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Abstract
Modern PET/CT radiotherapy simulators offer FDG-PET and dynamic contrast-
enhanced (DCE) CT imaging for combined volumetric assessment of tumor metabo-
lism and perfusion. However, the clinical utility of such assessment has not been 
clearly defined. Thus, in a prospective longitudinal study of primary cervical tumors 
treated with concurrent chemoradiotherapy (CCRT) we evaluated: (1) whether PET 
and perfusion parameters correlate or provide complementary information; (2) what 
imaging changes occur during CCRT; and (3) whether any parameters are predictive 
of treatment response as assessed by PET/CT 3 months posttherapy. FDG-PET/CT 
and DCE-CT scans were performed on 21 patients prior to and during CCRT. 
Coregistered volumetric parametric maps of standardized uptake value (SUV) meas-
ures and perfusion parameters blood flow (BF), blood volume (BV), and permeabil-
ity were generated. Summary statistics for these parameters and their changes were 
calculated within the metabolic tumor volume (MTV). Correlations between SUV 
and BF/BV/permeability on local and global bases were assessed with Pearson’s 
coefficient r. MTV, maximum SUV, and mean SUV decreased significantly between 
the pre- and during-treatment time points, while mean BV and permeability increased 
significantly. Global correlations between mean BF/BV/permeability and mean SUV 
values (−.15 < r < .29) were at most moderate. An increase in mean tumor BV dur-
ing treatment was significantly correlated with complete metabolic response on 
3-month posttreatment PET/CT. Weak correlations of SUV and perfusion parame-
ters suggest a complementary role of FDG-PET and DCE-CT for tumor characteriza-
tion. The association between relative change in mean BV and outcome suggests a 
potential role for DCE-CT in early evaluation of cervical tumor response to 
chemoradiotherapy.
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1  |   INTRODUCTION

Although cervical cancer incidence in the US has been in 
decline for the past 30 years, 5-year overall survival has 
remained around 70%.1 For patients with locally advanced 
cervical cancer requiring treatment with concurrent chemo-
radiation (CCRT), approximately 30% develop new or per-
sistent disease (PD) following treatment.2,3 With recent 
studies showing significant improvements in progression-
free and overall survival with adjuvant chemotherapy albeit 
at a cost of grade 3 or greater toxicity approaching 90%,4 a 
capability for early identification of those cervical cancer pa-
tients at increased risk of new or PD would have potential to 
improve survival outcomes.

Primary cervical tumor hypoxia5-8 as well as pre- and 
during-treatment FDG-PET-based biomarkers9,10 have shown 
potential as prognostic factors in identifying high-risk cervi-
cal cancer patients. Many historical approaches to evaluating 
primary cervical tumor hypoxia are quite invasive and likely 
not practical on a large scale, but some data on dynamic 
contrast-enhanced (DCE) CT and DCE-MRI encouragingly 
show imaging technology to be a potential means of noninva-
sively assessing such hypoxia. Haider et al found correlations 
between DCE-CT oxygen and blood flow (BF) measurements 
for cervical cancer tumors.11 High pretreatment values of per-
fusion blood volume (BV) and permeability correlate with fa-
vorable cervical tumor response to chemoradiation,12,13 while 
low pretreatment cervical tumor perfusion on DCE-MRI is 
associated with poor radioresponsiveness.14 These findings 
suggest pretreatment perfusion imaging has potential as a 
noninvasive prognostic tool for cervical cancer.

Mayr et al have found that pre- and during-treatment 
DCE-MRI measurements of primary cervical tumor perfu-
sion correlate with local control and survival outcomes.15 
Data on changes in DCE-CT-based perfusion parameters of 
primary cervical tumors during radiation or chemoradiation 
are more limited, with 1 study of 14 cervical cancer patients 
finding that tumor BF increased with radiation.16

Given the encouraging but limited data in this direction, 
we conducted a prospective pilot study to investigate if joint 
volumetric FDG-PET and DCE-CT imaging offer biomark-
ers useful to earlier identification of cervical cancer patients 
at increased risk of new or PD following definitive chemo-
radiation. Our goals included: (1) determining the feasibil-
ity of DCE-CT for noninvasive perfusion assessment in a 
radiotherapy setting; (2) determining whether perfusion pa-
rameters from DCE-CT correlate with FDG-PET parameters 

or provide unique, distinct information; (3) evaluating the 
changes in perfusion and FDG-PET parameters during defin-
itive chemoradiation; and (4) identifying imaging biomark-
ers that predict for treatment response as assessed 3 months 
posttherapy.

2  |   MATERIALS AND METHODS

2.1  |  Patient eligibility and study design
This prospective phase I pilot study NCT01805141 was ap-
proved by an institutional review board and scientific review 
committee and enrolled patients presenting with locally ad-
vanced cervical tumors who were prescribed definitive CCRT 
and had no contraindications to receiving iodinated CT con-
trast agent. Twenty-three patients were recruited from 2013 
to 2017, with 21/23 (91%) recruited during 2015-2017. Every 
patient received diagnostic PET/CT and MRI scans to evalu-
ate for possible lymph node involvement and distant disease. 
Tumor FIGO staging was based on clinical examination.

2.2  |  Imaging and treatment regimens
Following patient enrollment but prior to imaging, 3-5 gold 
fiducial markers were implanted around each patient’s tumor 
region. Before the start of radiation treatments, each partici-
pant was imaged with an FDG-PET/CT scan for treatment 
planning purposes and with a DCE-CT scan to assess tumor 
perfusion. For 17/23 (74%) of the patients the 2 scans were 
performed in the same session; for the rest the pretreatment 
DCE-CT scan was performed within 2 weeks after the pre-
treatment FDG-PET scan.

All patients were treated with concurrent cisplatin (cis), 
external beam pelvic radiation, and brachytherapy. Five pa-
tients received 75 mg/m2 cisplatin every 3 weeks (4/5 com-
pleted 3 cycles), 17 patients received 40 mg/m2 every week 
(14/17 completed 5-6 cycles while 3/17 had only 4 cycles due 
to hematologic toxicity), and 1 patient started weekly cispla-
tin but had hearing complaints after 1 cycle and was switched 
to 5FU every 3 weeks. Every patient received an external 
beam dose of 48.6 Gy delivered in 27 fractions with an in-
tegrated boost of 58-60 Gy to any involved nodes, as well as 
a brachytherapy dose of 27.5-30 Gy delivered in 5 fractions. 
Patients with common or para-aortic lymph node metastases 
were also treated to the para-aortic region.

Participants underwent a second set of FDG-PET/CT 
and DCE-CT scans partway through treatment (median 
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3.3 weeks from the start of treatment, range 1.9-4.7 weeks); 
these during-treatment scans were performed on the same 
day for all patients but one. The average delivered dose by the 
time of the during-treatment scans was EQD2 = 31.3 Gy. All 
scans were acquired in supine position, with immobilization 
to enable similar positioning.

Posttreatment disease response was assessed by a nuclear 
medicine physician reading a diagnostic FDG-PET/CT scan 
performed on average 3.1 months after the conclusion of the 
CCRT, as previous studies have shown that the 3-month post-
treatment time point correlates with long-term outcome.17 
Treatment outcome measures were complete metabolic re-
sponse (CMR), PD, or new disease (ND).

2.3  |  FDG-PET image acquisition
All pre- and during-treatment FDG-PET/CT and DCE-CT 
scans were performed using the same PET/CT scanner 
(Siemens Biograph mCT, Erlangen, Germany). FDG-PET/
CT scans were carried out according to institutional pro-
tocol. In brief, after fasting a minimum of 6 hours, pa-
tients were administered FDG (activities ranged from 8 to 
12 mCi), rested 45 minutes to an hour to allow uptake, and 
then voided their bladder prior to PET scanning. Scans en-
compassed the region from diaphragm to midfemur. Some 
acquisition parameters (eg, number of bed positions and 
dwell times) varied according to patient size; all PET/CT 
scans had a slice thickness of 3 mm. The scans were attenu-
ation corrected and reconstructed using the TrueX+TOF 
(ultraHD-PET) algorithm with 2 iterations and 21 subsets. 
The resulting PET images (200 × 200 pixels, pixel size 
4.073 × 4.073 mm2) were converted into standardized up-
take values (SUV) based on injected activity and patient 
body weight.

2.4  |  DCE-CT image 
acquisition and analysis
Volumetric DCE-CT scans were acquired via Adaptive 4D 
Spiral scanning mode (Siemens, Erlangen, Germany), a 
“table shuttle” mode in which the treatment couch moves 
back and forth in the cranial-caudal direction while the X-
ray source rotates around the patient. Images were acquired 
using an X-ray technique of 100 kVp/150 mAs, collimation 
32 × 1.2 mm, and rotation time 0.3 second. Each scan was 
51 seconds in duration and consisted of 34 separate volumet-
ric images acquired at 1.5-second intervals over a cranial-
caudal length of either 96 or 144 mm, centered on the tumor 
region, with a slice thickness of 3 mm. The vast majority of 
DCE-CT scans were performed in treatment position imme-
diately after the FDG-PET acquisition, though in some in-
stances the pretreatment scans were performed on different 
days.

There was a 2-second delay from the start of the contrast 
injection process to the start of imaging. Patients were in-
jected with 54 mL of iodinated radiocontrast agent (Isovue 
300 or 370) at a rate of 5.0 mL/s, followed by 50 mL of saline 
at 5.0 mL/s to flush the line and ensure complete adminis-
tration of the contrast bolus. Image reconstruction was per-
formed with a 512 × 512 pixel matrix, 380-mm field of view, 
and the “B20f smooth” reconstruction kernel.

We calculated perfusion parameters from DCE-CT scans 
using commercial software (VPCT Body VE36A, Siemens, 
Erlangen, Germany) and applied the same processing steps 
and settings to all patients. Analysis of each scan consisted of 
the following sequence: registering the images with respect 
to a midphase frame to correct for anatomical motion; speci-
fying the precontrast baseline using the first frame; applying 
4D noise reduction; segmenting out tissues with voxels out-
side the range [−50, 150] HU; selecting the femoral artery 
(at the same level as the tumor) to serve as the contrast refer-
ence vessel; and specifying an “Outside Relative Threshold” 
of 50% to exclude as vessels any voxels having an HU value 
above 50% of the selected reference vessel. The software then 
applied a deconvolution model18 to obtain volumetric maps 
of BF, BV, and permeability for the entire imaged volume. 
Semi-independent DCE-CT analyses were carried out by a 
medical physicist and a radiation oncologist who was trained 
by a body imaging radiologist experienced in perfusion CT 
analysis. Discrepancies between the 2 analyses were reviewed 
and reconciled by the group.

2.5  |  Data analysis
For each patient and time point, the metabolic tumor volume 
(MTV) was segmented using the Aria oncology system’s 
Contouring application (Varian Medical Systems, Palo Alto, 
CA, USA) by the treating physician, who applied standard-
ized thresholding combined with visual inspection of the 
FDG-PET/CT series to ensure inclusion of the tumor and ex-
clusion of FDG being excreted by the bladder. The 3D SUV 
and perfusion parameter maps were then coregistered by fus-
ing the PET/CT and DCE-CT series for the same time point. 
Of the 42 PET/DCE-CT image pairs analyzed (there being 21 
patients who had 2 analyzable time points), 36/42 (86%) had 
been acquired during the same imaging session and were thus 
natively coregistered while 6/42 (14%) of the pairs had been 
acquired on separate days. If any displacement was observed 
between the 2 CT series, a rigid registration was performed 
using bony anatomy and then fine-tuned using the fiducial 
markers implanted around the tumor.

Statistical analysis of PET and perfusion parameters 
inside the MTV (excluding any voxels marked as vessels 
by the analysis software) included: (1) summary statistics 
calculation (maxima, means, coefficients of variation); 
(2) Pearson product moment correlation coefficients 
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calculation, to quantify the strength of the linear relation-
ship between parameters at the same time point on local 
(voxel-per-voxel) and global (MTV-wide) bases; (3) paired 
t tests for changes in parameters from pretreatment to 
midtreatment; (4) logistic regression between the binary 
treatment outcome and the relative change in BV (a contin-
uous predictor) with Firth’s bias-adjusted estimates to ac-
count for the small sample size of our study;19 and (5) exact 
conditional logistic regression modeling of the association 
between the binary treatment outcome and relative change 
in BV.20 All tests were 2-sided and used an alpha level of 
0.05. Analyses were performed using SAS v 9.4 and JMP 
Pro 13.1.0 (SAS Institute Inc, Cary, NC, USA).

3  |   RESULTS

3.1  |  Clinical characteristics
Table 1 lists individual characteristics and outcomes for the 
23 patients enrolled in the study. We excluded 2 patients 
from analysis due to lack of a during-treatment DCE-CT 
scan for one (#1) and an unusable pretreatment DCE-CT 
scan for the other (#21). In the latter case, the scan was com-
promised because of an excessive delay in starting the CT 
acquisition after the injection of contrast. Three of the 21 
patients analyzed did not return for follow-up scans (due to 
socioeconomic challenges which are not uncommon in this 
patient population) and therefore were not evaluated for out-
come. All 20 patients who underwent posttreatment PET/CT 
showed complete imaging response at the primary cervical 
region and for any involved lymph nodes, while 3 patients 
showed ND, of which all had distant disease (lung or neck).

Representative axial and coronal planes from 3D param-
eter maps for 2 patients are shown in Figure 1. The images 
demonstrate several characteristics observed across the pa-
tients in our study: (1) prominent intratumoral heterogeneity 
of metabolic activity and perfusion; (2) lack of voxel-to-voxel 
correspondence of metabolic and perfusion patterns; and (3) 
conspicuous changes in metabolic and perfusion patterns 
during treatment.

3.2  |  FDG-PET and perfusion parameters: 
baseline values, changes during treatment, and 
intramodality correlations
Summary statistics for selected tumor volume SUV and 
perfusion parameters across the study cohort are reported 
in Table 2. Bivariate scatterplots of the same pretreatment 
parameters are presented in Figure 2. There is no indication 
of correlations between any global SUV and perfusion pa-
rameters. Local correlations between SUV and BF/BV/per-
meability ranged between −.33 < r < .43 across all patients. 
The heterogeneity of SUV and perfusion parameters in the 

patient MTVs was characterized by the respective coeffi-
cients of variation (CV), CV being defined (in percentage) as 
100 times the standard deviation of voxel intensities, divided 
by the mean. The mean CVs across the studied patients were 
as follows for the before and during-treatment time points: 
mean CVSUV (36.9 ± 13.2% vs 26.1 ± 10.1%, P = .0022); 
mean CVBF (62.1 ± 16.4% vs 54.1 ± 23.8%, P = .1593); 
mean CVBV (54.4 ± 13.1% vs 46.8 ± 21.9%, P = .1041); 
mean CVPerm. (54.6 ± 18.7% vs 45.5 ± 27.2%, P = .0676).

Changes in global tumor parameters with radiation treat-
ment are shown in Figure 3. MTV, maximum SUV, and mean 
SUV decreased significantly between the pre- and during-
treatment time points while mean BV and mean permeability 
increased significantly over the same period.

3.3  |  Correlations between imaging 
parameters and outcome
On univariate analysis only absolute and relative differences 
in mean BV were significantly associated with outcome, 
as assessed by posttreatment PET imaging response. In pa-
tients showing CMR, mean BV increased by 31.8% ± 25.0% 
whereas in patients exhibiting new distant disease mean BV 
decreased by 20.8% ± 10.9%. These trends are demonstrated 
in Figures 3 and 4. Figure 4 further presents the Firth’s bias-
adjusted logistic regression model and confidence limits for 
the probability of CMR as a function of relative change in 
mean BV (P = .0007). The exact conditional logistic regres-
sion modeling corroborated the association between CMR 
and relative change in mean BV (P = .0037).

4  |   DISCUSSION

Several design aspects of this prospective pilot imaging study 
enabled the gathering of unique data and afforded novel in-
sights regarding the metabolism and perfusion of primary 
cervical tumors before and during chemoradiotherapy.

Previous studies investigating perfusion CT in cervical 
cancer chemoradiotherapy used cine scanning with a fixed 
table position, which limited perfusion imaging to only a 
few slices covering 8-20 mm of the tumor volume in axial 
direction.11,12,16 In contrast, using the recently introduced 
Adaptive 4D Volume Perfusion CT (Siemens, Erlangen, 
Germany) which employs continuous shuttling table motion, 
we could assess perfusion parameters throughout the tumor 
region. This volumetric assessment revealed large intratu-
moral heterogeneity of the perfusion parameters with mean 
coefficients of variation from 46% to 62%. Primary cervix 
tumors are also known to significantly change in shape and 
regress in volume during chemoradiotherapy.21,22 This poses 
a challenge for longitudinal perfusion assessment with only 
a few CT slices since potentially large systematic errors will 
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arise from misplacement of the imaging slices in consecutive 
scans. Thus our results regarding the intratumoral perfusion 
heterogeneity strongly suggest that for longitudinal studies 
perfusion needs to be assessed volumetrically.

In this study, the FDG-PET and DCE-CT scans were ac-
quired in treatment position and, for the majority of patients, 
in the same imaging session. This allowed correlations be-
tween SUV and BF/BV/permeability maps on local (voxel-
to-voxel) and global (summary statistics) basis to be robustly 
calculated. Local correlations between SUV and BF/BV/per-
meability and SUV were at most moderate. This indicates 
spatial mismatch between flow and metabolism in cervical 
tumors—a finding that was previously reported in a nuclear 
imaging study utilizing FDG for metabolic activity and 15O 
for perfusion.23

For the first time we have established that global correla-
tions between mean SUV and mean BF/BV/permeability val-
ues (−.38 < r < .03) are at most moderate in primary cervical 

tumors. Such weak coupling between perfusion parameters 
and FDG uptake is not universal and depends on the tumor 
type. In head and neck24 and rectal tumors25 strong correla-
tions have been observed, whereas weak, nonsignificant 
correlations have been reported in lung tumors.26 The weak-
to-moderate nonsignificant correlations we observe suggest a 
complementary role for PET and CT perfusion in character-
izing the microenvironment of primary cervix tumors.

With volumetric pre- and during-treatment FDG-PET and 
DCE-CT imaging, we were able to examine the changes in 
metabolism and perfusion over the course of chemoradio-
therapy. MTVs, max SUV, and mean SUV decreased signifi-
cantly on average as expected.10 We also observed significant 
increase in the average midtreatment mean BV and permea-
bility values compared to pretreatment baseline values, a re-
sult that to our knowledge has not been previously reported. 
Even though there was a trend toward mean BF increase it 
was not significant, in contrast to a result reported by Shibuya 

T A B L E   2   Mean values and ranges of selected tumor-volume PET and perfusion parameters across the study cohort, for the pre- and 
during-treatment time points (See text for parameter definitions. P-values for the parameter changes are presented in Figure 3.)

Scans

Mean value (range) for analyzed patient tumor volumes

MTV (cc) Max SUV Mean SUV
Mean BF 
(mL/100 mL/min)

Mean BV 
(mL/100 mL)

Mean permeability 
(mL/100 mL/min)

Pre-Tx 73.8 (2.8-268.4) 11.5 (4.0-25.6) 5.1 (2.0-9.9) 71 (37-108) 9.8 (5.4-14.2) 18.3 (10.5-29.8)

During-Tx 19.5 (4.5-60.1) 6.7 (0.3-15.0) 3.4 (0.2-6.8) 80 (36-130) 11.9 (6.6-18.6) 24.9 (9.4-34.6)

MTV, metabolic tumor volume; SUV, standardized uptake value; BF, blood flow; BV, blood volume.

F I G U R E   1   Axial and coronal slices from pre- and during-treatment volumetric maps of standardized uptake value (SUV), blood flow (BF), 
and blood volume (BV) for 2 patients. The patient shown in (A) and (B) exhibited complete metabolic response at initial posttreatment follow-up, 
while the patient shown in (C) and (D) exhibited new distant disease at their same follow-up
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et al.16 This discrepancy may be attributable to the fact that 
Shibuya et al did not use volumetric perfusion scans for their 
longitudinal study and thus their results were prone to the 
systematic sampling errors discussed above.

We further observed that increases in mean BV during 
treatment were associated with CMR to therapy. This find-
ing appears consistent with the result from a serial dynamic 
MRI study that reported favorable outcome in patients with 

initially high perfusion or subsequent improvements (in-
crease) of initially low perfusion.15 Quantitative comparison 
of the results between the 2 studies is however not possible 
because in the MRI study perfusion was quantified SI10 (the 
value of the plateau signal intensity above baseline such that 
10% of the voxels of the heterogeneous tumor have lower sig-
nal intensities). The dependency of the SI10 index on perfu-
sion parameters is complex and further confounded by the 

F I G U R E   2   Bivariate scatterplots of global tumor standardized uptake value (SUV) and perfusion parameters extracted from pretreatment 
scans, as well as the patient distribution for each parameter. (See text for parameter definitions.) In each scatterplot, the sample correlation 
coefficient (r value) and 95%-level confidence regions are shown. Moderate correlations are evident within the separate SUV and perfusion 
parameter groups but there is no indication of correlations between SUV and perfusion parameters. The during-treatment data exhibit similar 
behavior
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specifics of the MR acquisition sequence which nonlinearly 
transforms tracer concentrations to image intensity. While 
DCE-MRI has been the modality of choice for cervix perfu-
sion evaluation, we find that DCE-CT might be better suited 
as a tool in radiotherapy. It is less costly than DCE-MRI, 
more accessible as it can be performed on modern CT and 
PET/CT simulators, and robustly quantifiable because of the 
linear relationship between contrast concentration and signal 
enhancement. These advantages come at the expense of ad-
ditional radiation dose which we have previously confirmed 
to be about 5 mGy/100 mAs for the imaging protocol used 
here.27 For a typical body DCE-CT the cumulative imaging 
dose will range from 20 to 30 cGy, which is less than a per-
cent of the total therapeutic dose.

A limitation of our study is the small number of patients 
enrolled, and the yet smaller number for whom we obtained a 
complete data set. This is likely the reason we did not observe 
previously reported associations between FDG-PET imaging 
biomarkers and clinical outcomes.10,28,29 Additionally, all pa-
tients showed good local control, so we were not able to assess 
imaging parameters that correlate with local failure. Another 

F I G U R E   3   Changes in standardized uptake value (SUV) and perfusion parameters between pre- and during-treatment scans for the analyzed 
patients. In each plot, the significance of a nonzero average change in parameter value during this early treatment period is indicated by the P-value, 
which is based on a paired t test analysis in which the normality assumption was verified via residual analysis. The lines are colored according to 
individual patient outcome
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potential limitation is the possibility that the particular com-
mercial deconvolution model used for our analysis could have 
introduced bias. We have therefore reported all relevant pa-
rameters, which we applied uniformly across all patients.

5  |   CONCLUSIONS

We have demonstrated the feasibility of performing longi-
tudinal bimodality volumetric imaging in cervical cancer 
patients undergoing chemoradiotherapy. We made several 
cervical cancer-specific findings, including: (1) SUV and 
perfusion CT parameters are not significantly correlated; (2) 
MTV, maximum SUV, and mean SUV decrease on average 
during chemoradiation, while tumor BV and permeability in-
crease on average; and (3) increase in mean tumor BV during 
treatment is associated with CMR to therapy. This suggests 
a potential role for DCE-CT in early evaluation of treatment 
response of cervical cancer patients to chemoradiotherapy.
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