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ABSTRACT Bayesian models for genomic prediction and association mapping are being increasingly used in
genetics analysis of quantitative traits. Given a point estimate of variance components, the popular methods
SNP-BLUP and GBLUP result in joint estimates of the effect of all markers on the analyzed trait; single and
multiple marker frequentist tests (EMMAX) can be constructed from these estimates. Indeed, BLUP methods can
be seen simultaneously as Bayesian or frequentist methods. So far there is no formal method to produce
Bayesian statistics from GBLUP. Here we show that the Bayes Factor, a commonly admitted statistical procedure,
can be computed as the ratio of two normal densities: the first, of the estimate of the marker effect over its
posterior standard deviation; the second of the null hypothesis (a value of 0 over the prior standard deviation).
We extend the BF to pool evidence from several markers and of several traits. A real data set that we analyze,
with ours and existing methods, analyzes 630 horses genotyped for 41711 polymorphic SNPs for the trait
“outcome of the qualification test” (which addresses gait, or ambling, of horses) for which a known major gene
exists. In the horse data, single marker EMMAX shows a significant effect at the right place at Bonferroni level.
The BF points to the same location although with low numerical values. The strength of evidence
combining information from several consecutive markers increases using the BF and decreases using
EMMAX, which comes from a fundamental difference in the Bayesian and frequentist schools of hy-
pothesis testing. We conclude that our BF method complements frequentist EMMAX analyses because
it provides a better pooling of evidence across markers, although its use for primary detection is unclear
due to the lack of defined rejection thresholds.
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Bayesian models including simultaneously all marker effects are be-
coming very popular for GWAS analysis (Habier et al. 2011;Wang et al.
2012, 2016; Moser et al. 2015). The most frequently used prior for

marker effects is the normal distribution, known as RRBLUP or
SNP-BLUP (Habier et al. 2007; VanRaden 2008), which is equivalent
to GBLUP (VanRaden 2008), also known in the human literature as
GCTA analysis (Yang et al. 2010). GBLUP is simple and can be gen-
eralized to marker data missing in a large fraction of individuals in the
so-called Single Step methods (Aguilar et al. 2010; Christensen 2012),
and also to multiple traits, or complex models (random regression,
genotype by environment, etc.). Because of the equivalence of GBLUP
and SNP-BLUP, it is straightforward to obtain from Single Step meth-
ods estimates ofmarker effects for complex traits like, e.g., multiple trait
maternal effects (Lourenco et al. 2015) or genotype-environment mod-
els (Jarquín et al. 2014).

Therefore, GWAS can be done exploiting results of GBLUP (Wang
et al. 2012; Dikmen et al. 2013; Casiró et al. 2017). Most of these works
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(e.g., (Wang et al. 2012; Dikmen et al. 2013) do not report classical
statistics neither p-values, whereas standard GWAS by fixed regression
“one marker at a time” (e.g., EMMAX (Kennedy et al. 1992; Kang et al.
2010; Teyssèdre et al. 2012)) yields a normal test, i.e., dividing the
estimate of the marker effect by its standard error of the estimate, with
associated p-values. Remarkably, Gualdrón-Duarte et al. (2014) and
Bernal-Rubio et al. (2016) proved that in (SS)GBLUP or SNP-BLUP,
dividing the estimate of the marker effect by its standard error is math-
ematically equivalent to fixed regression EMMAX, even if markers are
estimated as random effects in GBLUP and as fixed effects in EMMAX.
In addition, Chen et al. (2017) generalized the single marker EMMAX
test to a multiple marker test that considers simultaneous sets of
markers. In this test, signals from neighboring markers are pooled to
create a single p-value measuring strength of association.

This paper has two objectives. The first one is to show that, in
addition toprevious frequentist tests (singlemarkerandmultiplemarker
EMMAX) it is possible to obtain from GBLUP analysis single marker
and multiple marker Bayes Factors (BF) as strength of evidence for the
presence or absence of aQTL. In short, the BF is the ratio of probabilities
of the data given twocompetingmodels (Kass andRaftery1995) andhas
been often used in QTL mapping (Heath 1997; Varona et al. 2001;
Wakefield 2009, 2012; Varona 2010; Habier et al. 2011; Legarra et al.
2015). The BF empirically seems to provide a consistent procedure
across traits and species (Legarra et al. 2015). In current Markov Chain
MonteCarlo implementations, computation of the BF require indicator
variables for “null” or “non null” effects of markers (Habier et al. 2011;
Legarra et al. 2015) and does not include the extensively used GBLUP
and SNP-BLUP. In this work, we show how the BF can be easily
computed from results of SNP-BLUP or GBLUP, for evidence of a
single loci or a set of loci (possibly contiguous). The resulting BF
considers correctly both the estimated effect and its incertitude, at
one or several loci.

The second objective is to illustrate properties of these two proce-
dures (single and multiple marker EMMAX and BF), plus a Bayesian
multiple marker regression (BayesCPi), by analysis of a challenging
small horse real data set with presence of a known, yet barely significant,
major gene (DMRT3) for gait.

MATERIAL AND METHODS

Distributions of marker effect estimates
The methods use the prior (before observing the data) and posterior
(estimates and associated errors) distributions of marker effects assum-
ing a priori multivariate normality (i.e., SNP-BLUP or GBLUP). Most
theory can be found in (GualdrónDuarte et al. 2014; Bernal Rubio et al.
2016; Chen et al. 2017) and we include it in the Appendix for comple-
tion.We will assume throughout that variance components are known;
this is a frequent assumption that allows obtaining of closed-form
estimators. In particular, variance components can be estimated be-
forehand (e.g., by REML), or (making strong assumptions) they can be
borrowed from pedigree analysis. In either case, a point estimate is used
“as if” it was exact, which results in optimistic results. The main nota-
tion that we need is a vector of marker effects a normally distributed
with a priori mean 0 and variance Is2

a, and their prediction error
variance Caa.

EMMAX tests of association from GBLUP
This section is a reminder of (GualdrónDuarte et al. 2014; Bernal Rubio
et al. 2016; Chen et al. 2017) and we include it here for completeness.

Single marker: The single marker EMMAX procedure is a normal test
obtained, in our notation, with the statistic

t   ¼  
â

sdðâÞ
where â is the marker estimate of the locus under consideration,
obtained from a single SNP-BLUP evaluation (or an equivalent
model), and where sdðâÞ is the frequentist distribution (over conceptual
repeated sampling of y) of the SNP-BLUP estimator of the effect a. Some-
what surprisingly, the numerical value of t is the same as if a was fit as a
“fixed regression”GWAS and therefore the distribution of t under the null
isNð0; 1Þ (Bernal Rubio et al. 2016). For instance, assume thats2

a ¼ 0:2 is
the a priori variance of marker effects. Output of the SNP-BLUP gives an
estimate of the marker effect âi ¼ 0:5 with a standard deviation of the
posterior distribution s:d:ðaijyÞ ¼ 0:05. With these numbers, the fre-
quentist VarðâiÞ ¼ s2

a 2VarðaijyÞ ¼ 0:22 ð0:05Þ2 ¼ 0:1975. Thus,
t ¼ 0:5

0:1975 ¼ 2:84 which yields a p-value of 0.006.

Multiple marker: Consider a subset of n markers (possibly
consecutive), starting at marker i. The statistic is a quadratic
form x ¼ â

0
½i;iþn�ðΣ½i;iþn:i;iþn�Þ21 â½i;iþn�, where Σ ¼ VarðâÞ ¼ Is2

a 2
Caa
½i;iþn:i;iþn� is the frequentist covariance of these marker effects. Chen

et al. (2017) proved that under multivariate normality the quadratic
form x follows a chi-square distribution of n degrees of freedom, which
yields p-values for the multiple marker EMMAX. Alternatively, deri-
vation of the Hotelling-t squared test, that tests whether a set of corre-
lated sample means are simultaneously different from zero, yields the
same result. The previous normal test for the single marker EMMAX is
also equivalent to the chi-squared test. Matrix Σ takes into account
uncertainty and collinearity of marker estimates.

For instance, consider two markers with effects â ¼ ð0:5; 0:4Þ
(similar effects) with Caa ¼

�
0:05 20:02
20:02 0:08

�
(estimates of effects

are negatively correlated because of linkage disequilibrium) and
s2
a ¼ 0:2. The quadratic form has value x ¼ 2:61 with p-value 0.27.

The evidence given by the p-value lowers because the two effects are
correlated.

Bayes Factors from GBLUP
In this section we include our original derivations.

Single marker: There are two competing models in the BF: that the
marker i with effect ai “has some effect” (1H: ai 6¼ 0) or «has 0 effect»
(H0: ai ¼ 0), and the BF can be written as

BF ¼ pH1ðyÞ
pH0ðyÞ

The BF measures whether the data y is more probable under either of
the hypothesis. This can be written, alternatively, as

BF ¼ pðyjai 6¼ 0Þ
pðyjai ¼ 0Þ (1)

where ai is the effect of the marker. Typically, this involves a complex
MCMC integration. In the particular case of multivariate normality
with known variances, Varona et al. (2001), Varona (2010) showed
that the expression (1) is equal to
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BF ¼ pðai ¼ 0Þ
pðai ¼ 0jyÞ (2)

where pðai ¼ 0Þ is the density of ai a priori evaluated at ai ¼ 0, and
pðai ¼ 0jyÞ is the density of ai a posteriori evaluated at ai ¼ 0. Com-
putation of BF using (2) is straightforward because pðÞ is a normal
density. In particular, pðai ¼ 0jyÞ is the density of ai ¼ 0 knowing
that there is an estimate âi with a certain a posteriori variance
VarðaijyÞ (e.g., different for each data set). In algebraic form this is

BF ¼ N
�
0
��0;s2

a

�
Nð0jâi;VarðâiÞÞ (3)

where Nðxjy; zÞ is the density of x in the normal distribution with
mean y and variance z. Consider the same example as before:
s2
a ¼ 0:2, âi ¼ 0:5, s:d:ðaijyÞ ¼ 0:05. The BF is thus, in R code:
dnorm(0,0,sqrt(0.2))/dnorm(0,0.5,0.05)
which is 20.76 in the log10 scale. According toKass&Raftery (1995)

this is « Very Strong » evidence.

Multiple marker: Evidence from several consecutive markers in a
segment can be pooled together using the BF. Expression (3) is gener-
alized to several SNP markers (markers from i to n) as:

BF ¼ MVN
�
0
��0; Is2

a0

�
MVN

�
0
���â½i;iþn�;Caa

½i;iþn:i;iþn�
� (4)

where MVN is the density of a multivariate normal distribution and
Caa
½i;iþn:i;iþn� is the posterior (co)variance matrix between the marker

estimates. Posterior covariance matrix Caa
½i;iþn:i;iþn�, which is a subma-

trix of Caa, takes into account colinearity between markers caused by
LD. In this case, the BF tests whether a set of markers are all simul-
taneously 0, against the alternative that some of them (if not all) are
different from zero.

Consider the same example as before: two markers with effects

â ¼ ð0:5; 0:4Þ, Caa ¼
�

0:05 20:02
20:02 0:08

�
, s2

a ¼ 0:2. The BF can be

computed in R as
dmvnorm(c(0,0),mean = c(0,0),sigma = diag(0.2,2))/dmvnorm

(ahat,mean = c(0,0),sigma = Caa)
yielding a BF of 1.65 in the log10 scale, lower than the single marker
analysis. In a way, this reflects that there is a confusion ofmarker effects.

Multiple trait: Above methods can be easily extended to the multiple
trait case.Multiple trait genomic predictions can be done fromBayesian
regressions, SNP-BLUPor (Single Step) GBLUP (Tsuruta et al. 2011; Jia
and Jannink 2012;Maier et al. 2015). Then, the EMMAX tests or the BF
for several traits (and possibly markers) simultaneously is very similar
to the “Several markers” case considering joint estimates of marker
effects â for the n traits, the a priori covariance among marker effects
for the n traits K0, and the a posteriori covariance matrix of marker
effect estimatesCaa. Vector a can include either one or several markers.
Typically K0 is a function of G0, the genetic covariance among traits.

Data: We used a horse real data set to explore and illustrate the
properties of the procedures. We also did a limited number of simu-
lations but we chose not to present them as this was extensively done in
(Chen et al. 2017).

A single base polymorphism at the gene DMRT3 in chromosome
23 has a strong effect on horse ambling gaits (Andersson et al. 2012). In

French trotters, a SNPmarker (marker BIEC2-620109 on chromosome
23 at position 22967656 bp) in strong disequilibrium with this poly-
morphism has a strong effect in qualification at the race (Ricard 2015;
Brard and Ricard 2015). In this work we reanalyzed the same data set,
which contains 630 horses and 41711 polymorphic SNP markers. The
trait was “outcome of the qualification test”, with a heritability of 0.56.
The major gene was not discovered in this data set, and therefore there
is no bias due to discovery. We tried the following methods for GWAS:

Bayes factors with the mixture model BayesCPi: (Habier et al. 2011)
fixing a priori that only 0.1% of the markers have an effect (see
(Legarra et al. 2015) for a full description). This method provides
BFs, although our implementation only considers single markers.

Single marker and multiple marker EMMAX tests: as presented in
this work, computed via MCMC, up to segments of 100 consec-
utive markers.

Bayes factors from SNP-BLUP: as presented in this work, computed
via MCMC, up to segments of 100 consecutive markers.

EMMAX was fitted using blupf90 (Misztal et al. 2002) and home-
made scripts, whereas the other used our software GS3 (available at
https://github.com/alegarra/gs3), using “OPTION Bayes Factor”. After
completion of the analysis, we produced Manhattan plots based on BF
and the other statistics; for EMMAXwe used Bonferroni corrections to
claim genowide significance; for Bayesian procedures, we did not ad-
dress thresholds for declaring detection; this point will be addressed in
the discussion.

Data availability
The authors state that all data necessary for confirming the conclu-
sions presented in the article are represented fully within the article.
Supplemental material available at Figshare: https://doi.org/10.25387/
g3.6241928.

RESULTS
Figure 1 shows results from the single marker association test
(EMMAX), the Bayesian multi-marker mixture model GWAS
(BayesCPi) and the single marker BF. All three methods point to the
SNP (BIEC2-620109 at position 22967656 bp) closest and most asso-
ciated to the causal gene, and the four significant markers in the
EMMAX single marker regression are in LD with each other. This
reproduces the results in Ricard (2015). The EMMAX yields significant
p-values at the Bonferroni level. Concerning BF, a threshold of
150 (2.17 in the log10 scale) has been suggested (Legarra et al. 2015),
and the BayesCPi analysis in Figure 2 does reach this threshold, but this
is not the case in the single marker BF using GBLUP.

In both analyses (BayesCPi and singlemarker BF), a large number of
markers fall below the threshold of 0 in log10(BF), in other words, BF,
1. This means that for those regions the hypothesis that these markers
have an effect is less likely that the hypothesis that they do not have an
effect.

Figure 2 shows that evidence of the causal gene increases when
using BF across consecutive markers. Systematically, the same location
(BIEC2-620109) is spotted. It can be seen that the strength of evidence
increase dramatically with increasing consecutive numbers, reaching
the suggested “suggestive” threshold of BF. 3 (Kass and Raftery 1995),
but not the much higher threshold of 150 suggested (Legarra et al.
2015). On the other hand, evidence from EMMAX does actually de-
crease, becomes non-significant, and, moreover, the highest peak devi-
ates from the true location. This is at first sight a rather surprising result
that will be discussed later.
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DISCUSSION
The standard test for GWAS by association analysis is the single marker
association analysis (e.g., Kruglyak 1999). Association analysis can account
for genetic relationships (Kennedy et al. 1992), population structure (Kang
et al. 2010) and also to a part of individuals not genotyped (Legarra and
Vitezica 2015). An alternative is to fit multiple marker simultaneously in
the form of Bayesian regression (e.g., Fernando andGarrick 2013). Legarra
et al. (2015) did not see qualitative differences of Bayesian regressions and
association analysis over five data sets and species, and concluded that the
interest of Bayesian procedures is to complement regular association anal-
ysis. Anyway, Bayesian regression is of interest for three reasons: first, the
Bayesian analysis has interesting properties of automatically accounting for
multiple test, structure, unbiasedness, false discovery rate and power
(Wakefield 2009; Fernando andGarrick 2013); second, genomic evaluation

routinely generates marker estimates and these may be used for GWAS;
third, complex models used in genetic evaluation can be considered, for
instancemultiple trait disease all-or-none traits (Parker Gaddis et al. 2014).

The analysis that we propose can be seen as an approximation to a
mixture analysis such as BayesCPi. For a given marker, we ask the
question: “is this marker worth being included in the model?” whereas
we pretend that all the other markers are included in the model. Implic-
itly, the prior is of a normal distribution with a known variance for loci
not being tested and a mixture of a point mass at zero and a normal
distribution for the locus being tested. In a mixture model (BayesCPi and
similar ones), allmarkers are scrutinized simultaneously, and the strength
of evidence compared against the probability value that a marker should
be included in the model (usually labeled as p). This is probably why the
actual numbers for the BF are so different across both methods.

Figure 1 Results (from top to bottom) of single marker regression EMMAX, Bayes Factor for BayesCPi, and Bayes Factor for SNP-BLUP.
Bonferroni rejection threshold in EMMAX is 5.9.
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We stress that the SNP-BLUP or GBLUP estimation is run only
once, and its results are used to construct BFs for different groups
of markers (consecutive or not), if desired. This BF combining

information from several markers is quite different from estimat-
ing the effect of segments of alleles forming haplotypes, where a
haplotype can be seen as a multiallelic marker, and where a

Figure 2 Bayes factor profiles (top) and p-values (bot-
tom) for qualification test in French trotters, chromosome
23. The location of the causal mutation marked with a red
vertical bar. Bonferroni rejection threshold is 5.9.
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different complete estimation must be run for each segment
length.

In Bayesian regression models there is a lack of unique criterion to
define “relevance” of the association and of corresponding well-defined
thresholds; see (Legarra et al. 2015) for a description.The numerical
values depend strongly on the assumed prior for marker effects (as can
be seen in Figure 1). Thus, two researchers fitting, say, BayesCPi and
BayesA may obtain different results. The most popular procedure for
genomic evaluation and Bayesian regression is SNP-BLUP or its equiv-
alent GBLUP, both of which assume multivariate normality of marker
effects. Most often, a reasonable assumption (point estimate) on the
variance of marker effects exists, by a transformation of previous esti-
mates of genetic variance (obtained by pedigree analysis or, using the
same data set, by genomic REML or similar methods). Using this point
estimate underestimates noise linked to estimation of variance compo-
nents. Here, we present for the first time a closed-form method to
estimate BFs for association analysis based on GBLUP results, and
we advocate its use. The statistical properties of the BF have been
extensively discussed in the statistics literature, but for mapping causal
variants it has two very few relevant properties: the BF can show evi-
dence against and for the null hypothesis, and as data cumulates, the
Bayes Factor favors the true hypothesis.

Our results fromrealdatasets showthatallmethodspoint to the right
marker (the one in stronger LDwith the unobserved, but known,QTL).
Classical regression analysis is significant andBayesCPi yields a “strong”
BF signal. However, the BF observed from SNP-BLUP is 1.07 for the
truly associated marker, which is very small support.

Evidence from BF increases when we extend the BF to gather
evidence from several markers. A multi – SNP test captures the di-
vergence of the posterior distribution from the 0 vector, and takes into
account the posterior dependencies, due to LD, between marker esti-
mates. This is similar to the idea of using the amount of variance
explained by each genomic segment (Pérez-Enciso and Varona 2000;
Hayes et al. 2010; Nagamine et al. 2012; Fernando and Garrick 2013).
The inconvenience of these methods is mostly computational: they
require to do either Restricted Maximum Likelihood (Nagamine
et al. 2012) or MCMC (Hayes et al. 2010; Fernando and Garrick
2013) to estimate variance components, and that only the Restricted
Maximum Likelihood estimation has an associated statistical test (Like-
lihood ratio test), for which consensual threshold exist (such as 0.05
genome-wide corrected by Bonferroni) whereas the MCMC methods
use ad hoc thresholds that are less consensual. Our proposal does not
require MCMC or Restricted Maximum Likelihood, but establishing a
threshold for the BF is still ambiguous. An approximate method pools
information from estimates of marker effects (Wang et al. 2012), but
this does not consider not the error in the estimation of marker effects,
neither their a posteriori correlation in presence of LD. Our proposal is
exact, given a point estimate of variance components but does not
necessarily require Restricted Maximum Likelihood or MCMC.

The interpretation of the BF in this study is as follows. There are two
models, in the first (null) model allmarkers have 0 effect, whereas in the
second (alternative) model at least one of the markers has an effect. In
otherwords, the BF is a contrast between the region contributing, or not,
to the genetic variance. When markers’ evidence is pooled across con-
tiguous markers, the evidence for either of the two competing models
increases.

Strangely, in our study including more markers in multiple marker
EMMAX does not reinforce evidence, contrary to the BF. This is
contrary to results of Chen et al. (2017). The reason is possibly due
to the not-too-strong linkage disequilibrium in our data set, for which
p-values do not cumulate information across multiple markers. It

would seem that, in our data set, it is more difficult to disprove several
null hypotheses (null hypothesis in EMMAX: allmarkers are zero) than
to prove an alternative hypothesis (alternative hypothesis in BF: some
marker is different from zero).

CONCLUSIONS
We present a Bayesian method (the BF) that complements existing
EMMAXmethods forQTLdetectionusingmarkerestimates fromSNP-
BLUP or (SS)GBLUP from a commonly accepted prior (multivariate
normality combined with prior estimates of the genetic variance) and
commonly accepted, and used, methods (SNP-BLUP and SSGBLUP).
Computations are reasonable and pooling information from several
markers is straightforward. Based on our real data set, single marker
EMMAX is better to claim significance, whereas multiple marker BF
gives a better perspective of influence of LDon the result. This is likely to
be data dependent.
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APPENDIX

EMMAX tests from GBLUP and SNP-BLUP results
Most of this development is in (Gualdrón Duarte et al. 2014; Bernal Rubio et al. 2016; Chen et al. 2017).

SNP-BLUP: The procedure is easier to be presented from the SNP-BLUPmethodpoint of view. In thismethod, themultivariate prior distribution of
marker effect is, for a random locus,

p
�
ajs2

a

� ¼ Nð0;s2
aÞ

and s2
a is a variance component that usually (but not necessarily) is assumed related to genetic variance in the form s2

u ¼ 2s2
a
P piqi (Fernando

et al. 2007; VanRaden 2008). For several loci, pðajs2
aÞ ¼ Nð0; Is2

aÞ i.e., loci effects are assumed uncorrelated a priori. A linear model for SNP-
BLUP is y ¼ Xbþ Zaþ e where Z is a matrix of coded genotypes. In SNP-BLUP, the posterior distribution of a can be obtained by Markov
Chain MonteCarlo (MCMC) (Legarra and Misztal 2008) or from the inverse of the left hand side of Henderson’s Mixed Model Equations:�

X
0
Xs22

e X
0
Zs22

e

Z
0
Xs22

e Z
0
Zs22

e þ Is22
a

��
b̂
â
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In both cases, it is possible to obtain (a) the estimate of themarker effects is â ¼ BLUPðaÞ ¼ EðajyÞ, and (b) twomeasures of incertitude of â, the
(frequentist) sampling variance, i.e. VarðâÞ and the (Bayesian) posterior variance, i.e. VarðajyÞ. For instance, if the inverse of the right hand side
of (A1) is computed: �
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�21

¼
�
Cbb Cba

Cab Caa

�

thenVarðajyÞ ¼ Caa (Bayesian, conditional on data) andVarðâÞ ¼ Is2
a 2Caa (frequentist, over repeated sampling of y). MatrixCaa contains a

posteriori covariances of marker effects, which reflect allelic frequencies (i.e., a rare SNP is more difficult to estimate) and linkage disequilibrium
across markers (two markers in strong LD will have correlated estimates a posteriori, and any of them will be less accurate than a marker not in
LD with any other). If estimates are obtained by MCMC, Caa can be estimated as the covariance matrix of the samples of the posterior
distribution, pðajyÞ. The R package RRBLUP (Endelman 2011) produces sdðâiÞ, and our software GS3 (Legarra et al. 2011) can produce parts of
Caa.

GBLUP: the equivalence between GBLUP and SNP-BLUP implies that marker solutions (â) can be backsolved for individual solutions (ûÞ
(VanRaden 2008; Strandén and Garrick 2009). Proof is as follows. If individual effects are the sum of marker effects u ¼ Za then u and a follow

a joint degenerate multivariate normal distribution such that Var

�
u
a

�
¼

�
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�
. Under the usual assumptions D ¼ Is2

a and
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P piqi (VanRaden 2008), ZDZ
0 ¼ G and it can be shown (if G is invertible) that
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The estimation error of a from GBLUP estimation is more cumbersome to obtain. Assume that the model for GBLUP is y ¼ XbþWuþ e, and
mixed model equations are: �
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With the inverse of the left hand side equations
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. Gualdrón-Duarte et al. (2014) showed

that:
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where Cuu is the element of the inverse of the left hand side matrix corresponding to u; this inverse can be computed by inversion or, again, by
MCMC. Finally, the posterior variance of a is

VarðajyÞ ¼ s2
u

2Σpiqi
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1
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G21ðGs2

u 2CuuÞG21Z
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This allows computing estimates of marker effects and their errors for very complex models, something difficult to do with standard GWAS or
Bayesian Regressions.
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