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Abstract
Objectives: Risk prediction in implant dentistry presents specific challenges includ-
ing the dependence of observations from patients with multiple implants and rare 
outcome events. The aim of this study was to use advanced statistical methods based 
on penalized regression to assess risk factors in implant dentistry.
Material and methods: We conducted a retrospective study from January 2016 to 
November 2018 recording postoperative complications including bleeding, hema-
toma, local infection, and nerve damage, as well as early implant failure. We further 
assessed patient- and implant-related risk factors including smoking and diabetes, 
as well as treatment parameters including types of gaps and surgical procedures. 
Univariable and multivariable generalized estimating equation (GEE) models were 
estimated to assess predictor effects, and a prediction model was fitted using L1 
penalized estimation (lasso).
Results: In a total of 1,132 patients (mean age: 50.6  ±  16.5  years, 55.4% female) 
and 2,413 implants, postoperative complications occurred in 71 patients. Sixteen im-
plants were lost prior to loading. Multivariable GEE models showed a higher risk of 
any complication for diabetes mellitus (p = .006) and bone augmentation (p = .039). 
The models further revealed a higher risk of local infection for bone augmentation 
(p = .003), and a higher risk of hematoma formation for diabetes mellitus (p = .007) 
and edentulous jaws (p = .024). The lasso model did not select any risk factors into 
the prediction model.
Conclusions: Using novel methodology well-suited to tackle the specific challenges 
of risk prediction in implant dentistry, we were able to reliably estimate associations 
of risk factors with outcomes.
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1  | INTRODUC TION

Risk factors such as smoking and diabetes are often associated with 
postoperative complications ranging from local infection to severe 
neurological symptoms as well as implant failure (Heitz-Mayfield & 
Huynh-Ba, 2009; Ramanauskaite, Becker, Sader, & Schwarz, 2019; 
van Steenberghe, Jacobs, Desnyder, Maffei, & Quirynen,  2002). 
Hence, risk factors often serve as criteria for patient selection (Alani, 
Bishop, Renton, & Djemal, 2014). Prediction models are used to eval-
uate risk factors and assist clinical decision making (Moons, Altman, 
Vergouwe, & Royston, 2009). Training datasets used to build predic-
tion models usually contain few events compared with the number 
of possible predictors. This low events-per-variable (EPV) ratio is 
particularly true in implant dentistry, where the events of interest 
(e.g., implant failure, peri-implantitis) are rare (Moraschini, Poubel, 
Ferreira, & Barboza, 2015).

Various statistical methods can be used for risk factor assess-
ment; dental implant research predominantly uses logistic regression 
models with stepwise selection of risk factors (Brügger et al., 2015; 
Chrcanovic, Kisch, Albrektsson, & Wennerberg,  2017; Neves, 
de Araújo Nobre, Oliveira, Martins Dos Santos, & Malo,  2018). 
However, stepwise methods need to be adapted to dependent out-
come data in cohorts where patients have varying numbers of im-
plants. Moreover, stepwise methods often underperform in low-EPV 
patient cohorts (Steyerberg, Eijkemans, Harrell, & Habbema, 2000). 
Stepwise methods may not only take the underlying clinical associ-
ations between outcomes and predictors into account, but also ran-
dom variations present in the training dataset (Pavlou et al., 2015). 
As a consequence, models fitted by stepwise methods may under-
estimate the probability of an event in low risk patients and over-
estimate it in high risk patients (Steyerberg et al., 2010). Further, in 
more complex models accounting for several implants per patients, 
stepwise procedures may be restricted to a limited number of possi-
ble predictors (Groll & Tutz, 2014); if a larger number of possible risk 
factors is to be assessed, multiple risk factors have to be eliminated a 
priori from the analysis. Overall, these biases result in compromised 
models with possible negative consequences for clinical decision 
making.

Model overfitting can be reduced by shrinking regression co-
efficients where usually the estimated amount of overfitting de-
termines the shrinkage factor (Pavlou, Ambler, Seaman, De Iorio, & 
Omar, 2016). It is preferable to include shrinkage in the model esti-
mation process using penalized regression (Harrell Jr, 2015). Models 
based on penalized regression include L1 penalized estimation (least 
absolute shrinkage and selection operator, lasso), L2 penalized es-
timation (ridge), and the Firth penalization (Firth,  1993), which is 
often preferred as the amount of penalization does not have to be 
estimated from sparse data (Van Calster, van Smeden, De Cock, & 
Steyerberg,  2020). The mathematics behind these methods are 
similar. Lasso is further capable of variable selection by shrinking 
coefficients of superfluous variables to exactly zero; this makes 
the interpretation of results easier. Penalized regression models 
are more accurate than stepwise models (Kim, Kim, Jeong, Jeong, 

& Kim, 2018) and perform particularly better in low-EPV cohorts 
(Ambler, Seaman, & Omar, 2012). Thus, penalized regression mod-
els are recommended for EPV < 20 (Steyerberg et al., 2000). Lasso 
and ridge perform comparably well in low-noise datasets; lasso is 
recommended over ridge in environments with many noise predic-
tors (Pavlou et al., 2016). Both methods enable the evaluation of an 
endless number of predictors. The Firth penalization has the addi-
tional advantage that it can handle situations of extreme sparsity, 
where events do not occur in some of the levels of some risk factors 
(Heinze & Schemper, 2002; Mansournia, Geroldinger, Greenland, & 
Heinze, 2018; Puhr, Heinze, Nold, Lusa, & Geroldinger, 2017).

Penalized regression is increasingly used in other medical fields, 
including in prediction models for severe sepsis (Kaukonen, Bailey, 
& Bellomo,  2015), lung-cancer death (Kovalchik et  al.,  2013), and 
the use of functional magnetic resonance imaging to predict phys-
ical pain (Wager et al., 2013). These advanced statistical models are 
not yet routine in dental implant research. Our aim was to develop 
a prediction model of postoperative complications and early implant 
failure based on penalized regression to assess risk factors in implant 
dentistry; we further aimed to concisely describe the association 
of risk factors with postoperative complications and early implant 
failures.

2  | MATERIAL AND METHODS

2.1 | Study design

We conducted a retrospective study from January 1, 2016, to 
November 30, 2018, using data from the electronic patient records 
of the Medical University of Vienna, University Clinic of Dentistry. 
The study was approved by the ethics committee of the Medical 
University of Vienna (No. 2234/2018). Data were extracted by one 
researcher (FK) and subsequently error-proofed by two researchers 
(BF, UK) in an independent manner. Only complete data were used 
in this study.

2.2 | Outcome parameters

Postoperative complications (bleeding/suppuration, swelling, 
local infection, hematoma, neurosensory disturbance) and early 
implant failure (i.e., before loading (Esposito, Hirsch, Lekholm, & 
Thomsen,  1998)) were assessed and designated as primary end 
points. Patient parameters comprised age, sex, smoking status, sys-
temic conditions (e.g., diabetes mellitus, osteoporosis, osteoarthri-
tis), implant location, and type of gap (single-tooth gap, extended 
gap, distal extension, edentulous jaw). The following implant pa-
rameters were considered: length, diameter, type (bone level, tissue 
level), material, bone augmentation (guided bone regeneration or 
sinus floor elevation), timing of implant placement [immediate, early, 
or late (Hämmerle, Chen, & Wilson, 2004)], use of flapless technique, 
and use of computer-aided navigation.
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2.3 | Statistical analysis

We used a lasso model to develop a prediction model for the com-
bined outcome of any assessed event (early implant failure or post-
operative complications) (Groll & Tutz,  2014). We parametrized 
categorical variables such that the lasso could collapse categories for 
which similar predictions would result (i.e., fused lasso). The penalty 
strength was tuned using 10-fold cross-validation. To accommodate 
dependencies in the data (several implants per patient) when opti-
mizing the penalty strength, we divided the cohort into ten “folds” 
such that all implants of a patient were assigned to the same fold. 
The cross-validated deviance criterion was further used to set the 
penalty parameter. As the lasso model can suffer from problems re-
lated to the non-occurrence of events in some levels of a risk factor 
(Mansournia et al., 2018), we also fitted multivariable logistic regres-
sion models with the Firth correction. To accommodate depend-
ent outcomes from patients with multiple implants, we computed 

p-values and confidence intervals (CI) for odds ratios (OR) using 
generalized estimating equations (GEEs), which took as input the 
augmented data representation of the Firth-corrected model (Puhr 
et al., 2017). Moreover, with the GEE and the Firth penalty, we also 
performed backward elimination of risk factor effects at a p-value 
criterion of .157 (equivalent to selection by Akaike's information cri-
terion) to obtain a more concise description of risk factor-outcome 
associations (Heinze, Wallisch, & Dunkler, 2018). According to rec-
ommendations, these associations were described by p-values from 
the multivariable model with all risk factors included, and OR and 
associated 95% CI from the model obtained after selection (Heinze 
et al., 2018). GEE with Firth penalization were also used to estimate 
the bivariate, unadjusted association of each risk factor with event 
types. All computations were performed by two researchers (SL, 
GH) using R version 3.6.1 (R Foundation for Statistical Computing).

3  | RESULTS

3.1 | Subject characteristics

The sample included 1,132 patients (mean age 50.6  ±  16.5  years, 
55.4% female, 19.3% smokers) and 2,413 dental implants. The num-
ber of implants per patient ranged from one (n = 525) to 10 (n = 5) 
with an average of 2.1 implants per patient. Implants 11.5 mm long 
and 4.3  mm wide were the most common (19.6%). No implants 
shorter than 8 mm were used, and 86.4% of all implants were be-
tween 3.5 and 4.5  mm in diameter. Most of the implants (90.5%) 
were made of commercially pure titanium. A total of 1,655 implants 
(68.6%) were placed using a standard surgical procedure without any 
type of bone augmentation (see Table 1 and Table S1).

3.2 | Postoperative complications and early 
implant failures

Postoperative complications occurred in 71 patients (6.3%). Local in-
fections were observed in 49 implants (2.0%), making them the most 
frequent complication. Prolonged swelling was found in 18 patients 
(1.6%). Neurosensory disturbances were observed in 10 patients 
(0.9%) that received 13 implants in total, 12 of which were placed 
in the posterior mandible. All of the observed nerve disturbances 
were of a temporary nature. Peri-implant bone loss occurred in 10 
implants (0.4%). A total of 16 implants (0.7%) were lost before load-
ing (see Table 2 and Table S2).

3.3 | Lasso model

The lasso model did not select any risk factors into the prediction 
model. Thus, in our patient cohort, the lasso indicated that none 
of the evaluated risk factors were able to predict an increased or 
decreased risk for any of the assessed complications or for early 

TA B L E  1   Subject characteristics

Patients, n (%) Implants, n (%)

Patient parameters

Female 627 (55.4) 1,328 (55.0)

Male 505 (44.6) 1,085 (45.0)

Non-smoker 910 (80.4) 1,912 (79.2)

Light smokera  157 (13.9) 336 (13.9)

Heavy smokerb  60 (5.3) 155 (6.4)

DM 33 (2.9) 110 (4.6)

Osteoporosis 31 (2.7) 72 (3.0)

Arthrosis 11 (1.0) 28 (1.2)

Arthritis 9 (0.8) 23 (1.0)

Osteopenia 8 (0.7) 14 (0.6)

Crohn's disease 3 (0.3) 6 (0.2)

COPD 3 (0.3) 11 (0.5)

Implant parameters

Single implant 1,028 (42.6)

Extended edentulous gap 379 (15.7)

Distal extension 469 (19.4)

Edentulous jaw 537 (22.3)

Immediate placement 105 (4.3)

Early placement 434 (18.0)

Late placement 1,879 (77.7)

Anterior maxilla 314 (13.0)

Posterior maxilla 881 (36.5)

Anterior mandible 256 (10.6)

Posterior mandible 962 (39.9)

Bone augmentation 732 (30.4)

Abbreviations: COPD, chronic obstructive pulmonary disease; DM, 
diabetes mellitus.
a <10 cigarettes/day.  
b≥10 cigarettes/day. 
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implant failure. Further, at cross-validation, the lasso model did 
not exhibit sufficient predictive performance (area under the re-
ceiver operating characteristic curve  =  0.52). The full network 
graphs of evaluated predictors and complications are shown in 
Figure 1a–b.

3.4 | Multivariable GEE regression models

Applying Firth's penalization via data augmentation to GEEs, we 
were able to fit multivariable models to describe the associations 
of risk factors with any complications (108 events), local infections 
(49 events), and hematoma formations (37 events). Results are re-
ported as OR with their corresponding 95% CI. Based on the any 

complications model, bone augmentation (OR = 1.74, 95% CI: 1.04–
2.90, p = .039) and diabetes mellitus (OR = 4.16, 95% CI: 1.56–11.08, 
p = .006) were associated with a higher risk of a postoperative com-
plication. Bone augmentation was associated with a higher risk of a 
local infection (OR = 2.67, 95% CI: 1.42–5.04, p =  .003). Diabetes 
mellitus (OR  =  7.58, 95% CI: 1.61–35.71, p  =  .007) and implants 
placed in edentulous jaws (OR = 4.92, 95% CI: 1.30 to 18.63, refer-
ence: single implant, p = .024) were associated with a higher risk of 
hematoma formation (see Table 3).

3.5 | Bivariate associations

We were able to fit bivariate models for early implant failure, local 
infections, and hematoma formation. Results are reported as per-
centages of affected implants. Associations with early implant fail-
ure were identified for the timing of implant placement (immediate: 
1.0%, early: 1.8%, late: 0.4%, p = .006). Associations for local infection 
were identified for bone augmentation (yes: 3.1%, no: 1.6%, p = .043). 
Associations for hematoma formation were identified for the indica-
tion for implant placement (single implant: 0.4%, extended edentulous 
gap: 1.1%, distal extension: 0.2%, edentulous jaw: 5.2%,, p <  .001), 
for the region of implant placement (anterior maxilla: 1.3%, poste-
rior maxilla: 0.7%, anterior mandible: 5.9%, posterior mandible: 1.3%, 
p < .0001), for bone augmentation (yes: 0.6%, no: 2.0%, p = .048), and 
for diabetes mellitus (yes: 10.9%, no: 1.1%, p = .001; see Table S3).

TA B L E  2   Postoperative complications and early implant failures

Complication
Implants, 
n (%)

Any complication 108 (4.5)

Local infection 49 (2.0)

Hematoma 37 (1.5)

Early implant failure 16 (0.7)

Nerve damage 13 (0.5)

Peri-implant bone loss 10 (0.4)

Bleeding 6 (0.2)

F I G U R E  1   (a–b) Network graphs. (a) The complete network graph shows all interconnections (gray edges) between the evaluated risk 
factors (blue nodes) and postoperative complications (yellow nodes). (b) A reduced version of the network graph shows interconnections 
only to and from complications, but not interconnections between risk factors. In both graphs, the thickness of the edges indicates the 
number of interconnections between nodes. AMan, anterior mandible; AMax, anterior maxilla; AT, antiresorptive therapy; Augm, bone 
augmentation; DE, distal extension; DM, diabetes mellitus; EF, early implant failure; EG, extended gap; EJ, empty jaw; HE, hematoma; 
HS, heavy smoker (≥ 10/d); IN, local infection; LS, light smoker (< 10/day); ND, nerve damage; NS, non-smoker; OP, osteoporosis; PB, 
postoperative bleeding; PMan, posterior mandible; PMax, posterior maxilla; SI, single implant; T1, immediate implant placement; T2, early 
implant placement; T3, late implant placement.
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4  | DISCUSSION

We studied risk factors for postoperative complications and early 
implant loss and found that using GEEs with penalized estimation 
using Firth's correction, several predictors were associated with 
local infections, hematoma formation, or any complication. This 
demonstrated the need for advanced methods to deal with prob-
lems typical for studies in implant dentistry: rare outcome events 
and dependent outcomes from patients with multiple implants. 
Conventional multivariable logistic regression cannot deal satisfac-
torily with either of the problems, and even less if they collide as 
in our study. We also adapted lasso regression to the situation of 

dependent outcomes by randomly grouping patients, not implants, 
into ten folds when performing cross-validation to determine the 
lasso tuning parameter and testing the model. However, lasso re-
gression could not identify a prediction model that would be of any 
use to prognosticate outcome events. Traditionally, researchers 
have often used univariable regression models to identify correla-
tions between possible predictors and complications and have used 
the such identified risk factors as independent variables in a multi-
variable model, which has then been undergone further forward or 
backward selection. Such conventional stepwise regression meth-
ods present multiple issues that are particularly relevant in implant 
dentistry. Applying simple stepwise regression in a mechanical way 

TA B L E  3   Results from multivariable GEE logistic regression models

Predictor

Local infection Hematoma formation Any complication

p OR (95% CI) p OR (95% CI) p OR (95% CI)

Indication for implant placement .8144 .0240 .2695

Single implant 1 (ref.) 1 (ref.) 1 (ref.)

Extended edentulous gap 1 (n.s.) 1 (n.s.) 1 (n.s.)

Distal extension 1 (n.s.) 1 (n.s.) 1 (n.s.)

Edentulous jaw 1 (n.s.) 4.92 (1.3, 18.63) 1 (n.s.)

Region of implant placement .1427 .4240

Anterior maxilla 1 (ref.) 1 (ref.) .3035 1 (ref.)

Posterior maxilla 0.53 (0.25, 1.11) 1 (n.s.) 0.58 (0.35, 0.97)

Anterior mandible 2.03 (0.87, 4.74) 1 (n.s.) 1 (n.s.)

Posterior mandible 1 (n.s.) 1 (n.s.) 1 (n.s.)

Timing of implant placement .8446 .0705 .1300

Immediate 1 (n.s.) 11.82 (2.1, 66.51) 2.41 (0.78, 7.5)

Early 1 (n.s.) 3.09 (0.78, 12.26) 1 (n.s.)

Late (reference) 1 (ref.) 1 (ref.) 1 (ref.)

Smoking .3325 .4269 .3952

Non-smoker (reference) 1 (ref.) 1 (ref.) 1 (ref.)

Light or heavy smoker 1 (n.s.) 1 (n.s.) 1 (n.s.)

Bone augmentation .0026 .6720 .0387

No 1 (ref.) 1 (ref.) 1 (ref.)

Yes 2.67 (1.42, 5.04) 1 (n.s.) 1.74 (1.04, 2.9)

Diabetes mellitus .4801 .0072 .0064

No 1 (ref.) 1 (ref.)

Yes 1 (n.s.) 7.58 (1.61, 35.71) 4.16 (1.56, 
11.08)

Antiresorptive therapy .0614 .1529 .4392

No 1 (ref.) 1 (ref.)

Yes 1 (n.s.) 5.72 (0.6, 54.62) 1 (n.s.)

Osteoporosis .6175 .3078 .8390

No 1 (ref.) 1 (ref.) 1 (ref.)

Yes 1 (n.s.) 1 (n.s.) 1 (n.s.)

Age .3157 .0554 .1617

Per year 1 (n.s.) 1.06 (1, 1.12) 1.02 (1, 1.04)

Abbreviations: CI, confidence interval, n.s., not selected in backward elimination; OR, odds ratio; ref., reference level.
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on univariate models ignores if multiple implants are placed in the 
same patient. This is important since patient-related factors such as 
smoking can affect every implant in a single patient, while implant-
related factors such as implant position possibly only affect a sin-
gle implant. Moreover, the problem of separation, which is common 
when studying rare outcomes or risk factors with some infrequent 
levels, leads to invalid inference of predictor effects and can thus 
severely affect the results of stepwise regression.

To avoid these biases, we used logistic models based on GEE, 
as these models are suitable for our dataset where patients have 
up to 10 implants. These models are further able to build a model 
without eliminating any risk factors prior to the analysis. To deal 
with sparse data, we implemented the Firth penalization into GEE, 
which unlike conventional approaches is robust to the problem 
of separation. Despite these advances, a multivariable model in-
cluding all risk factors that were considered a priori may be not 
well suited for a concise description which predictors are relevant 
to predict a particular outcome. On the other hand, it has been 
repeatedly argued that any inference from stepwise selection is 
hampered by overestimation bias in the predictor-outcome asso-
ciations and associated p-values that are biased low. To also solve 
these latter problems, we followed recent recommendations on 
conducting analyses with variable selection. We first evaluated 
these associations in the multivariable model without any selec-
tion and reported the p-values appropriately estimated by GEE 
with Firth's penalization. Further, we performed backward elimi-
nation of predictors that do not meet a p-value criterion of .157 
and reported the resulting OR with the associated 95% CI. In this 
backward elimination scheme, we always applied the Firth penalty 
which was computed for the starting model such that overestima-
tion bias by focusing on the apparently “significant” effects was 
avoided. In order to increase model stability, the Firth penaliza-
tion provides a fair amount of shrinkage of OR toward parity (i.e., 
shrinkage of predicted probabilities toward 0.5) such that some of 
the corresponding effects were not selected after backward elim-
ination. This explains why many OR are estimated as 1. According 
to recently published recommendations, we obtained p-values for 
all effects from the global (starting) models to avoid problems of in-
valid inference after model selection. The p-value criterion of .157 
corresponds to selection by the Akaike information criterion and 
hence selects a model that is suitable for predictions. However, 
the rareness of outcome events did not allow to put aside a test 
cohort in which the models could be evaluated, and we must leave 
this task to future work.

We also ran conventional univariable GEE models for compar-
ison. In our patient cohort, the lasso did not identify any correla-
tions between possible risk factors and complications. In contrast, 
conventional models showed several correlations, most notably 
between the timing of implant placement and early implant failure. 
We consider these correlations identified by univariable regression 
models unreliable based on (i) the biases we mentioned before, (ii) 
the exceedingly large confidence intervals for some of the identi-
fied predictors, as well as (iii) the fact that none of the identified 

correlations could be confirmed using lasso. These stringent cave-
ats prevent any meaningful prediction based on univariable regres-
sion models. The results from univariable models are also dissimilar 
to results from a comparable dataset of 1,568 patients (Brügger 
et  al.,  2015). Individual patient-specific characteristics might have 
played a role in the development of postoperative complications and 
early implant failure in our cohort. At this point, the occurrence of 
these events cannot be distinguished from bad luck for the individual 
patients. Risk factors thus did not predispose patients in our cohort 
to postoperative complications or early implant failure, suggesting 
that with the right clinical protocol, patients that are considered high 
risk can be successfully treated with implants.

An alternative approach to ours would have been ridge regres-
sion. Both lasso and ridge shrink regression coefficients toward 
zero to reduce model overfitting; a distinctive feature of lasso is 
variable selection which shrinks some coefficients to exactly zero. 
Lasso thus eliminates superfluous predictors completely which 
makes for an easier interpretation of the results. Ridge and lasso 
perform comparably well in low-noise settings but lasso has an ad-
vantage in datasets with more noise (Pavlou et al., 2016). Variable 
selection is not available when using ridge. Considering the im-
portance of easily interpretable results, we deemed variable se-
lection important and thus chose lasso, but also applied variable 
selection in the Firth-penalized GEE models. Models that include 
all covariates (e.g., GEE) or a large subset of covariates do not con-
verge due to quasi-separation. Occasionally, this may even happen 
in univariate models. We fixed this issue by accommodating GEEs 
with penalized regression using the Firth penalty (Mansournia 
et al., 2018).

Our study is inherently limited by its retrospective nature as 
well as the relatively low prevalences of postoperative complica-
tions and implant failures in the patient cohort. We further did not 
include any multiplicative effects in our model. To do so, a larger 
sample size would have been needed. Future research should con-
sider applying our models in different patient cohorts to evaluate 
the replicability of these results, particularly in different popula-
tions. Long-term evaluation of risk factors for implant failure as 
opposed to only early failure, as well as the assessment of possible 
risk factors not evaluated in our study (e.g., periodontal disease, 
prosthetics), should also be taken under consideration for future 
research.

5  | CONCLUSION

Using novel methodology well-suited to tackle the challenges in im-
plant dentistry, such as dependence of observations from patients 
with multiple implants and rare outcome events, we were able to 
reliably estimate associations of risk factors with outcomes.
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