocycle set (the “Shelley Set”) that 
was curated for the MacroModel study [11] contains gen-
erally larger molecules than seen in the ForceGen Set (by 
about ten heavy atoms) and bigger macrocycles (ring sizes 
increased by roughly three atoms). The set is also charac-
terized by a larger fraction of peptidic macrocycles where 
trans-annular hydrogen bonding is an important structural 
feature of low-energy conformations. The recently reported 
208 macrocycle set (the “Prime-MCS Set”) is similar in 
many respects to the Shelley Set, though the Prime-MCS 
Set is less skewed toward very large molecules than the Shel-
ley Set.

The details of the curation approach for the Chen/Foloppe 
and ForceGen sets are provided in the original ForceGen 
paper [18]. The Platinum Set was downloaded and used 

unmodified (Version 2017_01 from http://www.zbh.uni-
hambu​rg.de/plati​num_datas​et) [19]. The Shelley Set was 
comprised of 67 PDB macrocyclic ligands in complex with 
cognate proteins along with 83 small-molecule CSD ligands. 
The PDB ligands were provided in Supplementary Material, 
sensibly protonated, in an SDF file and were converted to 
SYBYL mol2 without modification. The CSD ligands were 
obtained directly from the CCDC using reference codes pro-
vided in Supplementary Material. These were obtained as 
SYBYL mol2 files and had protons added automatically, as 
appropriate for physiological pH using the normal Surflex-
Tools heuristic protonation procedure.

The Prime MCS Set was comprised of 130 CSD ligands, 
60 PDB ligands (a subset of the Shelly Set), and 18 so-called 
“BIRD” PDB ligands (the PDB “Biologically Interesting 
Molecule Reference Dictionary”). The CSD portion was pre-
pared exactly as with the Shelley Set; the 60 ligands from the 
Shelley Set were used as prepared within that set, and the 18 
BIRD ligands were prepared from PDB files, by converting 
to mol2 files automatically (using the Surflex-Dock “grind-
pdb” procedure), with manual review of the final structures.

Taken all together, this collection of macrocyclic struc-
tural data is the most comprehensive to be the subject of 
a single study. In total, there are 431 distinct macrocyclic 
ligand structures spanning ring sizes of 9–50 atoms, total 
macrocyclic ring system sizes of 9–66, non-ring rotatable 
bonds of 0–36, rotatable macrocyclic ring bonds of 4–52, 
and total flexibility of 6–66 (the sum of macrocyclic and 
exocyclic rotatable bonds).

Methodological details

The ring bending and twisting procedures were presented in 
detail in the original paper [18] and will be briefly summa-
rized here. The new features involving flipping movements, 
hydrogen bonding, and NMR constraints will be covered in 
more detail.

Ring bending

The ring bending procedure have five steps:

1.	 Identify ring systems Given a single reasonable 3D con-
former for a molecule, ring systems are identified where 
all bonds between atoms of the ring system are part of 
rings of size three to eight.

2.	 Identify ring bends: For any pair of atoms within a ring 
system, it will be used as a ring bend if the following 
three conditions hold:

(a)	 Not-connected Each ring bend pair must not be 
directly bonded.

http://www.zbh.uni-hamburg.de/platinum_dataset
http://www.zbh.uni-hamburg.de/platinum_dataset
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(b)	 Non-planarity At least one atom of a ring bend 
pair must be part of a non-planar ring.

(c)	 Bridged or fused rings The pair must not cross a 
bridged ring atom or a ring fusion.

3.	 Identify LHS and RHS sides for bends For each ring 
bend, we identify the “sides” of the bend and arbitrar-
ily call the smaller of the two the right-hand-side. The 
atoms of the ring system form the RHS and LHS sides, 
and their pendant substituents are noted.

4.	 Iterate over bends For each ring bend, we will do the 
following:

(a)	 Make a bend Centroid locations are computed for 
the LHS and RHS ring system atoms. The tor-
sion angle is computed using the RHS centroid, 
the ring bend atom pair as the axis, and the LHS 
centroid as the last position. A rotation around the 
axis is made for the RHS atoms and their pendant 
groups such that the ring is bent opposite to its 
existing configuration (see Fig. 1). Neither the 
LHS atoms/substituents or the axis atoms/sub-
stituents are moved.

(b)	 Relax the bend The atoms of the ring system are 
“pinned” using a quadratic positional penalty to 
prevent reversion (unbending) and the conformer 
is minimized.

(c)	 Finalize the bend The pinned atoms are released, 
and the conformer is minimized again.

(d)	 Check quality and add to ring conformers If the 
resulting conformer has not inverted any specified 
configurations, falls within an energy window of 
the current minimum, and is non-redundant based 
on RMSD of ring system atoms, it is added to a 
growing list of ring conformers.

5.	 Termination and Iteration: This process iterates through 
all ring bends repeatedly until either no new ring con-
formers are found or a maximal number of rounds are 
completed.

Ring twisting

For macrocyclic systems, in addition to bends, a twisting 
movement is also applied using a similar procedure to the 
one used for bending. The application of macrocycle twists 
occurs after Step 4 in the above procedure. Any single bond 
within a ring whose smallest enclosing ring size is nine or 
greater will be twisted. Each such twist consists of the two 
central bonded atoms (e.g. atoms 2 and 3 in Fig. 1 along with 
the connected ring atoms (atoms 1 and 4). Such bonds are to 
be twisted, as follows:

1.	 Pin the non-moving atoms Atoms 1, 2, and 3 of the tor-
sion are pinned with quadratic positional constraints.

2.	 Rotate the other atom A series of positions for atom 
4 are identified that represent rotations around the 2–3 
axis. For each of these positions, a quadratic position 
constraint is set, and a copy of the parent conformer is 
minimized subject to the pinned positions.

3.	 Finalize the twists The pins are released, and the twisted 
conformers are minimized.

4.	 Repeat with other end The preceding steps are redone, 
but with atom 1 moving instead of atom 4.

5.	 Check quality and add to ring conformers For the result-
ing conformers that have not inverted any specified con-
figurations, fall within an energy window of the current 
minimum, and are non-redundant based on RMSD of 
ring system atoms, they are added to a growing list of 
ring conformers.

Pinning the trio of atoms during each twist holds just a 
part of the macrocycle in place, but it allows the remaining 
atoms to move so as to adapt to the forced rotation of the 
fourth atom. In Fig. 1, only the two closest unpinned car-
bon atoms to Atom 4 move significantly, with the remaining 
atoms reacting very little to the perturbation.

Sub‑cycle flipping

The flip physical motion identifies nearly co-linear macrocy-
clic ring bond pairs that are rotatable (marked by red arrows 
in Fig. 2). For each conformer to be considered for a flip, the 
following procedure is carried out:

1.	 Identify relevant pairs of macrocyclic bonds All pairs of 
macrocyclic bonds are identified where:

(a)	 Bridged or fused rings The pair must not cross a 
macrocycle bridge.

(b)	 Distant enough: The mid-points of each bond 
(arbitrarily labeled LHS and RHS) are calculated, 
as is the distance between the two. If the distance 
is at least 4.0 Å, then the pair is considered fur-
ther.

(c)	 Directionally compatible Three normalized vec-
tors are calculated: (1) along the LHS bond ( V1 ), 
(2) along the RHS bond ( V2 ), (3) and between 
the mid-points previously calculated ( V3 ). If 
min((V1 ⋅ V2), (V1 ⋅ V3), (V2 ⋅ V3)) > 0.3 , then the 
pair is considered further. Note that this is a weak 
definition of co-linearity, allowing for angular 
deviations from co-linearity of about 70 degrees.

2.	 Make the flip For each bond-flip pair:
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(a)	 Identify atoms to be flipped All atoms between the 
ends of the two bonds are identified.

(b)	 Flip the atoms These atoms are rotated 180 
degrees around the axis between the midpoints of 
the two bonds.

(c)	 Pin the ends The end atoms of the flip are pinned 
using a quadratic position constraint.

(d)	 Minimize The sub-cycle flipped conformer is min-
imized, and the positional restraints are released. 
If the resulting conformer has not inverted any 
chiral centers and is within the current energy 
window (or forms a new lower bound), it will be 
retained.

A very similar procedure is used to flip bridging compo-
nents that connect different sides of a macrocycle. In this 
situation, it is very likely that chiral centers (especially those 
that occur at the bridging atoms) will be inverted. Rather 
than enforcing a positional constraint as with the flipping 
procedure, all chiral configurations are enforced with stand-
ard improper torsion terms, minimization is done, and the 
chiral constraints are removed. If the resulting conformer 
has not inverted any chiral centers and is within the current 
energy window, it will be retained.

Hydrogen bond exploration

Cyclic peptides and related macrocycles often exhibit mul-
tiple trans-annular hydrogen bonds that stabilize a family 
of low-energy conformations. While it is possible to hap-
pen upon such configurations through the movements just 
described, in general, the search times to reliably find these 
configurations will be large. As seen in Fig. 2, the topologi-
cal features that are seen in peptidic ligands are both easy to 
identify and can provide strong constraints on the combina-
tions of hydrogen bonds that may be profitable to explore.

1.	 Identify relevant hydrogen-bonding pairs All pairs of 
macrocyclic hydrogen bond pairs are identified:

(a)	 Macrocycle parsing The macrocycles within a 
molecule are identified.

	 i.	 Macrocyclic bonds A pair of atoms whose 
shortest connecting path contains nine at-
oms or more is labeled as a macrocyclic 
bond, and the atoms are marked as being 
part of a macrocycle.

	 ii.	 Macrocyclic systems From each mac-
rocyclic atom that has not been labeled 
with a system number, all atoms that are 
connected by bonds that are part of rings 
are iteratively identified. All such atoms 

are labeled with the same macrocyclic 
system number. The procedure identifies 
all macrocyclic systems and separately 
labels each one.

	 iii.	 Macrocyclic bridges Bridges within mac-
rocyclic systems are identified topologi-
cally. The simple case is where two atoms 
in a macrocyclic system each have three 
bonds connecting them to three atoms 
that are all labeled as being part of the 
same system (as seen in the 4KEL exam-
ple of Fig. 2). More complex cases in-
volve a small aromatic ring or ring system 
that mediates a bridge, and these are also 
identified. By convention, the shortest 
path connecting bridging atoms is called 
the bridge.

(b)	 Hydrogen bond pair constraints Donor/acceptor 
pairs that are part of the same macrocyclic system 
are identified, subject to these constraints:

	 i.	 Do not cross a bridge atom The short-
est non-bridging path between the atom 
pair must not include a bridge atom. For 
example, in Fig. 2, the proton attached to 
ring-atom 3 is not paired with the carbon-
yl oxygen attached to ring-atom 19. This 
is not to say that such interactions cannot 
exist; rather, they simply are not part of 
the set of explicitly explored interactions.

	 ii.	 Distant enough to make a turn If the 
shortest non-bridging path between a do-
nor and acceptor (including the ends) is 
at least eight, they are added to the list of 
h-bond pairs to explore.

2.	 Identify hydrogen-bond triplet sets Given the set of 
hydrogen bonding pairs just identified, those groups of 
three that are capable of forming topologically compat-
ible simultaneous h-bonds are enumerated, with the con-
straints described in the Introduction.

3.	 Generate constrained macrocycle alternates The preced-
ing steps may identify a very large number of possible 
triplets to explore. For example, the 4KEL ligand (see 
Fig. 2) has 39 triplets that are identified after meeting all 
of the preceding topological constraints.

(a)	 For each triplet, a constrained minimization is car-
ried out where the triplet of h-bonds in question 
is constrained with a quadratic penalty to have an 
inter-atomic distance of 2.0 Å or less.

(b)	 The set of minimized triplet alternatives is sorted 
based on mean h-bond triplet distance (low to 
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high), with the top 8 retained for explicit explora-
tion.

(c)	 For each such remaining alternative, a conforma-
tion is generated beginning from zeroed coor-
dinates, but while making use of the triplet of 
h-bond distance constraints.

(d)	 This set of alternative h-bond triplet constrained 
conformational starting points is added to the 
original h-bond agnostic conformation. All are 
then subjected to the normal ForceGen ring search 
procedure, with the agnostic starting point having 
no fixed h-bond constraints and with the h-bond 
triplet alternatives being searched with the con-
straints in place.

(e)	 Based on energy, the best ring alternatives from 
this procedure are retained, and the exocyclic 
torsional elaboration proceeds using the normal 
procedure.

This strategy for exploring macrocyclic hydrogen bond 
networks can increase the computational cost by nearly a 
factor of 10. However, all of the alternative macrocyclic 
explorations are done in parallel, with each individual sub-
exploration also benefiting from multi-core parallelism. 
Such cases remain the most computationally expensive to 
explore, as they combine the largest molecular sizes, largest 
ring sizes, and also incur the multiplicative cost of searching 
alternate constrained starting points.

NMR constraints

Utilization of experimental data derived by NMR is natural 
within the ForceGen algorithm, and it uses the same compu-
tational machinery as used for the hydrogen bond networks 
just described. Specification of distant constraints is done 
as follows: 

# Type Pen Dist Wiggle a1 a2
nmr 1.0 4.24 0.5 39 134
nmr 1.0 3.87 0.5 39 96
...
# Type Pen Dist Wgl a1N a2N a1list a2list
qnmr 1.0 2.86 0.5 1 3 96 15 16 17
qnmr 1.0 2.78 0.5 1 3 98 15 16 17
...

Distance constraints can be specified either between 
specific protons (the “nmr” type) or between symmetry-
related groups of protons (the “qnmr” type), where the 
centroid of the specified atoms serves as the point from 
which distances are calculated. The latter is a common 
approach for handling degenerate proton resonances, 
implemented in widely used NMR-based conformational 

analysis software such as CYANA [22]. In each case, a 
penalty value (kcal/mol/A2 ) defines the strength of the 
positional constraint, whose ideal value is specified by the 
“dist” parameter. Free movement is allowed up to the value 
specified by “wiggle” beyond which a quadratic penalty 
applies. This creates a simple square-welled, continuous, 
and differentiable penalty function that accommodates 
experimental noise.

Specification of torsional constraints is very similar: 

# Type Pen L_Bound U_Bound a1 a2 a3 a4
torsion 0.3 -150 -90 36 38 40 56
torsion 0.3 -160 -80 93 95 97 112
...

Again, a smooth square-welled penalty is defined, with 
a value of zero between the specified bounds and increas-
ing quadratically beyond those bounds. Conventional 
definitions, as commonly used within the peptide NMR 
community, of � and � angles are employed.

The option “-molconstraints constraint_file” passes the 
constraints into the ForceGen procedure from the com-
mand line. The constraints are used both for initial 3D 
structure generation as well as during the entirety of con-
formational search.

Conformer ensembles generated under one set of NMR 
constraints (or none at all) may be profiled against that set 
of constraints or another set using the “profile” ForceGen 
procedure. The profile yields information about the ener-
getics of each conformer, expressed as both the MMFF94sf 
energy as well as the energy of constraint violation (the 
“violation energy”). It also counts discrete violations per 
conformer subject to specific thresholds. In addition to 
profiling conformers, the procedure produces a profile of 
each NMR constraint that summarizes the extent to which 
it is violated in terms of frequency and magnitude in a 
fashion similar to CYANA [22]. This can be helpful in 
identifying incorrectly assigned NMR peaks by making 
use of subsets of possible constraints.

The profiling procedure optionally takes a conformer 
as an argument against which to measure RMSD (auto-
morph and alignment corrected) in cases where there may 
be some orthogonal experimental information about the 
preferred conformation of the molecule under study. 

sf-tools -molconstraint nmr-cons profile
nmr-pq-aba.mol2 csd-aba.mol2 prof-nmr-pq

The preceding command generates a profile for the 
given conformer ensemble (“nmr-pq-aba.mol2”) against 
the NMR constraints in “nmr-cons” while measuring 
closeness to the CSD crystal structure “csd-aba.mol2” 
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with the resulting conformer and constraint profiles (tab-
delimited text files) being prefixed by the last argument.

ForceGen search modes

The machinery for torsional sampling has been further opti-
mized for computational speed and parallel computations, 
and parameter sets have been developed for different accu-
racy/speed trade-offs. ForceGen offers seven user-selectable 
modes of conformational search:

1.	 -pfastf for preparing very large compound databases (50 
conformers max)

2.	 -pscreen the preferred mode for preparation of all but the 
very largest databases for virtual screening (50 or 120 
max conformers depending on ligand flexibility)

3.	 -pfast an alternative to -pscreen where a reduction of the 
total number of conformers per molecule is important 
(50 conf. max)

4.	 -pgeomf (default) appropriate for fast geometric sam-
pling of ligands (250 conf. max)

5.	 -pgeom standard search mode, for geometric studies, 
including macrocycles (250 conf. max)

6.	 -pquantf for preparation of molecules in affinity predic-
tion workflows (1000 conf. max)

7.	 -pquant thorough search mode, for more accurate prepa-
ration of molecules (including macrocycles) in affinity 
prediction workflows (1000 conf. max)

Experimental NMR data for Aureobasidin A

Aureobasidin A (AbA) served as a case study for employing 
ForceGen’s NMR constraint functionality. All AbA NMR 
data were acquired at 25 degrees Celsius in d6-DMSO. In 
full agreement with the original report [23], AbA exists 
in solution as two slowly exchanging forms: trans-Proline 
and cis-Proline conformers. Because the exchange is very 
slow on the NMR timescale, both forms can be analyzed 
as independent molecules [23]. In this work, we focused 
on trans-Proline conformation of AbA because it has been 
more extensively studied, and there is a single-crystal X-ray 
structure available for this form [24].

Resonance assignment and constraint generation

All isotropic NMR data were acquired on Varian 600 MHz 
VNMRS instrument equipped with a 3mm triple-resonance 
cryoprobe. NMR resonance assignment was conducted using 
conventional NMR approach utilizing 1H, 1H-1H COSY, 1H-
13C HSQC, 1H-13C HMBC and 1H-1H ROESY data. NMR 
sample contained 7mg of AbA in 0.2ml of d6-DMSO in a 
3mm NMR tube. The parameters were as follows: 1H-1H 
COSY (4 scans, 400 indirect increments), 1H-13C HSQC 

(multiplicity-edited, 8 scans, 180 indirect increments), 1H-
13C HMBC (8Hz optimized, 32 scans, 240 indirect incre-
ments), 1H-1H ROESY (ROESYAD, 80 ms mixing time, 16 
scans, 400 indirect increments).

NOE distance restraints were generated from the ROESY 
data mentioned above. The goal of this work was to utilize 
restraints that were relatively easy to extract from experi-
mental data. Typically, most peptide NOE cross-peaks have 
multiple possible assignments due to significant 1H reso-
nance overlap, especially for the side chains. In the case of 
AbA, the situation was exacerbated by the presence of two 
forms (trans-Proline and cis-Proline), which significantly 
increased the degree of resonance overlap and, correspond-
ingly, the degree of NOE assignment ambiguity. The con-
ventional approach to resolve the ambiguity would consist 
of iterative refinement of the conformational structural 
ensemble and the NOE assignments resolvable using those 
structures [22]. However, such an approach is both time-con-
suming and potentially biases the conformational ensemble. 
In this work, we intentionally used only restraints gener-
ated from NOE cross-peaks with unambiguous assignments, 
which amounted to a total of 20 out of more than 200 indi-
vidual NOE cross-peaks. Unambiguously assigned NOEs 
cross-peaks were integrated using MestreNova software, and 
their integrals were converted to interatomic distances by a 
conventional approach using NOEs between protons with a 
fixed distance for calibration [22].

Φ torsion angle restraints were generated from the 3JHNHA 
coupling constants measured in 1H spectra. There are only 3 
NH protons in AbA, and all of them showed relatively large 
couplings (Phe3 9.9Hz, Ile6 8.0Hz, Leu8 7.9Hz), allowing 
the use of a generalized Karplus equation [25] to generate 
torsional restraints. Additional allowances were added to the 
restraints to account for imperfect experimental data and 
uncertainties in the Karplus equation parameterization.

Residual dipolar coupling (RDC) measurements 
and analyses

Anisotropic NMR data (RDC measurements) were acquired 
on Bruker 500 MHz Avance IIIHD instrument equipped 
with a 5mm CPP TCI cryoprobe. RDC measurements were 
performed using a stretched gel methodology (detailed in 
[26, 27]). 1H-15N and 1H-13C RDCs were measured as a dif-
ference between respective one-bond 1H-15N and 1H-13C 
coupling constants in the isotropic and anisotropic (stretched 
gel) environments. 1H-15N one-bond coupling constants 
were measured in the 15N dimension of 1H-15N HSQC 
spectra (coupled, 90Hz optimized, 76 scans, 122 indirect 
increments). 1H-13C one-bond coupling constants were 
measured in the 13C dimension of 1H-13C HSQC data (cou-
pled, 145Hz optimized, 16 scans, 1108 indirect increments). 
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Only backbone (NH and C�H ) RDCs were used for valida-
tion; this simplified the analysis by eliminating the need to 
account for RDC averaging in flexible side chains.

RDC data were used for an orthogonal validation of 
generated conformational ensembles and were not used 
as restraints. For every structure in the ensemble, a single 
value decomposition (SVD) analysis was utilized to calcu-
late the alignment tensor and the Q-factor, which measures 
a quality value if a correlation exists between the experi-
mental and back-calculated RDC values [28].

Computational procedures and statistical analysis

The results reported here were generated using Surflex-Tools 
version 4.411. The results were generated through zeroed-
coordinate conformer randomization in standard search 
mode, as follows (shown for the ForceGen Macrocycle Set): 

sf-tools -pgeom testprep MacroSet.mol2 macgeom
--> macgeom-log (produces memory-free

starting conformer, performs
conformer search, and calculates
automorph-corrected RMSD, ...)

# The testprep command is equivalent to separate
# randomization and conformer search:

sf-tools randomize_archive MacroSet.mol2 mac
--> mac-random.mol2

sf-tools -pgeom forcegen mac-random.mol2 macgeom
--> macgeom-*.mol2 (* = molnames)

RMS deviations were done for each resulting conformer 
pool by identifying all molecular symmetries, then applying 
the rigid body alignment transform to each conformer so 
as to minimize the RMSD against the crystallographic one 
under all identified symmetric self matches. The minimum 
such RMSD value (for non-hydrogen atoms) is the value 
reported for each ligand. RMSD of heavy atoms corrected 
for molecular automorphism is standard in evaluations of 
docking calculations and for conformer generation.

In addition, for ligands containing macrocycles, cal-
culations were made for the RMSD of the atoms within 
the macrocycle rings. For all ring bonds, the ring sys-
tem comprised of enumerating all connected ring bonds 
is identified. Given such a ring system, the shortest path 
between any two bonded atoms is calculated. Where a ring 
bond exists whose shortest path is nine or greater, the ring 
system is said to be macrocyclic. The size of that macrocy-
cle is taken to be the smallest of the various macrocyclic 
paths within the ring system. For molecules with multiple 
macrocyclic ring systems, the largest such size is reported 
as the macrocycle ring size of the overall molecule.

In comparisons of performance between methods, where 
data have been available linking specific molecules to per-
formance values, paired t-tests have been used to calculate 
p-values for superiority of one method over another. Where 
only accumulation curves or unlabeled collections of perfor-
mance values have been available, and where two distribu-
tions clearly favor one method over another, Kolmogorov-
Smirnov (KS) tests have been done to calculate p-values 
(these are based on the maximal difference in cumulative 
distributions of performance values for two methods). KS 
tests are less sensitive than paired t-tests, and for small data 
sets, the difference in cumulative probability must be quite 
large.

For example, for the Chen/Foloppe Set (30 examples), a 
KS test requires a maximal difference of roughly 0.35 at p = 
0.05 (i.e. a 35 percentage point difference in RMSD success 
rates). For moderately sized data sets (200 examples), a 14 
percentage point difference is sufficient. For large sets such 
as the Platinum Diverse Set (2859 examples), a performance 
difference of just 4.3 points is sufficient to distinguish sig-
nificant differences at p = 0.01.

Additional details about the data sets, computational 
procedures, and about software availability are available at 
www.jainl​ab.org.

Results and discussion

ForceGen was introduced with analysis of both 3D struc-
ture generation and conformer generation using five data 
sets, but comparison to other approaches was limited by the 
size of available benchmarking data sets and the breadth of 
available comparative data to recent versions of widely used 
methods [18]. Here, we will present updated performance, 
both for accuracy and speed, including much more extensive 
direct comparative analysis. The recent paper introducing 
the Platinum Diverse Set included detailed benchmarking 
for several widely used methods [19], and it will be used for 
comparative analysis on non-macrocyclic conformer search 
performance.

For macrocyclic performance, the ForceGen Set will 
be used to characterize performance gains attributable to 
the new search strategies, and the other three macrocycle 
sets will be used for comparison to other methods. Last, 
Aureobasidin A (AbA) will be used as a case study in the 
utilization of NMR distance and torsional constraint data for 
the generation of macrocyclic conformer ensembles.

Platinum diverse set

The Platinum Diverse Set was specifically curated for evalu-
ation of conformer generation by systematic and automated 
processing of protein-bound ligand structures from the PDB, 

http://www.jainlab.org


540	 Journal of Computer-Aided Molecular Design (2019) 33:531–558

1 3

resulting in 2859 ligands in the 2017 revision [19], which 
limits the over-representation of molecular scaffolds. Pro-
portionately, it contains few macrocyclic compounds (just 
1%), and those present are less complex than those in the 
macrocycle-focused sets (see Table 1).

Table 2 summarizes results for ForceGen and the most 
successful of the variants within each of six programs 
reported in Friedrich et al. [19]. Multiple parameterizations 
of several programs were run, generally with the default 
methods performing best. The data excerpted here repre-
sents a best-case for nearly all programs and always at least a 
very good case of program performance, but many details in 
the original study may be of further interest to readers [19]. 
Performance for default parameterization of the following 
program variants are shown in Table 2 (force fields used 
for conformer minimization are in parentheses): OMEGA 
(none), iCon (MMFF94s), RDKit-DG (UFF), cxcalc (Drei-
ding), ConfGenX (none), and MOE Stochastic (MMFF94x). 
The following variants performed less well and will be be 
discussed further in the context of non-macrocyclic mol-
ecules: MOE LowModeMD, MOE Import, and ConfGen.

The Table is split into results for screening-mode con-
former preparation (top half) and accurate-mode (bottom 
half, e.g. for pose prediction). Bold values represent the top 
performing methods within each mode. The -pscreen variant 
makes use of a ligand-dependent variable-sized final pose 
pool (50 or 120 depending on flexibility), which resulted 
in slightly larger final conformer ensembles (roughly 60 

compared with roughly 40 for the other methods). However, 
for this small increase in mean pool size, performance across 
all criteria was the highest. Performance for the ForceGen 
-pscreen approach was comparable to the other methods 
from the accurate-mode tests.

For the screening mode test, ForceGen produced the 
fastest performance (both the -pfastf and -pscreen variants). 
OMEGA was the fastest of the other methods, though still 
2–4 times slower than the ForceGen screening modes. For 
large collections of small molecules, simple parallelism 
across independent computing nodes is trivial to imple-
ment and is essentially perfectly scalable, so speed differ-
ences of a few fold should not be considered to be terribly 
important. However, speed differences of 5–10 or more have 
serious practical consequences in terms of either time or 
cost of computing resources. So, while, for example, Con-
fGenX performed reasonably well, its relative speed may 
be limiting.

With respect to accuracy, based on mean RMSD and 
success rate at 1.0 Å RMSD, the two ForceGen screening 
modes, OMEGA, and ConfGenX all performed well, with 
iCon, RDKit, cxcalc, and MOE forming a second tier. Many 
researchers focus on median or mean RMSD values to char-
acterize conformer generation performance, but this has two 
limitations. First, for good methods, mean RMSD begins to 
push the limits of experimental uncertainty in ligand coordi-
nates in X-ray structures of bound ligands. Second, it is argu-
ably less important to know how well a method performs on 

Table 2   Summary of key 
performance characteristics for 
ForceGen and other methods 
on the Platinum Diverse 
Dataset, with bold values for 
best same-mode performance 
within 0.05 Å (mean RMSD), 
within 0.2 Å (95th percentile 
RMSD), a factor of two 
(median and mean times), and 4 
percentage points (success rate 
at 1.0 Å RMSD)

Values for alternative methods were taken from [19] all using the default operation modes of the best vari-
ants: OMEGA, iCon, RDKit-DG, ConfGenX, cxcalc, and MOE-Stochastic (sorted in rough order of speed)

Method Mean 95th Pctl. Median Mean Success at Mean Max
RMSD (Å) RMSD (Å) Time (s) Time (s) 1.00 Å  (%) Pool Size Pool Size

Screening mode
 FGen -pfastf 0.70 1.56 0.30 0.62 78 39 50
 FGen -pscreen 0.63 1.42 0.48 1.07 84 62 50/120
 OMEGA 0.67 1.7 2 2 80 34 50
 iCon 0.72 1.8 5 5 76 35 50
 RDKit-DG 0.77 2.3 4 5 71 50 50
 cxcalc 0.87 2.1 5 6 63 48 250
 ConfGenX 0.69 1.7 9 13 77 39 50
 MOE 0.75 2.2 62 158 76 30 50

Accurate mode
 FGen -pgeomf 0.58 1.27 0.61 1.53 87 156 250
 FGen -pgeom 0.55 1.22 0.88 2.89 89 170 250
 OMEGA 0.57 1.4 2 3 87 118 250
 iCon 0.60 1.5 5 5 84 123 250
 RDKit-DG 0.63 1.5 17 22 82 250 250
 cxcalc 0.73 1.8 17 21 72 227 250
 ConfGenX 0.58 1.4 13 14 86 160 250
 MOE 0.64 1.6 61 153 83 77 250
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the best half of one’s data than on, say 95% of the data one 
is likely to encounter. Table 2 provides the RMSD values 
at the 95th percentile ( RMSD

95 ) for each method. The two 
ForceGen screening modes ranged from 1.4 to 1.6 Å, and the 
other methods ranged from 1.7 to 2.3 Å. Even in the fastest 
ForceGen search mode, 95% of molecules are expected to 
have a conformer within 1.6 Å RMSD of the bioactive one. 
The ForceGen algorithm does not seek to rapidly enumer-
ate non-redundant conformers based on torsion libraries, 
which is a strategy employed by, for example, OMEGA. 
Rather, the ForceGen approach seeks to identify diverse, 
low-energy, conformers without reference to the structures 
of prior known ligands.

Performance in the accurate-mode tests showed a similar 
pattern to the screening-mode results, with the ForceGen 
being top-performing with respect to both speed and accu-
racy, especially in terms of RMSD

95
. Again, OMEGA was 

the fastest of the other methods, and, except for RMSD
95 

performance, it was comparable to ForceGen. Of the remain-
ing methods, ConfGenX was the best performing, though 
the cost in time was significant. None of the other methods 
produced a competitive balance of time and quality. Note 
that with 2859 compounds in the Platinum dataset, perfor-
mance differences of between 3–4% become both practically 
and statistically significant at any success threshold, so con-
sidering performance at 1.0 Å, ForceGen’s 89% success in 
accurate-mode was clearly better than iCon, RDKit, cxcalc, 
and MOE.

Figure 3 depicts ForceGen accuracy and computational 
cost for seven user-selectable accuracy/time modes. For 

screening, the -pscreen approach (orange lines) offers a good 
trade-off in terms of accuracy, speed, and conformational 
ensemble size. For more accurate exploration of non-mac-
rocycles for pose prediction, the -pgeomf option (light blue) 
offers faster performance than the -pgeom option (yellow), 
with only a minor reduction in accuracy. For more exhaus-
tive search, typically applied in affinity prediction exercises, 
the -pquantf option offers a good balance between speed and 
accuracy. For macrocycles, the deeper ring search offered by 
the -pgeom and -pquant modes is important, to be discussed 
next.

Because ForceGen is template-free, relying only on 
molecular energetics to produce conformer ensembles, it 
may perform better on novel compounds that are not cur-
rently represented within the PDB. Template-based methods 
(e.g. OMEGA) base their internal ring geometries and tor-
sion libraries in large part on the very data that comprise the 
Platinum Diverse Set itself, potentially overfitting the corpus 
of what is known. In terms of overall computational strategy, 
the other distinguishing feature of ForceGen is that it inten-
tionally optimizes the diversity of conformational ensembles 
within a low energy window, avoiding over-representation 
of minor conformer variants. This manifests most directly 
in the robust performance of ForceGen in all search modes 
at RMSD cutoffs of 1.75 Å or higher (see Fig. 3).

In addition, input to ForceGen is done through standard 
file formats (e.g. mol2, sdf, or SMILES), without requir-
ing any template definitions or pre-defined atom types. 
Molecules may be hybrids of standard amino acids, non-
standard amino acids, contain organic chemical linkers, and 

Fig. 3   Accuracy and timing for all seven ForceGen 4.4 Modes for the Platinum Diverse Set of 2859 PDB ligands
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may be cross-linked arbitrarily. The only requirement is 
that the molecular composition has defined parameters with 
MMFF94sf (currently including the most common organic 
structures with the following atoms: H, C, N, O, P, S, F, Cl, 
Br, and I).

Timing considerations and multi‑core parallelism

For non-macrocyclic ligands, databases exist that contain 
many millions of compounds, and combinatorial exploration 
of analogs is common. Consequently, scenarios for com-
putational modeling span a large range in terms of needs 
for throughput. Interactive modeling, on a workstation or 
a laptop, might consider just a few or perhaps dozens of 
molecules. Large-scale preparation of databases for virtual 
screening may consider millions of compounds, but such 
calculations will typically take place on a high-performance 
computing cluster or in a cloud computing environment.

The timings shown in Table  3 were carried out on 
two very different hardware configurations. The first was 
equipped with dual Intel Xeon Platinum 8124M CPUs, 
operating at 3.00 GHz, with a total of 36 physical comput-
ing cores, each capable of running 2 threads. A comparably 
equipped modeling workstation with similar memory would 
cost roughly $10,000–$15,000 depending on graphics and 
storage options. This corresponds to an Amazon Web Ser-
vices c5.18x-large instance, which can also be scaled for 
large-scale applications at a spot price of $1.159 per hour 
per instance. The second configuration was a highly port-
able Dell XPS 13 (circa 2018), equipped with an Intel Core 
i7-8550U CPU operating from 1.80 to 1.99 GHz, with 4 
computing cores, each capable of running 2 threads.

Interactive time-scale modeling can take place on office-
deployed workstations or on mobile laptop computers. This 

type of modeling will consider different types of questions, 
where the relevant time scale is seconds or minutes in the 
ideal case, up to perhaps an hour or two to accommodate 
lengthier calculations during which time another activity 
may be undertaken. For small non-macrocyclic molecules, 
typical workflows may include docking multiple variants of 
a scaffold followed by visualization.

For macrocyclic molecules, in addition to these cases, 
iterative refinement of NMR constraint data may be of 
interest, for example. In such cases, the number of available 
computing cores may far exceed the number of molecules 
under study, and, in all cases, the total wall-clock time from 
the beginning to the end of the calculation is critical for the 
productive use of human time. Here, maximizing CPU utili-
zation through multi-core parallelism may have a significant 
practical impact on productivity. The speed with which a 
calculation on a single molecule can be completed might be 
quite important.

Large-scale calculations form a very different case, 
where conformational search of large corpora of molecules 
can be easily parallelized across multiple computing nodes, 
with essentially perfect linear speedup. Where millions of 
molecules are to be processed, both the speed of a single-
threaded calculation and its memory footprint are important 
determinants of the overall cost of the calculation. Another 
consideration here is the ability to produce conformer pools 
of limited size within a specified energetic window, but 
which are still likely to sample conformational space well; 
this can become a particularly significant concern with some 
macrocycle search algorithms, which may require thousands 
or many thousands of conformers to cover space well and 
may or may not fall within a reasonable window of energies.

Table 3 shows timing results for four parameter set-
tings (two for screening-mode conformer search and two 

Table 3   Summary of ForceGen calculation speed using different hardware and core/thread combinations, with throughput calculated assuming 
molecule-level parallelism in the 36-core 1-thread scenario (36 simultaneous single-threaded jobs)

Method N cores N threads Median time (s) Mean time (s) N jobs Molecules per 
hour

Molecules per day

FGen -pfastf 36 36 0.30 0.62 1 5806 –
FGen -pfastf 4 8 0.52 0.93 1 3865 –
FGen -pfastf 36 1 0.59 1.35 36 96,000 2,304,000
FGen -pscreen 36 36 0.48 1.07 1 3364 –
FGen -pscreen 4 8 0.92 1.69 1 2133 –
FGen -pscreen 36 1 1.28 3.03 36 42,772 1,026,534
FGen -pgeomf 36 36 0.61 1.53 1 2352 –
FGen -pgeomf 4 8 1.24 2.61 1 1382 –
FGen -pgeomf 36 1 1.62 4.45 36 29,123 698,966
FGen -pgeom 36 36 0.88 2.89 1 1246 –
FGen -pgeom 4 8 2.00 6.32 1 570 –
FGen -pgeom 36 1 3.01 15.11 36 8577 205,850
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for accurate-mode) under three calculation protocols: (1) 
36-core workstation-class hardware running a 36-thread 
process; (2) 4-core laptop hardware running an 8-thread 
process; and (3) 36-core workstation/cloud-class hardware 
running a single thread. In the first two situations, the com-
puters were considered to be fully loaded, and in the last one, 
36 such calculations would be run simultaneously to achieve 
full load without taxing either disk input/output, memory, or 
internal communications bandwidth.

For the interactive modeling scenarios (the first two), 
all conformer preparation modes yielded sufficiently high 
throughput to process a thousand or more molecules (screen-
ing modes) or hundreds of molecules (accurate modes) in 
an hour’s time. The most strenuous calculation (-pgeom) on 
a workstation, required under 3 s per molecule on average, 
which would support quite facile interaction in an interac-
tive docking session. Note that the speed gain for deeper 
search was over fivefold (1-thread to 36-thread on a 36-core 
computer), compared with closer to twofold for more shal-
low search. Even in the mobile laptop scenario, one could 
make use of the -pgeomf mode to keep accurate conformer 
sampling under 4 s per molecule.

For the large-scale, possibly cloud-based, calculation 
scenario, maximal throughput per 36-core node was 2.3 
million molecules per day, which is roughly the size of the 
entire ChEMBL small molecule database [29]. ForceGen 
-pfastf mode using a single computing thread is faster than 
the result reported for OMEGA on the Platinum Diverse Set 
[19], and ForceGen has comparable speed in -pscreen mode. 
Very large databases of purchasable synthesizable chemicals 
now exist for virtual screening. A collection of 200 AWS 
c5.18x-large nodes could process (-pfastf mode) a 500 mil-
lion compound library of the complexity represented in the 
Platinum Diverse Set in about 1 day. The total cost would be 
approximately $5,000 for calculation time without account-
ing for network bandwidth or disk space charges (assuming 
spot-instance pricing circa 2018–2019).

The opportunities for parallelism within the ForceGen 
implementation are more numerous and more fruitful in 
deeper searches of more complex molecules. From Table 3, 
the typical speedups in a many-core/many-thread calculation 
ranged from just over a factor of 2 for the shallowest search 
(-pscreen) to just over a factor of 5 for the deeper search 
(-pgeom).

One important aspect of the ForceGen approach is that 
macrocycle conformational exploration is largely non-serial, 
and so multi-core parallelism can be utilized, for example, to 
simultaneously explore the different bends, twists, flips, and 
hydrogen bond formation movements of a given molecule. 
Figure 4 shows cumulative histograms of time speedups as 
the number of computing cores increase, using the Force-
Gen macrocycle set as a benchmark. For macrocycles, the 
standard depth of search is accessed with the -pgeom mode 

(left-most six curves), and the more thorough level with the 
-pquant mode (right-most curve in red). The 2-core calcula-
tion came quite close to a perfect twofold speedup across the 
full set of 182 molecules, but with increasing thread-count, 
the speedup was sub-linear.

Using 36 cores with a single thread per core (yellow), 
speed increases were typically 8–10 fold. With 2 threads per 
core (blue), the fraction of high core utilization increased, 
and overall, the mean calculation time was slightly faster 
with 72 threads (blue line) than with 36 (yellow line). 
With deeper search (the -pquant mode, red curve), larger 
gains were evident, with 70% of examples obtaining speed 
increases of 14–21 fold. In the results that follow, ForceGen 
per-molecule times, unless otherwise noted, were the result 
of calculations using 72 threads on a 36-core AWS c5.18x-
large instance.

ForceGen and Chen/Foloppe macrocycle sets

The most significant changes within ForceGen version 4.4 
are improvements within the macrocycle search methods, 
as discussed in the Introduction. Figure 5 shows the direct 
comparison for versions 4.4 and 4.0 on the 182 molecule 
ForceGen Macrocycle Set. With the new version, the stand-
ard search mode (-pgeom) exceeded the performance of the 
previous version’s thorough search mode (-pquant). The 
thorough search mode of v4.4 made a dramatic improvement 

Fig. 4   Dependence of computing time on number of parallel threads, 
using a 36-core AWS c5.18xlarge instance and the ForceGen Macro-
cycle Set to measure speed increases of multiple cores relative to a 
single core
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over the prior version (nearly 20 percentage points at the 
1.25 Å threshold). The performance gains were highly sta-
tistically significant (paired t-test p-values less than 10−10).

Figure  6 shows comparative performance between 
ForceGen and the MacroModel and MOE low-mode MD 
approaches on the Chen/Foloppe Set, using the enhanced 
parameter sets previously reported [20]. It also includes 
a comparison with the BRIKARD inverse-kinematics 
approach [30]. Chen and Foloppe introduced a set of 30 
carefully curated macrocycles and reported the performance 
of different MD-based approaches, the best two of which 
were the low mode MD approaches implemented within 
MOE [10] and Schrödinger’s MacroModel. Roughly speak-
ing the more thorough ForceGen mode paralleled Macro-
Model’s performance, and the standard approach paralleled 
MOE’s performance, in both cases with ForceGen gener-
ating smaller conformer pools. More detailed performance 
comparisons will be made later, using larger data sets and 
more recent benchmarking results.

The BRIKARD approach was introduced as a sharp 
departure from stochastic sampling methods, instead 
employing methods from computational geometry to explic-
itly sample macrocycle ring conformations while maintain-
ing closure constraints [30]. The method focuses on ring 
sampling, so the results for overall RMSD are perhaps not 
surprising (see top plot, Fig. 6), where the method performs 
substantially worse than either ForceGen mode (p-values 
≤ 10−5 by paired t-test). BRIKARD’s RMSD values were 

calculated using the automorph-corrected procedure used 
for all ForceGen results, with the “best-matching structures” 
provided in the BRIKARD report’s Supplemental Informa-
tion [30].

Running without structure minimization, the BRIK-
ARD method can be extremely fast using multiple com-
puting cores (average time on the Chen/Foloppe Set of 81 
s, compared with 132 s for ForceGen -pgeom). However, 

Fig. 5   Comparison of ForceGen v4.4 (purple, and green lines) with 
v4.0 (thin blue and yellow lines) on the 182 macrocycle ForceGen Set 
as reported in the original paper [18]

Fig. 6   Comparison of ForceGen v4.4 (purple, and green lines) 
MOE, MacroModel, and BRIKARD on the 30 macrocycle Chen and 
Foloppe set [20]
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ring RMSD results (bottom plot, yellow line, Fig. 6) are 
significantly affected by the lack of minimization, perform-
ing much worse than both ForceGen modes or the standard 
BRIKARD procedure that includes minimization (p-values 
of 0.002 vs. ForceGen -pgeom and ≤ 10−5 vs. ForceGen 
-pquant and standard BRIKARD). The standard BRIKARD 
approach (with minimization) running on a 40-core work-
station, requires 2–3 times as long as ForceGen’s standard 
-pgeom mode on a 36-core workstation. ForceGen running 
on a single computing core is 10–15 fold faster than the BRI-
KARD approach. Note, also, that the ForceGen approach 
performs complete conformational search, rather than BRI-
KARD’s essentially exclusive focus on rings. ForceGen 
produces compact conformer pools (up to 250 or 1000 con-
formers), compared with the 10,000 conformers of the BRI-
KARD approach for the results depicted in Fig. 6.

Figure 7 shows typical examples of ForceGen perfor-
mance in standard search mode, with best-matching con-
former RMSD values and conformer search times indicated. 
We define the “total flexibility” of each macrocycle to be the 
sum of the freely rotatable bonds plus the number of single 
bonds within macrocyclic rings that are not primary amides. 

Four of the examples shown with total flexibility from 14–21 
represent examples of targeted medicinal chemistry efforts. 
Of the 182 macrocycles, 127 had total flexibility of 21 or 
less, and using the standard search mode, the average RMSD 
was 0.61 Å, RMSD

95 was 1.5 Å, and the average search time 
was 33 s; performance was very close to that seen in the 
Platinum Diverse Set using the same -pgeom search mode. 
With macrocyclic search in the thorough -pquant mode, 
performance essentially matched that seen on the Platinum 
Diverse Set using the -pgeom mode. Macrocycles with total 
flexibility up to 21 appear to be completely tractable using 
the ForceGen approach. This size range covers medicinally 
interesting designed synthetic macrocycles, including HCV 
NS3-4A protease and BACE inhibitors [31–35].

The more flexible macrocycles within the ForceGen set 
(four examples are shown in Fig. 7 with flexibility of 25–29) 
tend to be exclusively natural products or direct analogs 
thereof. For this group, in standard search mode, the aver-
age RMSD was 1.2 Å, and in thorough search mode, the 
average RMSD improved only slightly to 1.1 Å. This level 
of performance is likely still sufficient for successful pose 
prediction and ligand design exercises, but the more flexible 

Fig. 7   Typical examples of ForceGen v4.4 improvements in performance over v4.0 in standard (-pgeom) mode, with the average improvement in 
RMSD being 0.8 Å on this subset and 0.2 Å overall
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macrocycles are clearly more challenging. The plots in Fig. 8 
illustrate the approximately linear relationship for Force-
Gen between ligand total flexibility and either accuracy or 
wall-clock time. For the standard search mode, timings were 
roughly 1 min or less, and thorough search required roughly 
twice as long, with no search times exceeding five minutes.

Direct timing comparisons with widely used methods 
will be made in more detail in the context of the Prime 
MCS Set, but it is important to note that macrocycle search 
times measured in a few minutes per molecule have been 
largely unheard of until very recently. Previous studies of 
macrocycle conformer generation have primarily made use 
of stochastic molecular dynamics methods [10, 11, 20, 36], 
with per-molecule search times typically measured in terms 
of multiple hours per ligand in order to achieve reasonable 
accuracy (MOE’s Low Mode MD and MacroModel’s Large-
Scale Low-Mode search required 11,000 and 22,000 s on 
average for the Chen/Foloppe Set’s macrocycles [30]).

Shelley macrocycle set: peptidic ligands

The Shelley macrocycle set was specifically curated to tune 
and test the MacroModel approaches for macrocyclic con-
formational search [11]. It contains 150 macrocycles, with 
a large fraction of larger peptidic rings that exhibit cross-
macrocycle hydrogen-bonding in their experimentally deter-
mined conformations. Figure 9 shows a comparison between 
ForceGen’s thorough search mode and the test results from 
Shelley et al. All heavy-atom RMSD is shown (thick green 
line for ForceGen and yellow for MacroModel) as well as 
ring-atom RMSD (thick purple line for ForceGen and blue 
for MacroModel). For all-atom RMSD, ForceGen exhibited 
a clear advantage, with success rates of 10 points or more 
higher than those seen with MacroModel from roughly the 
1.0 Å success threshold and up. For backbone ring RMSD, 
a smaller improvement was seen.

Figure 9 also shows four examples of ForceGen perfor-
mance. The effects of stabilizing hydrogen-bonds in all but 
the case of Swinholide A, were a major feature of the Shelley 
Set that was clearly an under-represented phenomenon in the 
ForceGen Set. This was due to a difference in the curation 
of polymeric and non-polymeric ligands in the RCSB PDB, 
with the former not being represented in the “Ligand Expo”. 
Overall, the improvement in all-atom RMSD (-pquant) for 
the new ForceGen approach was 0.5 Å RMSD on average, 
and for the examples shown in Figure 9, the improvement 
was fully 2.0 Å RMSD.

The improvements from ForceGen version 4.0 to 4.4 on 
the Shelley Set were highly statistically significant (paired 
t-test p-values less than 10−10 for both the -pquant and 
-pgeom modes) for both conventional RMSD and ring-back-
bone RMSD. However, population-level success fraction dif-
ferences were not large enough to make a firm conclusion 
about ForceGen compared with the MacroModel large-scale 
low-mode approach, though that will be possible using the 
Prime MCS Set in what follows.

Two points are important to raise in making the com-
parisons presented thus far. First, Shelley et al. [11] needed 
to manually correct over 50% of the the initial randomized 

Fig. 8   The relationship between total macrocyclic flexibility and 
accuracy (top) and calculation time (bottom) was close to linear
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ligand structures due to failures in SMILES to 3D structure 
generation (most of the failures were chirality inversions 
or incorrect configurations around double-bonds). Initial 
randomized ring RMSD values were approximately 1.1 Å. 
The approach taken with ForceGen validation was to use 
completely memory-free starting points, made by zeroing 
all atomic coordinates after noting chiral configurations and 
generating an initial 3D structure. This was an automatic 
(and failure-free) process that produced initial ring RMSD 
values averaging 1.4 Å.

The issue of memory-free starting points is also present in 
results reported for the BRIKARD method [30]. There, input 
seed structures were generated through dihedral perturbation 
and energy minimization beginning from the experimental 
coordinates and producing two seed structures with RMSD 
of at least 2.5 Å. To place this threshold value in context, 
nearly half of the Shelley Set’s ForceGen randomized struc-
tures had RMSD values between 3.1–7.5 Å. In order to avoid 
inadvertent bias, it is important for tests of conformational 
sampling adequacy to be started from coordinates with no 
memory of the correct configuration. This can be done either 
using SMILES as input to the procedure or by using zeroed 
3D coordinates after making note of chiral atomic or bond 
configurations.

The second point is that the results reported by Shelley 
et al. [11] and Coutsias et al. [30] focused largely on ring 
RMSD rather than overall RMSD, following a somewhat 
common practice with macrocycles. Specific focus on ring-
restricted RMSD may not provide a clear picture of real-
world macrocycle sampling performance, for three reasons. 
First, given a macrocycle with little in the way of exocyclic 
components, the ring RMSD will track the conventional 
RMSD closely, so the former offers little extra information. 
Second, given a macrocycle with substantial exocyclic com-
ponents, deviations from ideal ring geometries will gener-
ally be amplified in the conventional RMSD, making the 
ring-specific RMSD an overly optimistic measure of quality. 
Third, for any downstream usage of a macrocyclic confor-
mational ensemble where the bioactive conformations are 
important, it will be the conventional RMSD that is most 
directly relevant to performance. Accurate ring RMSD with 
misplaced side chain conformations will generally not be 
relevant. The BRIKARD approach is entirely focused on 
ring geometry exploration; as such, it does not address the 
complete macrocyclic conformational sampling problem, 
and it will not be discussed further here.

Prime MCS macrocycles

Recently, Schrödinger introduced a new method for 
macrocycle search [21], simultaneously introducing a 
new benchmark data set. The set was comprised of 130 
CSD macrocycles, typified by having minimal exocyclic 

Fig. 9   Performance of ForceGen (-pquant) on ring RMSD (thick 
purple line) and all heavy atom RMSD (green line) compared with 
results from the MacroModel approach (thin blue and yellow lines, 
test set values from [11]) using the 150 molecule Shelley Set. Three 
typical examples are shown (FAGFEZ, ABOMOT, and ICYSPA), 
each exhibiting stabilization with multiple internal hydrogen bonds. 
The last atypical example (Swinholide A) is a very large macrocycle 
with no specific stabilizing interactions
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substituents, 60 PDB macrocycles that were a subset of the 
Shelley Set, and 18 examples from the PDB’s Biologically 
Interesting Molecule Reference Dictionary.

Figure 10 shows box plots for wall-clock time, conven-
tional RMSD, and ring RMSD for the ForceGen (stand-
ard and thorough modes), Prime MCS, MOE Low-Mode 
MD, MacroModel Large-Scale Low-Mode MD, and for a 
direct 24ns MD simulation run with Desmond [21]. By far, 
ForceGen was the fastest method, with wall-clock times 
generally in the seconds to minutes time-frame (for both 
search modes). Median times were 45 for the standard 
-pgeom mode and 82 s for the thorough -pquant mode. 
Average calculation times were 180 and 388 s, respectively 
(note that average times for all methods were skewed by a 
dozen or so outlier cases). Prime MCS was the next fastest, 
with respective median and mean times of 589 and 1067 
s. MOE, MacroModel, and MD were the slowest, respec-
tively with the following median/mean times (in seconds): 
1,868/5,575, 14,004/21,671, and 263,960/291,924.

With respect to the timing results of the other methods, 
with the exception of the MD approach, the others were 
generated in a manner intended to produce reasonable 
ballpark estimates [21]. In the case of MD, a GPU-based 
calculation would have produced faster times, though cer-
tainly not enough to become competitive with the fastest 
methods. Prime MCS has the potential for speed increases 
by exploring different root macrocycle splits in parallel, 
and by merging the results of independent calculations 
[21]. However, it is not clear that an automatic procedure 
has been implemented, and the approach is limited by the 
effect on accuracy of merging the conformers produced by 
shallow explorations of multiple roots.

With respect to accuracy, the ForceGen -pquant 
approach was significantly better than all other methods 
in terms of conventional RMSD (by paired t-test, p < 10−4 
vs. Prime-MCS and MacroModel, 10−7 vs. MOE, and 10−15 
vs. MD). It was also more accurate than both MOE and 
straight MD in terms of ring RMSD (paired t-test, p less 
than 10−4 vs. MOE, and 10−10 vs. MD). In no case was 
any other method superior by either conventional or ring 
RMSD than the ForceGen -pquant method, which pro-
duces up to 1000-member conformer ensembles.

For conventional RMSD, the -pgeom variant (which 
produces up to 250 conformers per ensemble) performed 
marginally better than (but statistically indistinguishably 
from) Prime and MacroModel and better than MOE and 
MD (paired t-test, p less than 10−2 vs. MOE, and 10−7 vs. 
MD). For ring RMSD, the -pgeom variant performed better 
than MOE and MD (p < 0.05 and p < 10−5 , respectively), 
and statistically similarly to MacroModel. Prime-MCS 
showed slightly better performance on ring RMSD than 
the ForceGen -pgeom variant (p = 0.001, by paired t-test).

Figure 11 shows full cumulative histograms of conven-
tional RMSD for ForceGen’s thorough mode (thick green 
line) and the other methods (thin lines) along with exam-
ples of ForceGen results on six challenging examples from 

Fig. 10   Performance of ForceGen compared with results from other 
methods on the Prime MCS Set. The notched box plots indicated the 
following: median (thick line), 95% confidence interval of the median 
(gap size of the box notch), 25th–75th percentile (inter-quartile range, 
or IQR, bottom and top of box), estimated non-outlier range (top 
and bottom whiskers, estimated based on IQR), and possible outli-
ers (small plus signs). Paired t-tests were done between the ForceGen 
results and those of the other methods, with colored asterisks indicat-
ing superiority to the method with the indicated color and an open 
circle in the single case where any other method showed statistically 
better results than ForceGen (with p-values < 0.05)
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the Prime MCS Set. The QOSNAN example was the single 
case of all 208 where ForceGen performed poorly where 
all remaining methods performed reasonably well (for 
QOSNAN, the other methods yielded an average RMSD of 
0.95 Å). It appears that some refinement of the bridge flip-
ping procedure may be required, as both the bridge and both 
sides of the macrocycle are small and relatively rigid. In the 
five remaining cases, none of the other methods produced a 
result having RMSD within 2.0 Å. For 4MNW, the Force-
Gen result (3.6 Å) was not adequate for detailed modeling, 
but it was quite a bit better than the best of the other meth-
ods (which came from, surprisingly, the baseline 24ns MD 
trajectory, at 4.6 Å RMSD).

The 4MNW case was very unusual in one respect: the 
global minimum discovered was 60 kcal/mol lower than the 
local minimum energy (LME) obtained by minimization of 

the experimental 4MNW structure. This was 30 kcal/mol 
more extreme in such a deviation than the next most extreme 
case. The presence of mediating water molecules appears 
to influence the structure, but their presence should not cre-
ate such a strong upward shift in the LME. It is the single 
case within the full Prime MCS data set where no method 
(including ForceGen) produced a conventional RMSD result 
better than 3.0 Å. Brief examination of the unbiased den-
sity around the modeled configuration of the macrocyclic 
ligand in 4MNW suggests that there is significant contiguous 
electron density present that was not modeled. This density 
may be partial density for another species, an alternative 
conformation of the existing macrocycle, or perhaps some 
other artifact. Symmetry related protein molecules also 
pack against the peptide binding site and could influence 
the observed conformer.

Fig. 11   Detailed performance of ForceGen (-pquant) all atom RMSD 
compared with results from other methods on the Prime MCS Set. 
Compared with all four other methods, ForceGen’s performance 

improvement was statistically significant (paired t-test, p less than 
10−4 vs. Prime-MCS and MacroModel, 10−7 vs. MOE, and 10−15 vs. 
MD)
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Energy windows for conformer generation on macrocy-
clic structures have been shown to have an effect on perfor-
mance, with typical values being 10 or 20 kcal/mol [4, 10, 
11, 20]. The ForceGen approach focuses search to identify 
conformers within 10 kcal/mol of the identified minimum, 
and, for macrocycles, adds novel conformers (discovered 
during intermediate search steps) up to a 20 kcal/mol win-
dow at the end of the search process. In the Prime-MCS 
study, both MOE and MacroModel were run with 10 kcal/
mol windows. The straight MD simulation was run as a 
baseline control with no imposed energy window, simply 
recording 1000 snapshots (one every 24ps) without energy 
minimization or redundancy elimination. The Prime-MCS 
method imposed an energy window of 100 kcal/mol, five 
times larger than what has been typical in macrocycle search. 
It is not clear how this affected the relative energies of the 
closest matching conformers compared with the minima for 
the Prime-MCS results.

For ForceGen -pquant, the average energy above the dis-
covered minimum for the best-matching conformer to the 
experimental structure was 7.3 kcal/mol. Roughly two-thirds 
of the best matches fell within a 10 kcal/mol window, with 
the remaining being 10–20 kcal/mol above the minimum.

Failures in sampling certainly exist when the global 
range of energies among a conformer pool produced from 
a memory-free starting point do not include the LME value 
obtained by minimization of the experimental structure. 
For ForceGen, there were seven cases where conventional 
RMSD was greater than 3.0 Å (defined as “failure cases”). 
The 4MNW case has already been discussed, and in four 
of the remaining six cases, ForceGen yielded conformer 
pools that covered the LME. This suggests that additional 
sampling using the current strategy might uncover closer 
conformations to the experimental one.

Two cases (1MIK and 2VYP, not shown) yielded global 
minima higher (by 5 and 8 kcal/mol respectively) than the 
LME, which may represent the absence of an important 
physical movement that would be required to uncover close-
to-experimental conformations. These two cases represent 
failures for all methods tested, with an average of conven-
tional RMSD values for the other methods being 3.6 Å and 
4.6 Å, respectively, compared with ForceGen’s 3.3 Å and 
4.0 Å. The ligand of 1MIK is a cyclosporin variant, but in 
contrast to the previous examples (see Figs. 9 and 11), here 
the molecule is bound to a protein and is nearly entirely 
hydrated. Rather than exhibiting the characteristic pattern of 
trans-annular hydrogen bonds present in the CSD structures, 
the structure everts and forms a closely packed set of hydro-
phobic interactions across the macrocycle. This conforma-
tion is, according to MMFF94sf, lower in energy than the 
best conformer found (which contains trans-annular hydro-
gen bonds). However, it requires coordinated movement of 
the backbone and the side chains in order to reveal it. For 

the ligand of 2VYP (the myxobacterial rhizopidin [37]), the 
bound conformation is also characterized by hydrophobic 
packing. However, in this case, much of the problem is sim-
ply its overall complexity: it has 30 rotatable bonds within 
the macrocycle and 36 outside of the macrocycle (the single 
highest total flexibility of all macrocycles studied here).

It is also possible to detect potential search strategy fail-
ures by identifying cases where a very small number of non-
redundant conformations are produced on a very flexible 
molecule. For ForceGen, in its seven failure cases, this was 
not an issue, as it produced a minimum of 953 conformers 
for the set. MOE, on its set of 23 failure cases, produced 
an average of just 15 conformers each, with a maximum 
of 104, indicating a probable failure of search mechanics. 
MacroModel, on its 22 failure cases, produced an average 
of 386 conformers, roughly half of that which MacroModel 
produced for non-failure cases (which included conformer 
pools as large as 5705), suggesting some difficulty in sam-
pling. Prime-MCS, on its seven failure cases, seemed to have 
a search-mechanics limitation on two cases, producing just 
7 conformers for 4MNW and 290 for 4KEL, both being 
extremely flexible macrocycles.

The bottom four examples (1TPS, KEPNAU, 4M6E, 
and 4KEL) shown in Fig. 11 were challenging for all other 
methods. ForceGen’s conventional RMSD results were bet-
ter than the average for the other methods by an average of 
2.0 Å, and ForceGen’s results were better than the best of the 
other methods by an average of 1.2 Å. These four cases are 
clear examples where explicit sampling of hydrogen-bond-
ing networks can be fruitful. Recall that the 4KEL example 
was used earlier (see Fig. 2) to describe aspects of the new 
ForceGen search procedure.

Macrocyclic performance summary

The data sets explored here include 431 distinct macrocyclic 
ligand structures, spanning macrocycle ring sizes of 9–50 
atoms, and including significant exocyclic flexibility in many 
cases. Across each different benchmark, the ForceGen thor-
ough (-pquant) variant performed as well as or statistically 
significantly better than any other method, particularly with 
respect to conventional RMSD. The standard (-pgeom) vari-
ant performed equivalently to the best of the other methods 
in terms of conventional RMSD, while producing low-
energy conformer pools of just 250 variants per molecule. 
The results involving macrocyclic structures with stabilizing 
trans-annular hydrogen bonding networks suggest a system-
atic advantage for such cases, but more extensive profiling 
of such peptidic macrocycles would be required to quantify 
any advantages there.

While the performance gains exhibited by ForceGen are 
highly statistically significant in many cases, the practical 
significance of the accuracy improvements is difficult to 
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assess. Macrocycles are quite a different area of study from 
the perspective of lead discovery and optimization than more 
standard non-macrocyclic ligands. For non-macrocycles, 
lead discovery through virtual screening is common and lead 
optimization assisted by consideration of large numbers of 
synthetically accessible analogs is standard. Computations 
that are directly dependent on conformational ensemble 
accuracy involving docking, ligand similarity, and binding 
affinity prediction are widely utilized for non-macrocycles.

In the case of a macrocyclic ligand, feasible synthetic 
variants are generally much fewer. Also, the calculations 
involving such molecules are more likely to involve the 
consideration of conformational ensembles, for example to 
estimate the likelihood of membrane permeability [38]. For 
macrocycles, it is not unusual to require deep analysis of a 
single molecule or just a handful of variants. In such cases, 
the minimum time required to produce biologically relevant 
conformational ensembles may be a serious bottleneck. 
ForceGen, even on a single computing core, is much faster 
than molecular dynamics approaches, including the low 
mode methods [10, 11, 20]. Through the multi-core imple-
mentation, ForceGen is much faster than all of the remotely 
competitive methods of which we are aware.

Figure 12 shows the conventional RMSD results for all 
431 examples and places them within the context of per-
formance on the Platinum Diverse Set as well as the com-
plexity of the macrocycles. For 61% of the cases, with total 

flexibility of 6–21 (green curve), the RMSD distribution par-
alleled that seen with the large non-macrocyclic benchmark 
(red curve) almost exactly. Conformers were returned within 
1.5 Å about 99% of the time, typically in about 1 min of 
wall-clock time. It is important to note here that these results 
are calculated with conventional RMSD, exactly the same 
for macrocycles and non-macrocycles. Ring RMSD is not 
relevant for contemplating conformational ensemble accu-
racy in normal predictive modeling workflows. This tracta-
ble size range includes designed synthetic macrocycles such 
as the HCV NS3-4A protease and BACE inhibitors seen in 
Fig. 7 [31–35]. For this class, interactive-time modeling of 
macrocycles for design appears to be possible, with results 
being suitable for downstream workflows that require accu-
rate conformational ensembles.

The moderate complexity class (total f lexibility 
22–36) comprises 32% of the set. For these, search times 
were approximately 5 min, yielding accurate results ( ≤ 
1.5 Å RMSD) about 70% of the time. In such cases, with 
the presence of some biophysical data to confirm ForceGen’s 
accuracy on a family of macrocyclic compounds, it should 
be possible in many cases to make use of the approach in 
detailed modeling studies.

The hard group of cases (total flexibility 37–66) repre-
sents just 7% of the overall set, but it includes interesting 
natural products that are biologically relevant. In this size 
range (roughly a cyclic decapeptide or larger), there are 
two challenges. In cases where there are clear topologically 
consistent hydrogen-bonding networks, ForceGen can often 
produce accurate results. However, the calculation time can 
increase to an hour or two on a modest 36-core workstation. 
Additional parallelization is possible, potentially using mul-
tiple multi-core computing nodes, to ameliorate this issue.

The bigger challenge is that, for very large macrocycles, 
ForceGen (or any other existing method) may not produce 
low-energy conformational ensembles that are sufficiently 
accurate to support further calculations and decision-mak-
ing. In such cases, information derived from experimental 
biophysical measurements such as NMR may be exploited.

NMR case study: Aureobasidin A

Aureobasidin A (AbA) is a depsipeptide antifungal, with in 
vitro activity against many pathogenic fungi [39]. It has 27 
atoms within its macrocyclic ring, with 8 amide linkages, 
one ester linkage, and it includes a single proline residue. 
Four of the ring-nitrogen atoms are methylated, leaving 
three hydrogen-bond donor protons available for trans-
annular interactions. ForceGen’s topological scan of pos-
sible hydrogen-bond triplets identifies a single possible trio, 
which are observed in the CSD crystal structure QEFHUE. 
This trio is evident in the depiction shown in Fig. 13, with 

Fig. 12   Over the 431 unique macrocycles studied, there were three 
clear classes of difficulty, broken down by total flexibility, with the 
tractable group yielding an RMSD distribution equivalent to that seen 
with non-macrocycles
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the crystallographic structure shown in green, and the hydro-
gen bonding network appears to be stabilizing the backbone 
ring conformation (labeled 1–3).

NMR data were collected as described earlier, yielding 20 
distance constraints and 3 torsional constraints in addition to 
the trans-proline constraint. Conformer pools for AbA were 
produced using the normal ForceGen modes (-pgeom and 
-pquant) along with a more thorough and time-consuming 
mode (-pextrm), both with and without the use of NMR 
constraints.

Beginning from a memory-free starting point, with no 
constraints of any kind, the ForceGen (-pquant) method 
yielded an ensemble with both trans- and cis-proline iso-
mers, having a conformer within 1.2 Å RMSD of the CSD 
structure QEFHUE [24]. In the case of AbA, the trans pro-
line isomer was of specific interest, though the cis isomer 
exists, with the two forms slowly exchanging [23]. The 
experimental NMR characterization was on the trans iso-
mer (see Methods for details). Given that the NMR data 

characterized only the trans isomer, the computational 
experiments were done to parallel that choice. By adding 
a torsional constraint for trans-proline during the ForceGen 
conformational search, a slightly closer conformation to 
the CSD structure was obtained (0.76 Å, as seen in Fig. 13 
in purple). In what follows, “agnostic” or “unconstrained” 
ForceGen calculations all refer to results produced using a 
single torsional constraint to enforce a trans-proline configu-
ration. Without this single torsional constraint, the results do 
not change qualitatively, though the presence of a cis-proline 
population increases the proportion of the conformational 
ensembles in disagreement with trans-only NMR results.

Using the NMR data, the best match to the CSD structure 
was slightly closer (0.64 Å). However, a more significant 
effect was that the entire pool of AbA conformers shifted 
toward the QEFHUE structure. In principle, this need not 
have been the case, as the solution-behavior of AbA in the 
NMR solvent (DMSO) need not match the crystal form 
grown in ether [24] (just as the conformational preference 

Fig. 13   Ensembles generated with and without NMR distance and 
torsional constraints contain close-matching conformers to the CSD 
crystal structure QEFHUE (cyan and purple, left), but the constraints 

focus the conformational ensemble generated by ForceGen into a sin-
gle coherent cluster (yellow, middle) rather than a mixture of different 
backbone motifs (salmon, right)
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for cyclosporin changes dramatically from solid-state small-
molecule crystal structures to a hydrated protein-bound form 
in 1MIK). Essentially all of the conformers discovered using 
the three ForceGen search modes under NMR constraints 
were within 2.0 Å RMSD, with the entire (-pquant) pool 
shown in yellow in Fig. 13 (middle bottom). By contrast, 
about one-quarter of the conformations elucidated without 
NMR constraints were close to the crystal structure (upper 
left plot, green curve).

ForceGen seeks to optimize a combined energy func-
tion, which is the sum of the MMFF94sf energy plus the 
violation energy from the NMR-based constraints. Recall 
that the latter are expressed as square-welled quadratic func-
tions centered on the experimentally observed expected dis-
tance or torsional value. Figure 13 shows the distributions 
of the two components of the energy terms. In the agnostic 
conformer pool, the distribution of MMFF94sf energy was 
centered on a median of 236 kcal/mol (green curve, middle 
plot), with the most thorough search under NMR constraint 
being shifted roughly 3 kcal/mol higher (purple curve, mid-
dle plot). The small gap between the no-NMR and NMR 
cases reflects some tension between attempting to satisfy the 
experimental constraints while still respecting the energetics 
of the force field. Because experimental restraints are incor-
porated as a penalty function, the distribution shifts towards 
slightly higher energies, as expected.

The distribution of violation energy values is more inter-
esting (right plot). Each of the ForceGen search modes under 
NMR constraint produced ensembles with roughly 90% of 
the conformers having less than 2 kcal/mol in terms of ener-
getic penalty violations. By contrast, without using the con-
straints, just a few percent of the ensemble had less than 5 
kcal/mol violation energy when profiled post facto using the 
NMR data. If the force field were an extremely good predic-
tor of AbA behavior in solution (and was very effective in 
search), then one would expect the ensembles to be relatively 
similar. However, we see instead that the NMR information 
had a large influence on the outcome of the search, both as 
measured by closeness to the CSD structure and congruence 
with the NMR data.

To further understand the extent to which the conformer 
ensembles reflected relevant behavior of AbA, RDC data 
were used as an orthogonal validation (see NMR experi-
mental details in the Methods section). For each conformer 
within the NMR-constrained and unconstrained -pquant 
pools, the correlation with the RDC data was calculated. 
Similarly, the RDC Q-factor was also calculated for the crys-
tal structure QEFHUE (0.156). It is important to note that 
RDC correlation is a measure of a solution conformational 
ensemble; however, in this case, the QEFHUE crystal struc-
ture is representative of a conformation in solution, reflected 
by its low Q-factor. Figure 14 shows a plot of RMSD to 
the QEFHUE crystal structure (top left, X axis) and RDC 

correlation Q-values (Y axis) for the NMR-constrained pool 
(purple) and the unconstrained pool (green), with both pools 
arising from the ForceGen search protocol beginning from 
the same memory-free starting point. As would be expected, 
the NMR-constrained pool had much lower overall Q-val-
ues (0.37±0.11) than the unconstrained pool (0.60±0.17) 
(p-value by t-test ≪ 10−6 ). For both pools, the correlation 
was highly statistically significant (Kendall’s Tau values are 
shown, with the asterisks indicating p < 10−5 ). The NMR-
constrained pool formed a single population of variants. The 
agnostic pool formed two populations, with one overlapping 
the NMR-constrained pool, and the other forming a very 
different set of configurations (this is also seen in Fig. 13). 
Note that the conformational search identified a number of 
conformers with Q-values as good or better than the QEF-
HUE crystal structure (0.156); there were 5 such conforma-
tions in the agnostic ensemble and 31 in the NMR restrained 
ensemble.

The violation energy of the quadratic constraints from 
the NMR data is shown for the constrained pool relative to 
RDC Q-values (top right, purple for the NMR-constrained 
pool). All values were quite low, as would be expected given 
non-conflicting constraint data. The nominal violation ener-
gies were calculated for the agnostic pool, and they are also 
shown plotted against RDC Q-values (green). The popula-
tion of low RDC Q-value conformers was much smaller (21 
compared with 102 conformers for the NMR-constrained 
pool with Q ≤ 0.20 ) and the violation energies were much 
higher, forming three groups. The group with the smallest 
violations (roughly 10–20 kcal/mol in quadratic penalty val-
ues) had RDC Q-values from roughly 0.1–0.6 (essentially 
the same range as for the NMR-constrained pool). The next 
group had more severe distance violations (100–500 kcal/
mol penalties), and none of these conformers had very low 
Q-values. The last group contained both distance and tor-
sional violations, the latter of which, being penalized pro-
portionately to squared degrees of deviation, produced very 
high nominal violation energies.

The effect of including the sparse NMR constraints was 
to eliminate all conformers above 2.5 Å RMSD or with 
Q-values above 0.6. While ForceGen was able to identify 
exemplars with the low RMSD, low Q-value, and relatively 
low NMR violations, it clearly identified a significant frac-
tion of conformations that have no basis of experimental 
support. The highly statistically significant correlations 
between Q-values and both RMSD and quantitatively meas-
ured NMR violations over the range of 0.1–0.6 suggests 
that Q-values within this range may be relevant beyond the 
extremely low end, so it may be possible that some of the 
high-RMSD agnostic conformers that are distinct from the 
NMR-constrained pool have some relevance.

The bottom two plots of Fig. 14 show the relationship 
between the MMFF94sf energy and violation energy with 
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Fig. 14   NMR-constrained conformer search (purple) and uncon-
strained search (green) produced substantially different ensembles, 
when considering the relationship between RDC Q-values and either 
RMSD or nominal NMR violation energies (top two plots) and also 

when considering the relationship between energetic components and 
RMSD (bottom plots); structural overlays (bottom) are for all con-
formers with Q-values ≤ 0.20 , with carbon colors matching the plots
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RMSD. The latter (bottom right plot) shows a clear rela-
tionship, with low NMR violation energy clearly being 
correlated with low RMSD from the CSD crystal structure 
QEFHUE. However, there is only a very weak correlation 
between force field energy and RMSD within the NMR-
constrained pool (Kendall’s Tau of 0.06, p < 0.01 indicated 
by a dagger in the Figure). The correlation is negative for the 
agnostic pool, owing to the population of high-RMSD con-
formers with lower energy than those having lower RMSD. 
This was as expected: pools of conformers within 20 kcal/
mol of the identified global minimum by ForceGen very 
often contain biologically relevant conformers. But the aver-
age gap in energy between the lowest energy conformer and 
the best biological match was roughly 7 kcal/mol across the 
macrocycle benchmarks described above.

The bottom of Fig. 14 shows all conformers that had RDC 
values of 0.20 or better (front view at left as in Fig. 13 and 
flipped top to bottom at right, with carbon colors matching 
the plots). Both of the ForceGen pools covered the crys-
tal structure with multiple variants, though additional side 
chain movements were evident (e.g. the phenylalanine at the 
top left of the left-hand overlay). In a few positions (indi-
cated by red arrows), the low-Q-value agnostic pool (green) 
showed slightly more movement than the NMR-constrained 
pool (purple), but both pools covered roughly the same 
movements.

It is also possible to characterize fidelity to experimen-
tal NMR data by considering average inter-proton distances 
(e.g. as in [40]). For the NMR-constrained ensemble of 
Fig. 14, 18/20 of the inter-proton distances had mean dif-
ferences from the experimental ideal of 0.5 Å or less, and 
the remaining two had mean deviations of 0.7 Å and 0.9 Å. 
Recall that the NMR constraints were introduced as a middle 
distance, with ± 0.5 Å allowance (see Methods under “NMR 
Constraints”), so these deviations of the inter-proton means 
indicated no violations on average for 18/20 of the imposed 
constraints and just 0.2 Å and 0.4 Å for the remaining two.

For the unconstrained pool, 5/20 had mean differences 
from the experimental ideal of 0.5 Å or less (thus falling 
within the contraint window). However, this mainly reflects 
the diversity of conformations within the unconstrained 
pool. There was a population (see Figs. 13 and 14) within 
the unconstrained pool that had minimal NMR violations, 
low RMSD to the QEFHUE crystal structure, and very 
good agreement with the RDC data. Average inter-proton 
distances within an ensemble will not, in general, match 
experimental expectation if there is both a “correct” popula-
tion and an “incorrect” one within the ensemble.

Clearly, NMR constraints had a large impact on the 
degree of effective sampling of biologically relevant con-
formers. Using just 20 distance constraints and 3 torsional 
constraints from NMR data (plus the single trans-proline 
torsional constraint), the entire ForceGen conformational 

ensemble for aureobasidin A was focused within an experi-
mentally relevant space, confirmed by dramatic downward 
shifts in the distributions of both RDC Q-values and RMSD 
from a small molecule crystal structure.

NMR-based analysis and design of peptidic macrocycles 
is an area of increasing interest, and three recent papers are 
notable in the context of the work presented here. Kamenik 
at al. [40] studied three small peptidic macrocycles (two 
with five residues, which fall well within our tractable range, 
and one with six which falls into our moderately tractable 
range). They considered the relationship between conforma-
tional ensembles generated by accelerated molecular dynam-
ics compared with experimental NMR data. They showed 
very good agreement between aMD ensembles and NMR 
inter-proton distances, and it will be interesting to assess the 
ForceGen approach on peptidic macrocyles in this smaller 
size range in the context of NMR data.

Witek et al. [41] characterized the behavior of cyclo-
sporin A in aqueous and apolar environments, both using 
molecular dynamics and NMR approaches. Using MD simu-
lations of 100ns in length, they did not observe conversion 
from a closed cyclosporin seed conformation to an open one 
in water, nor did they observe a transition from an open seed 
conformation in chloroform to a closed conformation that 
agreed with crystallographic or NMR experimental data. 
Using 100 diverse seed conformations, a more complete 
characterization was possible, both in terms of conforma-
tional ensembles and kinetic behavior, with better agreement 
to experiment. Such challenges in sampling complex mac-
rocycles using MD echoed the MD results discussed here in 
the context of the Prime-MCS set.

Baker’s group has addressed the prospective design of 
macrocycles with desired conformational behavior (i.e. the 
presence of stabilizing trans-annular and exocyclic hydrogen 
bonding networks) [42]. In 9 of 12 cases, computationally 
designed macrocycles exhibited NMR profiles where cor-
responding conformational ensembles matched the designed 
structures. This clearly is a direction in which future Force-
Gen work will be directed.

Conclusions

The results reported here for ForceGen conformer genera-
tion are comprehensive. For non-macrocycles, conformer 
pools were generated for both screening and pose prediction 
applications, mirroring the benchmarking done for numerous 
other methods on the Platinum Diverse Set of 2859 PDB 
ligands [19]. ForceGen is faster than all other benchmarked 
methods while producing equally accurate results in terms 
of mean RMSD from experimental structures. Because the 
approach does not make use of templates or torsion librar-
ies, it is able to maximize the diversity of conformer pools, 
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subject only to energetic considerations. This results in sig-
nificantly better coverage of conformational space, as meas-
ured by the maximal observed RMSD covering 95% of the 
overall set ( RMSD

95 ). On a single computing core, for pro-
cessing very large databases for virtual screening applica-
tions, ForceGen produces conformer pools (with a maximum 
size of 50) in a median time of 0.59 s (mean time of 1.35). It 
does so beginning from standard molecular file inputs (either 
2D or 3D), with no special requirements for specification 
of templates or other information for either macrocycles or 
non-macrocycles.

Multiple parts of the ForceGen algorithm are parallel-
izable, and this provides significant speed increases that 
are particularly relevant in interactive-time modeling, for 
example in lead optimization using a docking workflow. 
Here, using a modest multi-core workstation, typical search 
times were 1–3 s per molecule for accurate search (-pgeom 
level, 250 conformer pools), which yielded a mean RMSD 
of 0.55 Å and RMSD

95 of 1.22 Å. For comparison, the most 
accurate results from other benchmarked methods were 
0.57 and 0.58 Å (mean RMSD, OMEGA and ConfGenX, 
respectively) and 1.4 Å RMSD

95 for both OMEGA and 
ConfGenX. Times for OMEGA and ConfGenX were 2–3 
and 13–14 s, respectively. ForceGen’s faster search for pose 
prediction (-pgeomf) produced mean RMSD of 0.58 Å and 
1.27 Å RMSD

95 with mean and median times of 0.61 and 
1.53 s using the multi-core calculation option.

For macrocycles, where the typical application scenario 
often includes a single molecule or a handful, the multi-core 
option yields larger performance gains. Of the 431 unique 
macrocycles studied here, 61% fell into a tractable class, 
defined as having 21 or fewer total rotatable bonds (both 
macrocyclic and exocyclic). Conventional RMSD perfor-
mance on this set matched performance on the full Plati-
num Diverse Set of non-macrocycles, with mean RMSD of 
0.51 Å, and with search requiring 58 s on average of wall-
clock time (thorough search mode). This class of macrocy-
cles includes many that have been the subject of synthetic 
drug design efforts. Interactive-time modeling of such mol-
ecules with accuracy sufficient to support design-oriented 
workflows offers new opportunities in exploiting synthetic 
macrocycles within this complexity class. Moderately trac-
table cases (total flexibility 22–36) formed about one third 
of the 431, with mean RMSD rising to 1.32 Å, and search 
times increasing to about 5 min. Effective docking strategies 
for linear peptides have been recently shown for peptides of 
3–12 residues in times of 15–40 min [43], and the smaller 
range of cyclic peptides fall into the tractable class described 
here.

Just 7% of the macrocyclic examples fell into the “hard” 
group, where both accuracy decreased and computational 
cost increased. While the computational cost aspect is a 
manageable engineering problem, the accuracy issue is 

deeper. However, as seen with Aureobasidin A, ForceGen 
can utilize NMR constraints in a natural fashion, even rela-
tively sparse constraints. The enhanced biological fidelity of 
the conformational ensembles for such complex macrocy-
cles should be beneficial in developing predictive models for 
critical aspects of macrocycle behavior. Further, it is likely 
that the method can be used iteratively within the context of 
the NMR data analysis workflow to help in the identification 
of correctly assigned signal peaks, which would reduce the 
burden of traditional NMR data analysis.

The larger macrocycles are very often natural-product 
based and often contain peptide backbones. Cyclic peptides 
lacking proline residues form a particularly interesting com-
putational challenge because the backbones are all just poly-
glycine. Conformational preferences for such molecules 
are driven by N-methylation patterns (which modify the 
available hydrogen-bond networks), bridging features such 
as disulfides, and the side chains present at each position. 
ForceGen’s approach never breaks a macrocycle nor treats 
a macrocycle backbone as something that can be consid-
ered as separate from its pendant functionality. Strategies 
such as those employed by Prime-MCS and BRIKARD [21, 
30] make strong assumptions about independence: Prime-
MCS assumes that relevant dihedrals can be derived with-
out an intact macrocyclic ring, and the BRIKARD approach 
assumes that side chains are irrelevant while generating ring 
configurations. ForceGen continuously explores the low 
energy landscape of a macrocycle using natural physical 
movements, never breaking a ring, and with all calculations 
done in the presence of all atoms.

ForceGen relies on modified version of MMFF94s, which 
was parameterized for small molecules, not peptides. In this 
work, peptidic macrocycles tended to be much larger than 
non-peptidic ones. However, within the smaller size-range 
of peptidic macrocycles, we did not observe any systematic 
differences in predictive accuracy between peptides and non-
peptides of similar complexity. Clearly, there is room for 
improvement in terms of the underlying force field, particu-
larly in the area of topologically distant non-bonded interac-
tions. In principle, other force fields would be of interest to 
explored within the ForceGen framework, though substantial 
effort would be required in order to match the existing imple-
mentation’s speed.

Despite there being a significant and medicinally relevant 
portion of the macrocyclic space that appears to be tractable, 
the central macrocycle conformational search problem is not 
yet solved. There is room for improvement in both search 
algorithms as well as in the details of energetic scoring. It is 
likely that improvements in the sampling tools such as those 
reported here will help to generate more experimental data 
on macrocyclic behavior. To the extent that happens, espe-
cially regarding data in aqueous solution and membranes, it 
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will be of great benefit to supporting further improvement 
of algorithms and force fields.
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